化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5339-5352.DOI: 10.16085/j.issn.1000-6613.2022-2041
收稿日期:
2022-11-02
修回日期:
2023-01-07
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
姚卫棠
作者简介:
马文杰(1999—),男,硕士研究生,研究方向为新能源材料。E-mail:13830954105@163.com。
基金资助:
Received:
2022-11-02
Revised:
2023-01-07
Online:
2023-10-15
Published:
2023-11-11
Contact:
YAO Weitang
摘要:
锂离子电池(LIBs)具技术成熟、能量密度较高、使用寿命长等优点使其在储能领域研究应用广泛,但传统商业化LIBs由于本身电极材料及电解质的限制,存在可逆比容量有限、功率密度不高、循环性能较差、生产材料成本较高、工作过程面临安全隐患等不足。本文简述了由轻质元素构成的晶态有机多孔材料共价有机框架(covalent organic frameworks,COFs),其有序的大孔道、可预先设计的结构、较大比表面积、低密度、易功能化等优势,完全具备利用于LIBs关键材料的潜力。回顾了近年来研究者们设计的各种COFs及其在LIBs的应用,包括COFs在LIBs电极材料、隔膜、电解质中的应用,得出COFs应用于LIBs具有卓越的电化学性能,最后对其在LIBs的研究方向给予预测,以期为储能和再生能源产业的发展提供一定参考。
中图分类号:
马文杰, 姚卫棠. 共价有机框架(COFs)在锂离子电池中的应用[J]. 化工进展, 2023, 42(10): 5339-5352.
MA Wenjie, YAO Weitang. Application of covalent organic frameworks ( COFs ) in lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5339-5352.
材料 | 分子结构 | 特征 | 参考文献 |
---|---|---|---|
聚乙炔 | 结构不稳定;应用自放电;无法应用于实际 | [ | |
聚噻吩 | 低速电化学反应动力学;易溶于电解质 | [ | |
聚苯胺 | 能量密度低 | [ | |
聚对苯 | 刚性共轭苯环,电化学反应受限 | [ |
表1 典型导电高分子正极材料分子结构及特征
材料 | 分子结构 | 特征 | 参考文献 |
---|---|---|---|
聚乙炔 | 结构不稳定;应用自放电;无法应用于实际 | [ | |
聚噻吩 | 低速电化学反应动力学;易溶于电解质 | [ | |
聚苯胺 | 能量密度低 | [ | |
聚对苯 | 刚性共轭苯环,电化学反应受限 | [ |
1 | KANG Yong-Mook, CAO Anmin, Raphaële CLÉMENT, et al. Battery technology and sustainable energy storage and conversion as a new energy resource replacing fossil fuels[J]. Battery Energy, 2022, 1(1): 20220200. |
2 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
3 | 卢侠, 李泓. 锂电池基础科学问题(Ⅱ)——电池材料缺陷化学[J]. 储能科学与技术, 2013, 2(2): 157-164. |
LU Xia, LI Hong. Fundamental scientific aspects of lithium batteries (Ⅱ)—Defect chemistry in battery materials[J]. Energy Storage Science and Technology, 2013, 2(2): 157-164. | |
4 | LAURENCEL Croguennec, Rosa PALACIN M. Recent achievements on inorganic electrode materials for lithium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(9): 3140-3156. |
5 | LU Yong, CHEN Jun. Prospects of organic electrode materials for practical lithium batteries[J]. Nature Reviews Chemistry, 2020, 4(3): 127-142. |
6 | WONG Kai Wai, CHOW Wan Ki. Principle for the working of the lithium-ion battery[J]. Journal of Modern Physics, 2020, 11(11): 1743-1750. |
7 | GAO Qiang, LI Xing, NING Guohong, et al. Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing[J]. Chemical Communications, 2018, 54(19): 2349-2352. |
8 | JIN Enquan, GENG Keyu, FU Shuai, et al. Exceptional electron conduction in two-dimensional covalent organic frameworks[J]. Chem, 2021, 7(12): 3309-3324. |
9 | CHU Jun, WANG Yanxia, ZHONG Faping, et al. Metal/covalent-organic frameworks for electrochemical energy storage applications[J]. EcoMat, 2021, 3(5): 1-32. |
10 | SUN Qi, BRIANA Aguila, JASON Perman, et al. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal[J]. Journal of the American Chemical Society, 2017, 139(7): 2786-2793. |
11 | LIU Ruoyang, TAN Ke Tian, GONG Yifan, et al. Covalent organic frameworks: An ideal platform for designing ordered materials and advanced applications[J]. Chemical Society Reviews, 2021, 50(1): 120-242. |
12 | JANA Aniruddha, Sang Inn WOO, VIKRANT K S N, et al. Electrochemomechanics of lithium dendrite growth[J]. Energy & Environmental Science, 2019, 12(12): 3595-3607. |
13 | GENG Keyu, HE Ting, LIU Ruoyang, et al. Covalent organic frameworks: Design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933. |
14 | TENG Hsisheng. Porous materials of better properties and functions: Preparation and application[J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(4): 491-492. |
15 | CÔTÉ Adrien P, BENIN Annabelle I, OCKWIG Nathan W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
16 | EL-KADERI Hani M, HUNT Joseph R, MENDOZA-CORTÉS José L, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316(5822): 268-272. |
17 | DING Sanyuan, GAO Jia, WANG Qiong, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. Journal of the American Chemical Society, 2011, 133(49): 19816-19822. |
