化工进展 ›› 2023, Vol. 42 ›› Issue (2): 744-755.DOI: 10.16085/j.issn.1000-6613.2022-0688
收稿日期:
2022-04-18
修回日期:
2022-08-02
出版日期:
2023-02-25
发布日期:
2023-03-13
通讯作者:
闫晓亮
作者简介:
曹敏(1999—),女,硕士研究生,研究方向为镍基催化剂的设计及干重整性能。E-mail:2206151810@qq.com。
基金资助:
CAO Min(), MAO Yujiao, WANG Qianqian, LI Sha, YAN Xiaoliang()
Received:
2022-04-18
Revised:
2022-08-02
Online:
2023-02-25
Published:
2023-03-13
Contact:
YAN Xiaoliang
摘要:
高温反应环境下金属催化剂易发生烧结,从而导致其活性降低甚至失活。因此,提高其热稳定性是多相催化的重大挑战。本文综述了金属催化剂以颗粒迁移和Ostwald熟化为主的两种烧结机制,整理了通过颗粒粒径分布、颗粒生长动力学、原位透射电镜观测、实验与计算预测四种判断烧结机制的方法;指出温度、化学势、催化剂自身物性是影响烧结的主要因素。其中,温度影响金属颗粒的动能,是引起烧结的主要物理因素;化学势大小受金属与载体间相互作用影响,是影响烧结的化学因素之一。同时围绕金属-载体相互作用、空间限域及其他新颖的抗烧结策略,总结了近年来在提高催化剂抗烧结性能方面的研究进展。最后从催化剂制备、结构分析和性能测试方面,提出了基于抗烧结金属催化剂研究及构建的发展方向。
中图分类号:
曹敏, 毛玉娇, 王倩倩, 李莎, 闫晓亮. 金属催化剂烧结机制及抗烧结策略[J]. 化工进展, 2023, 42(2): 744-755.
CAO Min, MAO Yujiao, WANG Qianqian, LI Sha, YAN Xiaoliang. Sintering mechanism and sintering-resistant strategies for metal-based catalyst[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 744-755.
图4 Ni/γ-Mo2N催化剂的原位二次电子STEM表征[53](a)~(d) 在不同预处理温度下,H2: N2=3∶1气氛下Ni颗粒在γ-Mo2N载体上随时间变化的ESE/STEM图;(e)~(g)为图(b)~(d)中黄色圆圈作为选定区域的高分辨电镜图;(h) Ni-4nm/γ-Mo2N催化剂在520℃下处理22min的高分辨电镜图
图6 特殊结构催化剂抗烧结策略示意图[91-92](a) NOSCE的抗烧结策略示意图[91]:在Tammann温度以上,掺杂Mo的Ni颗粒在单晶MgO载体边缘移动,并稳定在高能台阶边缘的动态迁移过程、每个阶段的代表性TEM图和反应条件下不同时间NiMoCat的同步加速器分析;(b) 构筑粗糙凹凸表面结构的抗烧结策略示意图[92]
1 | YIN Hao, ZHENG Liqing, FANG Wei, et al. Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst[J]. Nature Catalysis, 2020, 3(10): 834-842. |
2 | 姜健准, 刘红梅, 张明森. Ni/ZrO2催化剂的制备及甲烷分步水蒸气重整反应性能[J]. 化工进展, 2018, 37(1): 112-118. |
JIANG Jianzhun, LIU Hongmei, ZHANG Mingsen. Preparation of Ni/ZrO2 catalyst and its performance in the reaction of stepwise steam reforming of methane[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 112-118. | |
3 | CHAI Mengqian, LIU Xiaoyan, LI Lin, et al. SiO2-supported Au-Ni bimetallic catalyst for the selective hydrogenation of acetylene[J]. Chinese Journal of Catalysis, 2017, 38(8): 1338-1346. |
4 | 王凯琪, ZEESHAN Muhammad, 韩金明, 等. Pt-Ga和Ga-Mo双金属催化剂的丙烷脱氢反应性能研究[J]. 天然气化工(C1化学与化工), 2020, 45(2): 5-10. |
WANG Kaiqi, ZEESHAN M, HAN Jinming, et al. Catalytic performance of Pt-Ga and Ga-Mo bimetallic catalysts in propane dehydrogenation[J]. Natural Gas Chemical Industry, 2020, 45(2): 5-10. | |
5 | CAO Minna, WU Dongshuang, CAO Rong. Recent advances in the stabilization of platinum electrocatalysts for fuel-cell reactions[J]. ChemCatChem, 2014, 6(1): 26-45. |
6 | LI Li, HU Linping, LI Jin, et al. Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells[J]. Nano Research, 2015, 8(2): 418-440. |
7 | DAI Yunqian, LU Ping, CAO Zhenming, et al. The physical chemistry and materials science behind sinter-resistant catalysts[J]. Chemical Society Reviews, 2018, 47(12): 4314-4331. |
8 | SEHESTED J, LARSEN N W, FALSIG H, et al. Sintering of nickel steam reforming catalysts: Effective mass diffusion constant for Ni-OH at nickel surfaces[J]. Catalysis Today, 2014, 228: 22-31. |
9 | BENSVIDEZ A D, KOVARIK L, GENC A, et al. Environmental transmission electron microscopy study of the origins of anomalous particle size distributions in supported metal catalysts[J]. ACS Catalysis, 2012, 2(11): 2349-2356. |
