1 |
JAHIRUL M, RASUL M, CHOWDHURY A, et al. Biofuels production through biomass pyrolysis—A technological review[J]. Energies, 2012, 5(12): 4952-5001.
|
2 |
傅杰. 高温液态水中的脱羧反应[D]. 杭州: 浙江大学, 2010.
|
|
FU J. Studies on decarboxylation reactions in high temperature liquid water[D]. Hangzhou: Zhejiang University, 2010.
|
3 |
ARUN N, SHARMA R V, DALAI A K. Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: strategies for catalyst design and development[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 240-255.
|
4 |
TSODIKOV M V, CHISTYAKOV A V, GUBANOV M A, et al. Selective deoxygenation of vegetable oils in the presence of Pt-Sn/Al2O3 catalyst[J]. Russian Chemical Bulletin, 2015, 64(9): 2062-2068.
|
5 |
HONGLOI N, PRAPAINAINAR P, SEUBSAI A, et al. Nickel catalyst with different supports for green diesel production[J]. Energy, 2019, 182: 306-320.
|
6 |
DOUVARTZIDES S L, CHARISIOU N D, PAPAGERIDIS K N, et al. Green diesel: biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines[J]. Energies, 2019, 12(5): 809.
|
7 |
王霏, 徐俊明, 蒋剑春, 等. 油脂加氢制备生物柴油用催化剂的研究进展[J]. 材料导报, 2018, 32(5): 765-771.
|
|
WANG F, XU J M, JIANG J C, et al. Advances in catalysts applied to bio-diesel production from oil hydrotreatment[J]. Materials Reports, 2018, 32(5): 765-771.
|
8 |
DUAN P, XU Y, WANG F, et al. Catalytic upgrading of pretreated algal bio-oil over zeolite catalysts in supercritical water[J]. Biochemical Engineering Journal, 2016, 116: 105-112.
|
9 |
ZHANG J, HUO X, LI Y, et al. Catalytic hydrothermal decarboxylation and cracking of fatty acids and lipids over Ru/C[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14400-14410.
|
10 |
VARDON D R, SHARMA B K, JARAMILLO H, et al. Hydrothermal catalytic processing of saturated and unsaturated fatty acids to hydrocarbons with glycerol for in situ hydrogen production[J]. Green Chemistry, 2014, 16(3): 152-157.
|
11 |
WATANABE M, IIDA T, INOMATA H. Decomposition of a long chain saturated fatty acid with some additives in hot compressed water[J]. Energy Conversion and Management, 2006, 47(18/19): 3344-3350.
|
12 |
王治斌, 孙来芝, 陈雷, 等. 生物油水蒸气催化重整制氢研究进展[J]. 化工进展, 2021, 40(1): 151-163.
|
|
WANG Z B, SUN L Z, CHEN L, et al. Progress in hydrogen production by steam catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 151-163.
|
13 |
FU J, LU X, SAVAGE P E. Catalytic hydrothermal deoxygenation of palmitic acid[J]. Energy & Environmental Science, 2010, 3(3): 311-317.
|
14 |
SIMS R E H, MABEE W, SADDLER J N, et al. An overview of second generation biofuel technologies[J]. Bioresource Technology, 2010, 101(6): 1570-1580.
|
15 |
XU D, LIN G, GUO S, et al. Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: a critical review[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 103-118.
|
16 |
HOSSAIN M Z, JHAWAR A K, CHOWDHURY M B I, et al. Deactivation and regeneration studies of activated carbon during continuous decarboxylation of oleic acid in subcritical water[J]. Fuel, 2018, 231: 253-263.
|
17 |
CHEN J, XU Q. Hydrodeoxygenation of biodiesel-related fatty acid methyl esters to diesel-range alkanes over zeolite-supported ruthenium catalysts[J]. Catalysis Science & Technology, 2016, 6(19): 7239-7251.
|
18 |
CHANG Z F, DUAN P G, XU Y P. Catalytic hydropyrolysis of microalgae influence of operating variables[J]. Bioresource Technology, 2015, 184: 349-354.
|
19 |
HOLLAK S A W, ARIËNS M A, DE JONG K P, et al. Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming[J]. ChemSusChem, 2014, 7: 1057-1060.
|
20 |
YANG C Y, NIE R F, FU J, et al. Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil[J]. Bioresource Technology, 2013, 146: 569-573.
|
21 |
HOSSAIN M Z, CHOWDHURY M B I, JHAWAR A K, et al. Continuous hydrothermal decarboxylation of fatty acids and their derivatives into liquid hydrocarbons using Mo/Al2O3 catalyst[J]. ACS Omega, 2018, 3(6): 7046-7060.
|
22 |
MIAO C, MARIN-FLORES O, DAVIDSON S D, et al. Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst[J]. Fuel, 2016, 166: 302-308.
|
23 |
MIAO C, MARIN-FLORES O, DONG T, et al. Hydrothermal catalytic deoxygenation of fatty acid and bio-oil with in situ H2[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4521-4530.
|
24 |
MURATA K, LIU Y Y, INABA M, et al. Production of synthetic diesel by hydrotreatment of Jatropha oils using Pt-Re/H-ZSM-5 catalyst[J]. Energy & Fuels, 2010, 24(4): 2404-2409.
|
25 |
ZHANG Z H, YANG Q W, CHEN H, et al. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu-Ni alloy catalyst using methanol as a hydrogen carrier[J]. Green Chemistry, 2018, 20(1): 197-205.
|
26 |
于琪, 张祖浩, 尹昭森, 等. Cu-Ce/γ-Al2O3对硬脂酸催化水热脱氧产生烷烃的效果[J]. 色谱, 2019, 4(37): 454-461.
|
|
YU Q, ZHANG Z H, YIN Z S, et al. Effect of Cu-Ce/γ-Al2O3 catalyst on bio-oil production by hydrothermal deoxygenation of stearic acid[J]. Chinese Journal of Chromatography, 2019, 4(37): 454-461.
|
27 |
BARTHOLOMEW C H. Mechanisms of catalyst deactivation[J]. Applied Catalysis A: General, 2001, 212: 17-60.
|
28 |
WU K, WU Y, CHEN Y, et al. Heterogeneous catalytic conversion of biobased chemicals into liquid fuels in the aqueous phase[J]. ChemSusChem, 2016, 9(12): 1355-1385.
|
29 |
RUOFF R S, LORENTS D C, CHAN B, et al. Single crystal metals encapsulated in carbon nanoparticles[J]. Science, 2010, 259(5093): 346-348.
|
30 |
YEH T, LINIC S, SAVAGE P E. Deactivation of Pt catalysts during hydrothermal decarboxylation of butyric acid[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2399-2406.
|
31 |
LANGE J. Renewable feedstocks: the problem of catalyst deactivation and its mitigation[J]. Angewandte Chemie International Edition, 2015, 54: 13186-13197.
|
32 |
PHAM T N, SHI D, SOOKNOI T, et al. Aqueous-phase ketonization of acetic acid over Ru/TiO2/carbon catalysts[J]. Journal of Catalysis, 2012, 295: 169-178.
|
33 |
KIM S, TSANG Y F, KWON E E, et al. Recently developed methods to enhance stability of heterogeneous catalysts for conversion of biomass-derived feedstocks[J]. Korean Journal Chemical Engineering, 2019, 36(1): 1-11.
|
34 |
FU J, LU X Y, SAVAGE P E. Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C[J]. ChemSusChem, 2011, 4(4): 481-486.
|
35 |
XU G Y, ZHANG Y, FU Y, et al. Efficient hydrogenation of various renewable oils over Ru-HAP catalyst in water[J]. ACS Catalysis, 2017, 7(2): 1158-1169.
|
36 |
JIN M, CHOI M. Hydrothermal deoxygenation of triglycerides over carbon-supported bimetallic PtRe catalysts without an external hydrogen source[J]. Molecular Catalysis, 2019, 474: 110419.
|
37 |
HWANG K R, CHOI I H, CHOI H Y, et al. Bio fuel production from crude Jatropha oil; addition effectt of formic acid as an in-situ hydrogen source[J]. Fuel, 2016, 174: 107-113.
|
38 |
FU J, YANG C Y, WU J H, et al. Direct production of aviation fuels from microalgae lipids in water[J]. Fuel, 2015, 139: 678-683.
|
39 |
TIAN Q R, ZHANG Z Z, ZHOU F, et al. Role of solvent in catalytic conversion of oleic acid to aviation biofuels[J]. Energy & Fuels, 2017, 31(6): 6163-6172.
|
40 |
IDESH S, KUDO S, NORINAGA K, et al. Catalytic hydrothermal reforming of Jatropha oil in subcritical water for the production of green fuels: characteristics of reactions over Pt and Ni catalysts[J]. Energy & Fuels, 2013, 27(8): 4796-4803.
|
41 |
EDEH I, OVERTON T, BOWRA S. Renewable diesel production by hydrothermal decarboxylation of fatty acids over platinum on carbon catalyst[J]. Biofuels, 2021, 12(8): 945-952.
|
42 |
EDEH I, OVERTON T, BOWRA S. Catalytic hydrothermal deoxygenation of the lipid fraction of activated sludge[J]. Biofuels, 2021, 12(8): 925-929.
|
43 |
XIONG H F, PHAM H N, DATYE A K. Hydrothermally stable heterogeneous catalysts for conversion of biorenewables[J]. Green Chemistry, 2014, 16: 4627-4643.
|
44 |
张成. 硬脂酸催化脱氧制备碳氢化合物的实验研究[D]. 昆明: 云南师范大学, 2013.
|
|
ZHANG C. Research of hydrocarbon production from catalytic deoxygenation of stearic acid[D]. Kunming: Yunnan Normal University, 2013.
|
45 |
DUAN P G, BAI X J, XU Y P, et al. Catalytic upgrading of crude algal oil using platinum/gamma alumina in supercritical water[J]. Fuel, 2013, 109: 225-233.
|
46 |
ZHANG Z Z, CHEN H, WANG C X, et al. Efficient and stable Cu-Ni/ZrO2 catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor[J]. Fuel, 2018, 230: 211-217.
|
47 |
MO N, SAVAGE P E. Hydrothermal catalytic cracking of fatty acids with HZSM-5[J]. ACS Sustainable Chemistry & Engineering, 2013, 2(1): 88-94.
|
48 |
ARGYLE M D, BARTHOLOMEW C H. Heterogeneous catalyst deactivation and regeneration: a review[J]. Catalysts, 2015, 5(1): 145-269.
|