18 | HIROYASU Furukawa, YAGHI Omar M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. Journal of the American Chemical Society, 2009, 131(25): 8875-8883. |
19 | HU By Lung-Hao, WU Feng-Yu, LIN Chengte, et al. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity[J]. Nature Communications, 2013, 4: 1687. |
20 | Stanley WHITTINGHAM M. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4301. |
21 | LIANG Yanliang, TAO Zhanliang, CHEN Jun. Organic electrode materials for rechargeable lithium batteries[J]. Advanced Energy Materials, 2012, 2(7): 742-769. |
22 | Yücel ŞAHIN, PEKMEZ Kadir, YILDIZ Attila. Electrochemical polymerization of acetylene with copper catalyst on platinum and copper electrodes[J]. Synthetic Metals, 2002, 129(2): 117-121. |
23 | JOHANSSON Tomas, MAMMO Wendimagegn, SVENSSON Mattias, et al. Electrochemical bandgaps of substituted polythiophenes[J]. Journal of Materials Chemistry, 2003, 13(6): 1316-1323. |
24 | KARAMI Hassan, MOUSAVI Mir Fazlollah, SHAMSIPUR Mojtaba. A new design for dry polyaniline rechargeable batteries[J]. Journal of Power Sources, 2003, 117(1/2): 255-259. |
25 | FUJII M, KUSHIDA K, IHORI H, et al. Learning effect of composite conducting polymer[J]. Thin Solid Films, 2003, 438/439: 356-359. |
26 | LI Chen, LIU Miaoyin, PSCHIRER Neil G, et al. Polyphenylene-based materials for organic photovoltaics[J]. Chemical Reviews, 2010, 110(11): 6817-6855. |
27 | Petr NOVÁK, Klaus MÜLLER, SANTHANAM K S V, et al. Electrochemically active polymers for rechargeable batteries[J]. Chemical Reviews, 1997, 97(1): 207-282. |
28 | 陈军, 丁能文, 李之峰, 等. 锂离子电池有机正极材料[J]. 化学进展, 2015, 27(9): 1291-1301. |
CHEN Jun, DING Nengwen, LI Zhifeng, et al. Organic cathode material for lithium ion battery[J]. Progress in Chemistry, 2015, 27(9): 1291-1301. | |
29 | LU Yong, CHEN Jun. Prospects of organic electrode materials for practical lithium batteries[J]. Nature Reviews Chemistry, 2020, 4(3): 127-142. |
30 | XU Fei, JIN Shangbin, ZHONG Hui, et al. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage[J]. Scientific Reports, 2015, 5: 8225. |
31 | YAO Changjiang, WU Zhenzhen, XIE Jian, et al. Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery[J]. ChemSusChem, 2020, 13(9): 2457-2463. |
32 | 刘冠伟, 张亦弛, 慈松, 等. 柔性电化学储能器件研究进展[J]. 储能科学与技术, 2017, 6(1): 52-68. |
LIU Guanwei, ZHANG Yichi, Song CI, et al. Research progress on flexible electrochemical energy storage devices[J]. Energy Storage Science and Technology, 2017, 6(1): 52-68. | |
33 | YANG Donghui, YAO Zhaoquan, WU Dihua, et al. Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(47): 18621-18627. |
34 | VITAKU Edon, GANNETT Cara N, CARPENTER Keith L, et al. Phenazine-based covalent organic framework cathode materials with high energy and power densities[J]. Journal of the American Chemical Society, 2020, 142(1): 16-20. |
35 | WANG Shan, WANG Qianyou, SHAO Pengpeng, et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries[J]. Journal of the American Chemical Society, 2017, 139(12): 4258-4261. |
36 | CHEN Xiudong, LI Yusen, WANG Liang, et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks[J]. Advanced Materials, 2019, 31(29): 1901640. |
37 | LUO Zhiqiang, LIU Luojia, NING Jiaxin, et al. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2018, 57(30): 9443-9446. |
38 | LIU Bin, ZHANG Jiguang, XU Wu. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833-845. |
39 | YANG Hui, ZHANG Shengliang, HAN Liheng, et al. High conductive two-dimensional covalent organic framework for lithium storage with large capacity[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5366-5375. |
40 | BAI Linyi, GAO Qiang, ZHAO Yanli. Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(37): 14106-14110. |
41 | LEI Zhendong, YANG Qinsi, XU Yi, et al. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry[J]. Nature Communications, 2018, 9: 576. |
42 | ZHAO Jianjun, ZHOU Miaomiao, CHEN Jun, et al. Phthalocyanine-based covalent organic frameworks as novel anode materials for high-performance lithium-ion/sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 425: 131630. |
43 | MACFARLANE Liam R, SHAIKH Huda, Diego GARCIA-HERNANDEZ J, et al. Functional nanoparticles through π-conjugated polymer self-assembly[J]. Nature Reviews Materials, 2021, 6(1): 7-26. |
44 | TONG Yifan, SUN Zhaopeng, WANG Jiawen, et al. Covalent organic framework containing dual redox centers as an efficient anode in Li-ion batteries[J]. SmartMat, 2022, 3(4): 685-694. |
45 | ELLMAN Jonathan A. Design, synthesis, and evaluation of small-molecule libraries[J]. Accounts of Chemical Research, 1996, 29(3): 132-143. |
46 | GU Yuwei, ZHAO Julia, JOHNSON Jeremiah A. Polymer networks: from plastics and gels to porous frameworks[J]. Angewandte Chemie International Edition, 2020, 59(13): 5022-5049. |
47 | NUNES-PEREIRA J, COSTA C M, LANCEROS-MÉNDEZ S. Polymer composites and blends for battery separators: State of the art, challenges and future trends[J]. Journal of Power Sources, 2015, 281: 378-398. |
48 | ZHAO Genfu, XU Lufu, JIANG Jingwen, et al. COFs-based electrolyte accelerates the Na+ diffusion and restrains dendrite growth in quasi-solid-state organic batteries[J]. Nano Energy, 2022, 92: 106756. |
49 | AN Qi, WANG Hongen, ZHAO Genfu, et al. Understanding dual-polar group functionalized COFs for accelerating Li-ion transport and dendrite-free deposition in lithium metal anodes[J]. Energy & Environmental Materials, 2022: 1-10. |
50 | Hooman Yaghoobnejad ASL, MANTHIRAM Arumugam. Reining in dissolved transition-metal ions[J]. Science, 2020, 369(6500): 140-141. |
51 | WEN Yucheng, WANG Xianshu, YANG Yan, et al. Covalent organic framework-regulated ionic transportation for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(46): 26540-26548. |
52 | WAN J, XIE J, MACKANIC D G, et al. Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries[J]. Materials Today Nano, 2018, 4: 1-16. |
53 | FAMPRIKIS Theodosios, CANEPA Pieremanuele, DAWSON James A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. |
54 | LIU Xiaoyan, LI Xinru, LI Hexing, et al. Recent progress of hybrid solid-state electrolytes for lithium batteries[J]. Chemistry-A European Journal, 2018, 24(69): 18293-18306. |
55 | DU Ya, YANG Haishen, WHITELEY Justin Michael, et al. Ionic covalent organic frameworks with spiroborate linkage[J]. Angewandte Chemie International Edition, 2016, 55(5): 1737-1741. |
56 | CHEN Hongwei, TU Hangyu, HU Chenji, et al. Cationic covalent organic framework nanosheets for fast Li-ion conduction[J]. Journal of the American Chemical Society, 2018, 140(3): 896-899. |
57 | ZHANG Gen, HONG Youlee, YUSUKE Nishiyama, et al. Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte[J]. Journal of the American Chemical Society, 2019, 141(3): 1227-1234. |
58 | XU Qing, TAO Shanshan, JIANG Qiuhong, et al. Ion conduction in polyelectrolyte covalent organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(24): 7429-7432. |
59 | GUO Zhenbin, ZHANG Yuanyuan, DONG Yu, et al. Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(5): 1923-1927. |
60 | JEONG Kihun, PARK Sodam, JUNG Gwan Yeong, et al. Solvent-free, single lithium-ion conducting covalent organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(14): 5880-5885. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[3] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[4] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[5] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[6] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[7] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
[8] | 向硕, 卢鹏, 石伟年, 杨鑫, 何燕, 朱立业, 孔祥微. 二维WS2纳米片的规模化可控制备及其摩擦学性能[J]. 化工进展, 2023, 42(9): 4783-4790. |
[9] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[10] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[11] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[12] | 郭晋, 张耕, 陈国华, 朱鸣, 谭粤, 李蔚, 夏莉, 胡昆. 车载液氢气瓶设计技术的研究进展[J]. 化工进展, 2023, 42(8): 4221-4229. |
[13] | 乔旭, 张竹修. 化工本征安全技术发展路径的思考与探索[J]. 化工进展, 2023, 42(7): 3319-3324. |
[14] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[15] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |