化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5322-5338.DOI: 10.16085/j.issn.1000-6613.2022-2089
许春树1,2(), 姚庆达2,3, 梁永贤2, 周华龙2,4()
收稿日期:
2022-11-09
修回日期:
2022-12-21
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
周华龙
作者简介:
许春树(1981—),男,高级工程师,研究方向为鞋用材料的功能设计及检测分析。E-mail:echose@126.com。
基金资助:
XU Chunshu1,2(), YAO Qingda2,3, LIANG Yongxian2, ZHOU Hualong2,4()
Received:
2022-11-09
Revised:
2022-12-21
Online:
2023-10-15
Published:
2023-11-11
Contact:
ZHOU Hualong
摘要:
金属-有机框架材料(MOFs)由于其巨大的比表面积、高孔隙率、有序的孔隙结构及优异的稳定性等特点,在诸多领域得到了广泛研究,其中在吸附/分离领域,特别是吸附水体中的合成染料方面展现出良好的应用前景。本文介绍了常见的MOFs作为多孔吸附材料的结构设计方法,重点分析了金属离子和配体的交换、有机配体的功能化修饰对MOFs的晶体结构、比表面积、孔容的影响,探讨了MOFs的结构设计与其吸附性能的关系,并探究MOFs对阳离子染料和阴离子染料的吸附机理,以此为基础,分析了MOFs对亚甲基蓝、罗丹明B等阳离子染料和刚果红、铬黑T等阴离子染料的吸附性能,最后总结了MOFs多孔吸附材料的技术优势及目前存在的问题,展望未来发展方向,以期对MOFs在合成染料高性能吸附领域的发展提高参考。
中图分类号:
许春树, 姚庆达, 梁永贤, 周华龙. 金属-有机框架材料结构设计及其对合成染料的吸附性能[J]. 化工进展, 2023, 42(10): 5322-5338.
XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Structural design of metal-organic framework materials and its adsorption performance on synthetic dyes[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5322-5338.
MOFs | 比表面积/m2·g-1 | 染料类型 | 吸附pH | 循环次数 | 吸附量/mg·g-1 | 参考文献 |
---|---|---|---|---|---|---|
Fe-Al-BDC | 285 | RhB | — | 3 | 168.7 | [ |
Fe-Ni-BDC | 480 | RhB | 4 | — | 1091 | [ |
Zn-N-MOFs | 25.189 | MB | 7 | — | 458.24 | [ |
UiO-66-NH2 | 953.7 | MB | 9 | 6 | 571.5 | [ |
ZIF-8 | 1802 | RhB | 7 | 4 | 9.88 | [ |
Zr-BTB-H4TBAPy | 518 | RhB | 7 | — | 238 | [ |
Cr-BDC-SO3H | 1411.89 | MB | 11 | 3 | 374 | [ |
Fe-BDC-NH2 | 16.329 | MB | 10 | 2 | 312.5 | [ |
Fe-Al-BDC | — | RhB | 5 | 7 | 114.94 | [ |
Fe-ZIF-67 | 1245 | RhB | 10 | 4 | 135.14 | [ |
ZIF-8@ZIF-67 | 1154 | RhB | 10 | 4 | 143.26 | [ |
Cu-BTC | 1418.3 | MB | 11 | 4 | 197.9 | [ |
Ti-UiO-66 | 929 | RhB | 7 | 3 | 260 | [ |
Fe-Zn-BDC-OH | 860 | MB | 7 | 5 | 337 | [ |
Cu-Metet | — | MB | 11 | — | 171 | [ |
Zr-BDC-NH2 | 765 | MB | 9 | — | 90.48 | [ |
Fe-Co-BDC | — | MB | 4 | 6 | 23.92 | [ |
Cr-BDC | 1150 | MB | — | — | 314.5 | [ |
Zn-MOFs | — | MB | 8 | 5 | 46.23 | [ |
Zr-BDC-COOH | 505 | MB | 7 | 3 | 169 | [ |
Er-BTC | 775 | MB | 10 | 10 | 192.3 | [ |
Ce-UiO-67 | 1408.6 | MB | 3 | 3 | 199.45 | [ |
Cu-MOFs | 341 | MB | — | 5 | 149.45 | [ |
UiO-66-OH | 941.74 | MB | 3 | 5 | 380.87 | [ |
MIL-125 | 845 | RhB | — | — | 59.92 | [ |
Cu-BDC-NH2 | 900 | RhB | 6 | 3 | 156 | [ |
Ti-BDC-NH2 | — | RhB | 7 | 4 | 164 | [ |
Fe-BTC | 1068 | RhB | 4 | 5 | 194.17 | [ |
Zr-BTC | 1894 | RhB | 8.5 | 4 | 166.7 | [ |
表1 部分典型MOFs对阳离子染料的吸附性能总结
MOFs | 比表面积/m2·g-1 | 染料类型 | 吸附pH | 循环次数 | 吸附量/mg·g-1 | 参考文献 |
---|---|---|---|---|---|---|
Fe-Al-BDC | 285 | RhB | — | 3 | 168.7 | [ |
Fe-Ni-BDC | 480 | RhB | 4 | — | 1091 | [ |
Zn-N-MOFs | 25.189 | MB | 7 | — | 458.24 | [ |
UiO-66-NH2 | 953.7 | MB | 9 | 6 | 571.5 | [ |
ZIF-8 | 1802 | RhB | 7 | 4 | 9.88 | [ |
Zr-BTB-H4TBAPy | 518 | RhB | 7 | — | 238 | [ |
Cr-BDC-SO3H | 1411.89 | MB | 11 | 3 | 374 | [ |
Fe-BDC-NH2 | 16.329 | MB | 10 | 2 | 312.5 | [ |
Fe-Al-BDC | — | RhB | 5 | 7 | 114.94 | [ |
Fe-ZIF-67 | 1245 | RhB | 10 | 4 | 135.14 | [ |
ZIF-8@ZIF-67 | 1154 | RhB | 10 | 4 | 143.26 | [ |
Cu-BTC | 1418.3 | MB | 11 | 4 | 197.9 | [ |
Ti-UiO-66 | 929 | RhB | 7 | 3 | 260 | [ |
Fe-Zn-BDC-OH | 860 | MB | 7 | 5 | 337 | [ |
Cu-Metet | — | MB | 11 | — | 171 | [ |
Zr-BDC-NH2 | 765 | MB | 9 | — | 90.48 | [ |
Fe-Co-BDC | — | MB | 4 | 6 | 23.92 | [ |
Cr-BDC | 1150 | MB | — | — | 314.5 | [ |
Zn-MOFs | — | MB | 8 | 5 | 46.23 | [ |
Zr-BDC-COOH | 505 | MB | 7 | 3 | 169 | [ |
Er-BTC | 775 | MB | 10 | 10 | 192.3 | [ |
Ce-UiO-67 | 1408.6 | MB | 3 | 3 | 199.45 | [ |
Cu-MOFs | 341 | MB | — | 5 | 149.45 | [ |
UiO-66-OH | 941.74 | MB | 3 | 5 | 380.87 | [ |
MIL-125 | 845 | RhB | — | — | 59.92 | [ |
Cu-BDC-NH2 | 900 | RhB | 6 | 3 | 156 | [ |
Ti-BDC-NH2 | — | RhB | 7 | 4 | 164 | [ |
Fe-BTC | 1068 | RhB | 4 | 5 | 194.17 | [ |
Zr-BTC | 1894 | RhB | 8.5 | 4 | 166.7 | [ |
MOFs | 比表面积 /m2·g-1 | 染料 类型 | 吸附pH | 循环次数 | 吸附量 /mg·g-1 | 参考文献 |
---|---|---|---|---|---|---|
Al-BDC | — | EBT | 2 | — | 82.5 | [ |
Al-BDC | 630 | AB | 3 | 4 | 86.96 | [ |
Fe-BTC | 1906.5 | CR | 7 | 3 | 1166.2 | [ |
Zn-MOFs | — | CR | — | — | 233.38 | [ |
Cd-aip-bpy | — | CR | 7 | 3 | 211.86 | [ |
Cd-hip-bpy | — | CR | 7 | 3 | 267.37 | [ |
Co-DPE | — | MO | 7 | — | 95.23 | [ |
ZIF-67 | 1208.67 | CR | 7 | 5 | 1044.58 | [ |
Cr-BDC | 2440 | DR | 7 | — | 526.31 | [ |
Cu-MOFs | — | CR | — | — | 656 | [ |
ZIF-8-APTM | 1055.5 | CR | 6 | 5 | 653.59 | [ |
ZIF-67 | 1388 | CR | 6 | 3 | 714.3 | [ |
Co-Fe-BDC | 10.57 | CR | 8 | — | 1935.68 | [ |
MIL-88A | 29.8 | CR | 6 | 3 | 539.1 | [ |
MIL-88A-NH2 | — | CR | — | 4 | 769.23 | [ |
Al-BDC | 1160.7 | EBT | — | 4 | 296.3 | [ |
ZIF-67-OAc | — | EBT | 7 | — | 136.9 | [ |
TMU-16 | 66.95 | EBT | 5 | 5 | 326.42 | [ |
TMU-16-NH2 | 155 | EBT | 5 | 5 | 588.23 | [ |
Zn-dimb | — | EBT | — | 5 | 180.1 | [ |
表2 部分典型MOFs对阴离子染料的吸附性能总结
MOFs | 比表面积 /m2·g-1 | 染料 类型 | 吸附pH | 循环次数 | 吸附量 /mg·g-1 | 参考文献 |
---|---|---|---|---|---|---|
Al-BDC | — | EBT | 2 | — | 82.5 | [ |
Al-BDC | 630 | AB | 3 | 4 | 86.96 | [ |
Fe-BTC | 1906.5 | CR | 7 | 3 | 1166.2 | [ |
Zn-MOFs | — | CR | — | — | 233.38 | [ |
Cd-aip-bpy | — | CR | 7 | 3 | 211.86 | [ |
Cd-hip-bpy | — | CR | 7 | 3 | 267.37 | [ |
Co-DPE | — | MO | 7 | — | 95.23 | [ |
ZIF-67 | 1208.67 | CR | 7 | 5 | 1044.58 | [ |
Cr-BDC | 2440 | DR | 7 | — | 526.31 | [ |
Cu-MOFs | — | CR | — | — | 656 | [ |
ZIF-8-APTM | 1055.5 | CR | 6 | 5 | 653.59 | [ |
ZIF-67 | 1388 | CR | 6 | 3 | 714.3 | [ |
Co-Fe-BDC | 10.57 | CR | 8 | — | 1935.68 | [ |
MIL-88A | 29.8 | CR | 6 | 3 | 539.1 | [ |
MIL-88A-NH2 | — | CR | — | 4 | 769.23 | [ |
Al-BDC | 1160.7 | EBT | — | 4 | 296.3 | [ |
ZIF-67-OAc | — | EBT | 7 | — | 136.9 | [ |
TMU-16 | 66.95 | EBT | 5 | 5 | 326.42 | [ |
TMU-16-NH2 | 155 | EBT | 5 | 5 | 588.23 | [ |
Zn-dimb | — | EBT | — | 5 | 180.1 | [ |
11 | TAN Yuanming, MENG Hao, ZHANG Xia, et al. Removal of organic dyes and heavy metal ions by functionalized MOFs and MOFs/polymer composite membranes[J]. Process in Chemistry, 2019, 31(7): 980-995. |
12 | 万红友, 阎靖炜, 郭丛, 等. Cu/Fe-MOF复合材料在水处理过程应用研究进展[J]. 水处理技术, 2022, 48(11): 1-7. |
WAN Hongyou, YAN Jingwei, GUO Cong, et al. A critical review of Cu/Fe-MOF composite materials applied in the water treatment process and its prospect[J]. Technology of Water Treatment, 2022, 48(11): 1-7. | |
13 | ANNAMALAI Jayshree, MURUGAN Preethika, GANAPATHY Dhanraj, et al. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications—A review[J]. Chemosphere, 2022, 298: 134184. |
14 | HE Xiang, CHEN Daren, WANG Weining. Bimetallic metal-organic frameworks (MOFs) synthesized using the spray method for tunable CO2 adsorption[J]. Chemical Engineering Journal, 2020, 382: 122825. |
15 | SAVA GALLIS Dorina F, PARKES Marie V, GREATHOUSE Jeffery A, et al. Enhanced O-2 selectivity versus N-2 by partial metal substitution in Cu-BTC[J]. Chemistry of Materials, 2015, 27(6): 2018-2025. |
16 | HE Xiang, GAN Zhuoran, ergey FINSENKO S, et al. Rapid formation of metal-organic frameworks (MOFs) based nanocomposites in microdroplets and their applications for CO2 photoreduction[J]. ACS Applied Materials & Interfaces, 2017, 11(9): 9688-9698. |
17 | KADI M W, SALAM H M, ZAKI T, et al. Adsorption of carbon dioxide on Cu x Mg y (BTC)2 MOFs: Influence of Cu/Mg ratio[J]. Journal of Nanoparticle Research, 2020, 22: 143. |
18 | LIU Yuanyuan, LIU Suqin, GONÇALVES Alexandre A S, et al. Effect of metal-ligand ratio on the CO2 adsorption properties of Cu-BTC metal-organic frameworks[J]. RSC Advances, 2018, 62(8): 35551-35556. |
19 | LI Miaomiao, YUAN Junwei, WANG Guan, et al. One-step construction of Ti-In bimetallic MOFs to improve synergistic effect of adsorption and photocatalytic degradation of bisphenol A[J]. Separation and Purification Technology, 2022, 298: 121658. |
20 | CADIAU Amandine, KOLOBOV Nikita, SRNIVASAN Sivaranjani, et al. A titanium metal-organic framework with visible-light-responsive photocatalytic activity[J]. Angewandte Chemie International Edition, 2020, 59(32): 13468-13472. |
21 | NGUYEN Hong-Tham T, DINH Van-Phuc, PHAN Quynh-Anh N, et al. Bimetallic Al/Fe metal-organic framework for highly efficient photo-Fenton degradation of Rhodamine B under visible light irradiation[J]. Materials Letters, 2020, 279: 128482. |
22 | NGUYEN Vinh Huu, NGUYEN Trinh Duy, BACH Long Giang, et al. Effective photocatalytic activity of mixed Ni/Fe-base metal-organic framework under a compact fluorescent daylight lamp[J]. Catalysts, 2018, 8: 487. |
23 | JI Kang, YUE Yunlong, YANG Ping. Interface effect in MIL-53(Fe)/metal-phenolic network (Ni, Co, and Mn) nanoarchitectures for efficient oxygen evolution reaction[J]. Applied Surface Science, 2023, 608: 155184. |
24 | SOTNIK Svetlana A, POLUNIN Ruslan A, KISKIN Mikhail A, et al. Heterometallic coordination polymers assembled from trigonal trinuclear Fe2Ni-pivalate blocks and polypyridine spacers: Topological diversity, sorption, and catalytic properties[J]. Inorganic Chemistry, 2015, 54(11): 5169-5181. |
25 | KIRCHON Angelo, ZHANG Peng, LI Jialuo, et al. Effect of isomorphic metal substitution on the Fenton and photo-Fenton degradation of methylene blue using Fe-based metal-organic frameworks[J]. Applied Materials & Interfaces, 2020, 12: 9292-9299. |
26 | Fernando MARTÍNEZ, LEO Pedro, ORCAJO Gisela, et al. Sustainable Fe-BTC catalyst for efficient removal of Methylene bule by advanced Fenton oxidation[J]. Catalysis Today, 2018, 313(1): 6-11. |
27 | ZHANG Chenxu, ZHAI Mingming, XIE Kangning, et al. Enhanced alcohol and H2O adsorption and separation performances by introducing pyridyl ligand in a MOF[J]. Arabian Journal of Chemistry, 2022, 15: 104141. |
28 | WONG-NG W, CULP J, SIDERIUS D W, et al. Synthesis, structural and sorption characterization of a Hofmann compound, Ni(3-methy-4,4’-bipyridine) [Ni(CN)4][J]. Polyhedron, 2021, 200(15): 115132. |
29 | TANG Xingchang, LUO Yongwei, ZHANG Zhijian, et al. Effects of functional groups of —NH2 and —NO2 on water adsorption ability of Zr-based MOFs (UIO-66)[J]. Chemical Physics, 2021, 543: 111093. |
30 | ZHAO Meng, BAN Yujie, CHANG Ze, et al. Pyrazine-interior-embodied MOF-74 for selective CO2 adsorption[J]. AIChE Journal, 2022, 68(3): 17528. |
31 | BINAEIAN Ehsan, LI Yuning, TAYEBI Habib-Allah, et al. Enhancing toxic gas uptake performance of Zr-based MOF through uncoordinated carboxylate and copper insertion; ammonia adsorption[J]. Journal of Hazardous Materials, 2021, 416: 125933. |
32 | CHEN Zhijie, WANG Xingjie, Hyunho NOH, et al. Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal-organic frameworks for toxic chemical removal