10 | YUAN Wentao, ZHANG Dawei, Yang OU, et al. Direct in situ TEM visualization and insight into the facet-dependent sintering behaviors of gold on TiO2 [J]. Angewandte Chemie International Edition, 2018, 57(51): 16827-16831. |
11 | HU Sulei, LI Weixue. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts[J]. Science, 2021, 374(6573): 1360-1365. |
12 | YIN Peng, HU Sulei, QIAN Kun, et al. Quantification of critical particle distance for mitigating catalyst sintering[J]. Nature Communications, 2021, 12: 4865. |
13 | GRANQVIST C G, BUHRMAN R A. Statistical model for coalescence of islands in discontinuous films[J]. Applied Physics Letters, 1975, 27(12): 693-694. |
14 | WYNBLATT P, GJOSTEIN N A. Supported metal crystallites[J]. Progress in Solid State Chemistry, 1975, 9: 21-58. |
15 | CHALLA S R, DELARIVA A T, HANSEN T W, et al. Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening[J]. Journal of the American Chemical Society, 2011, 133(51): 20672-20675. |
16 | CAMPBLL C T, MAO Zhongtian. Chemical potential of metal atoms in supported nanoparticles: Dependence upon particle size and support[J]. ACS Catalysis, 2017, 7(12): 8460-8466. |
17 | PARKER S C, CAMPBELL C T. Kinetic model for sintering of supported metal particles with improved size-dependent energetics and applications to Au on TiO2(110)[J]. Physical Review B, 2007, 75(3): 035430. |
18 | LOOF P, STENBOM B, NORDEN H, et al. Rapid sintering in NO of nanometer-sized Pt particles on γ-Al2O3 observed by CO temperature-programmed desorption and transmission electron microscopy[J]. Journal of Catalysis, 1993, 144(1): 60-76. |
19 | LI Guanxing, FANG Ke, CHEN Yuzhuo, et al. Unveiling the gas-dependent sintering behavior of Au-TiO2 catalysts via environmental transmission electron microscopy[J]. Journal of Catalysis, 2020, 388: 84-90. |
20 | HE Zhanfeng, JIAO Yi, WANG Jianli, et al. Effects of M (Zr, Nb, Y) modifiers on the catalytic performance of Ni/Ce-Al2O3 bimetallic catalyst in steam reforming of n-decane[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 142-150. |
21 | 马占华, 李帅, 姜爱晶, 等. 锡负载量对PtSn/Al2O3催化丙烷脱氢性能的影响[J]. 高等学校化学学报, 2019, 40(2): 326-333. |
MA Zhanhua, LI Shuai, JIANG Aijing, et al. Effects of Sn loading on catalytic performance of PtSn/Al2O3 in propane dehydrogenation[J]. Chemical Journal of Chinese Universities, 2019, 40(2): 326-333. | |
22 | PAN Can, GUO Zhanglong, DAI Hui, et al. Anti-sintering mesoporous Ni-Pd bimetallic catalysts for hydrogen production via dry reforming of methane[J]. International Journal of Hydrogen Energy, 2020, 45(32): 16133-16143. |
23 | SONG Boao, YANG T T, YUAN Yifei, et al. Revealing sintering kinetics of MoS2-supported metal nanocatalysts in atmospheric gas environments via operando transmission electron microscopy[J]. ACS Nano, 2020, 14(4): 4074-4086. |
24 | TANG Honggui, LI Shuangshuang, GONG Dandan, et al. Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas[J]. Frontiers of Chemical Science and Engineering, 2017, 11(4): 613-623. |
25 | 秦绍东, 龙俊英, 田大勇, 等. 不同载体负载的Mo基甲烷化催化剂[J]. 工业催化, 2014, 22(10): 770-774. |
QIN Shaodong, LONG Junying, TIAN Dayong, et al. Supported Mo-based catalysts with different carriers for methanation[J]. Industrial Catalysis, 2014, 22(10): 770-774. | |
26 | GAO Yanan, CHIANG Fukuo, LI Shaojie, et al. Influence of hematite morphology on the CO oxidation performance of Au/α-Fe2O3 [J]. Chinese Journal of Catalysis, 2021, 42(4): 658-665. |
27 | TAUSTER S J, FUNG S C, GARTEN R L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J]. Journal of the American Chemical Society, 1978, 100(1): 170-175. |
28 | BECK A, HUANG Xing, ARTIGLIA L, et al. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction[J]. Nature Communications, 2020, 11: 3220. |
29 | CABALLERO A, HOLGADO J P, GONZALEZ-DELACRUZ V M, et al. In situ spectroscopic detection of SMSI effect in a Ni/CeO2 system: Hydrogen-induced burial and dig out of metallic nickel[J]. Chemical Communications (Cambridge, England), 2010, 46(7): 1097-1099. |
30 | NAUMANN D’ALNONCOURT R, FRIEDRICH M, KUNKES E, et al. Strong metal-support interactions between palladium and iron oxide and their effect on CO oxidation[J]. Journal of Catalysis, 2014, 317: 220-228. |
31 | Qin Z H, LEWANDOWSKI M, SUN Y N, et al. Encapsulation of Pt nanoparticles as a result of strong metal-support interaction with Fe3O4 (111)[J]. The Journal of Physical Chemistry C, 2008, 112: 10209-10213. |
32 | XU Ming, HE Shan, CHEN Hao, et al. TiO2- x -modified Ni nanocatalyst with tunable metal-support interaction for water-gas shift reaction[J]. ACS Catalysis, 2017, 7(11): 7600-7609. |
33 | LIU Xiaoyan, LIU Minghan, LUO Y C, et al. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation[J]. Journal of the American Chemical Society, 2012, 134(24): 10251-10258. |
34 | WANG Weixing, LI Xuekuan, ZHANG Ye, et al. Strong metal-support interactions between Ni and ZnO particles and their effect on the methanation performance of Ni/ZnO[J]. Catalysis Science & Technology, 2017, 7(19): 4413-4421. |
35 | TANG Hailian, LIU Fei, WEI Jiake, et al. Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal-support interaction for carbon monoxide oxidation[J]. Angewandte Chemie Internatonal Edition, 2016, 128(36): 10764-10769. |
36 | WANG Hai, WANG Liang, LIN Dong, et al. Strong metal-support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle[J]. Nature Catalysis, 2021, 4(5): 418-424. |
37 | DONG Jinhu, FU Qiang, LI Haobo, et al. Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets[J]. Journal of the American Chemical Society, 2020, 142(40): 17167-17174. |
38 | WANG Yaoxin, WANG Jiandian, ZHENG Ping, et al. Boosting selectivity and stability on Pt/BN catalysts for propane dehydrogenation via calcination & reduction-mediated strong metal-support interaction[J]. Journal of Energy Chemistry, 2022, 67: 451-457. |
39 | WEI Yichen, CAI Weijie, DENG Shiji, et al. Efficient syngas production via dry reforming of renewable ethanol over Ni/KIT-6 nanocatalysts[J]. Renewable Energy, 2020, 145: 1507-1516. |
40 | SONG Qi, ALTAF N, ZHU Mingyuan, et al. Enhanced low-temperature catalytic carbon monoxide methanation performance via vermiculite-derived silicon carbide supported nickel nanoparticles[J]. Sustainable Energy & Fuels, 2019, 3(4): 965-974. |
41 | ZHANG Liyun, LIU Hongyang, HUANG Xing, et al. Stabilization of palladium nanoparticles on nanodiamond-graphene core-shell supports for CO oxidation[J]. Angewandte Chemie International Edition, 2015, 54(52): 15823-15826. |
42 | HOU Zhaoyin, YOKOTA O, TANAKA T, et al. Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2 [J]. Applied Catalysis A: General, 2003, 253(2): 381-387. |
43 | MARGOSSIAN T, LARMIER K, KIM S M, et al. Molecularly tailored nickel precursor and support yield a stable methane dry reforming catalyst with superior metal utilization[J]. Journal of the American Chemical Society, 2017, 139(20): 6919-6927. |
44 | WANG Qing, SUN Weizhong, JIN Guoqiang, et al. Biomorphic SiC pellets as catalyst support for partial oxidation of methane to syngas[J]. Applied Catalysis B: Environmental, 2008, 79(4): 307-312. |
45 | WU Zongfang, LI Yangyang, HUANG Weixin. Size-dependent Pt-TiO2 strong metal-support interaction[J]. The Journal of Physical Chemistry Letters, 2020, 11(12): 4603-4607. |
46 | ZHANG Yunshang, LIU Jinxun, QIAN Kun, et al. Structure sensitivity of Au-TiO2 strong metal-support interactions[J]. Angewandte Chemie International Edition, 2021, 60(21): 12074-12081. |
47 | PARASTAEV A, MURAVEV V, HUERTAS OSTA E, et al. Boosting CO2 hydrogenation via size-dependent metal-support interactions in cobalt/ceria-based catalysts[J]. Nature Catalysis, 2020, 3(6): 526-533. |
48 | LIU Zhicheng, ZHOU Jian, CAO Kun, et al. Highly dispersed nickel loaded on mesoporous silica: One-spot synthesis strategy and high performance as catalysts for methane reforming with carbon dioxide[J]. Applied catalysis B: Environmental, 2012, 125: 324-330. |
49 | ABDEL KARIM ARAMOUNI N, ZEAITER J, KWAPINSKI W, et al. Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation[J]. Energy Conversion and Management, 2017, 150: 614-622. |
50 | MOLINER M, GABAY J E, KLIEWER C E, et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite[J]. Journal of the American Chemical Society, 2016, 138(48): 15743-15750. |
51 | WEI Shengjie, LI Ang, LIU Jincheng, et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms[J]. Nature Nanotechnology, 2018, 13(9): 856-861. |
52 | KARTUSCH C, KRUMEICH F, SAFONOVA O, et al. Redispersion of gold multiple-twinned particles during liquid-phase hydrogenation[J]. ACS Catalysis, 2012, 2(7): 1394-1403. |
53 | LIN Lili, LIU Jinjia, LIU Xi, et al. Reversing sintering effect of Ni particles on γ-Mo2N via strong metal support interaction[J]. Nature Communications, 2021, 12: 6978. |
54 | QIAO Botao, WANG Aiqin, YANG Xiaofeng, et al. Single-atom catalysis of CO oxidation using Pt1/FeO x [J]. Nature Chemistry, 2011, 3(8): 634-641. |
55 | JIANG Rui, LI Li, SHENG Tian, et al. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities[J]. Journal of the American Chemical Society, 2018, 140(37): 11594-11598. |
56 | YANG Xiaofeng, WANG Aiqin, QIAO Botao, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748. |
57 | VAJDA S, WHITE M G. Catalysis applications of size-selected cluster deposition[J]. ACS Catalysis, 2015, 5(12): 7152-7176. |
58 | BORONAT M, LEYVA-PÉREZ A CORMA A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: Attempts to predict reactivity with clusters and nanoparticles of gold[J]. Accounts of Chemical Research, 2014, 47(3): 834-844. |
59 | QIAO Botao, LIANG Jinxia, WANG Aiqin, et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI)[J]. Nano Research, 2015, 8(9): 2913-2924. |
60 | LANG Rui, XI Wei, LIU Jincheng, et al. Non defect-stabilized thermally stable single-atom catalyst[J]. Nature Communications, 2019, 10: 234. |
61 | XIE Pengfei, PU Tiancheng, NIE Anmin, et al. Nanoceria-supported single-atom platinum catalysts for direct methane conversion[J]. ACS Catalysis, 2018, 8(5): 4044-4048. |
62 | AKRI M, ZHAO Shu, LI Xiaoyu, et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming[J]. Nature Communications, 2019, 10: 5181. |
63 | OUYANG C Y, SLJIVANCANIN Z, BALDERESCHI A. Transition from Mn4+ to Mn3+ induced by surface reconstruction at λ-MnO2(001)[J]. The Journal of Chemical Physics, 2010, 133(20): 204701. |
64 | YAN Dongxu, CHEN Jing, JIA Hongpeng. Temperature-induced structure reconstruction to prepare a thermally stable single-atom platinum catalyst[J]. Angewandte Chemie, 2020, 132(32): 13664-13669. |
65 | JONES J, XIONG H F, DELARIVA A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353(6295): 150-154. |
66 | ZHANG Junshe, LI Fanxing. Coke-resistant Ni@SiO2 catalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2015, 176/177: 513-521. |
67 | WU Tao, CAI Weiye, ZHANG Peng, et al. Cu-Ni@SiO2 alloy nanocomposites for methane dry reforming catalysis[J]. RSC Advances, 2013, 3(46): 23976-23979. |
68 | BIAN Zhoufeng, SURYAWINATA I Y, KAWI S. Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2016, 195: 1-8. |
69 | ZHANG Qiao, LEE I, JOO J B, et al. Core-shell nanostructured catalysts[J]. Accounts of Chemical Research, 2013, 46(8): 1816-1824. |
70 | TAKENAKA S, UMEBAYASHI H, TANABE E, et al. Specific performance of silica-coated Ni catalysts for the partial oxidation of methane to synthesis gas[J]. Journal of Catalysis, 2007, 245(2): 392-400. |
71 | ZHU Qiufeng, ZHANG Qingcheng, WEN Lixiong. Anti-sintering silica-coating CuZnAlZr catalyst for methanol synthesis from CO hydrogenation[J]. Fuel Processing Technology, 2017, 156: 280-289. |
72 | LU Junling, ELAM J W, STAIR P C. Synthesis and stabilization of supported metal catalysts by atomic layer deposition[J]. Accounts of Chemical Research, 2013, 46(8): 1806-1815. |
73 | LU Junling, FU Baosong, KUNG M C, et al. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition[J]. Science, 2012, 335(6073): 1205-1208. |
74 | 马子然, 王宝冬, 路光杰, 等. 粉煤灰基SAPO-34分子筛脱硝催化剂的合成及其脱硝性能[J]. 化工进展, 2020, 39(10): 4051-4060. |
MA Ziran, WANG Baodong, LU Guangjie, et al. Preparation and performance of SAPO-34 based SCR catalyst derived from fly ash[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4051-4060. | |
75 | YU Dongni, DAI Weili, WU Guangjun, et al. Stabilizing copper species using zeolite for ethanol catalytic dehydrogenation to acetaldehyde[J]. Chinese Journal of Catalysis, 2019, 40(9): 1375-1384. |
76 | WANG Shuai, ZHAO Qingfei, WEI Huimin, et al. Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts[J]. Journal of the American Chemical Society, 2013, 135(32): 11849-11860. |
77 | ISHIHARA D, TAO Kai, YANG Guohui, et al. Precisely designing bimodal catalyst structure to trap cobalt nanoparticles inside mesopores and its application in Fischer-Tropsch synthesis[J]. Chemical Engineering Journal, 2016, 306: 784-790. |
78 | ZHANG Xianhua, ZHANG Li, PENG Honggen, et al. Nickel nanoparticles embedded in mesopores of AlSBA-15 with a perfect peasecod-like structure: A catalyst with superior sintering resistance and hydrothermal stability for methane dry reforming[J]. Applied Catalysis B: Environmental, 2018, 224: 488-499. |
79 | 丁传敏, 马自立, 李宇峰, 等. Ni@ZSM-5催化剂的制备及其甲烷部分氧化反应性能的研究[J]. 天然气化工(C1化学与化工), 2020, 45(6): 1-6. |
DING Chuanmin, MA Zili, LI Yufeng, et al. Preparation of Ni@ZSM-5 catalyst and its reaction performance for partial oxidation of methane[J]. Natural Gas Chemical Industry, 2020, 45(6): 1-6. | |
80 | 郦和生. 金属有机骨架材料在石油化工领域的应用及研究进展[J]. 石油化工, 2022, 51(2): 190-198. |
Li Hesheng. Application and prospect of metal-organic frameworks in petrochemical industry[J]. Petrochemical Technology, 2022, 51(2): 190-198. | |
81 | AN Bing, ZHANG Jingzheng, CHENG Kang, et al. Confinement of ultrasmall Cu/ZnO x nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2 [J]. Journal of the American Chemical Society, 2017, 139(10): 3834-3840. |
82 | YAN Chengcheng, LI Haobo, YE Yifan, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction[J]. Energy & Environmental Science, 2018, 11(5): 1204-1210. |
83 | LI Zhanyong, SCHWEITZER N M, LEAGUE A B, et al. Sintering-resistant single-site nickel catalyst supported by metal-organic framework[J]. Journal of the American Chemical Society, 2016, 138(6): 1977-1982. |
84 | PRIETO G, ZEČEVIĆ J, FRIEDRICH H, et al. Towards stable catalysts by controlling collective properties of supported metal nanoparticles[J]. Nature Materials, 2013, 12(1): 34-39. |
85 | GUO Shaojun, ZHANG Sen, SUN Shouheng. Tuning nanoparticle catalysis for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013, 52(33): 8526-8544. |
86 | NEATU Ş, MACIÁ-AGULLÓ J A, CONCEPCIÓN P, et al. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water[J]. Journal of the American Chemical Society, 2014, 136(45): 15969-15976. |
87 | ZHAO Lin, HAN Tong, WANG Hong, et al. Ni-Co alloy catalyst from LaNi1- x Co x O3 perovskite supported on zirconia for steam reforming of ethanol[J]. Applied Catalysis B: Environmental, 2016, 187: 19-29. |
88 | SIDIK S M, TRIWAHYONO S, JALIL A A, et al. CO2 reforming of CH4 over Ni-Co/MSN for syngas production: Role of Co as a binder and optimization using RSM[J]. Chemical Engineering Journal, 2016, 295: 1-10. |
89 | WANG Zijun, WANG Changxu, CHEN Shunquan, et al. Co-Ni bimetal catalyst supported on perovskite-type oxide for steam Reforming of ethanol to produce hydrogen[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5644-5652. |
90 | REN Guoqing, TANG Yan, LIU Kaipeng, et al. Exceptional antisintering gold nanocatalyst for diesel exhaust oxidation[J]. Nano Letters, 2018, 18(10): 6489-6493. |
91 | HU Y H, RUCKENSTEIN E. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO[J]. Science, 2020, 368(6492): eabb5459. |
92 | DURIYASART F, IRIZAWA A, HAYASHI K, et al. Sintering-resistant metal catalysts supported on concave-convex surface of TiO2 nanoparticle assemblies[J]. ChemCatChem, 2018, 10(16): 3392-3396. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |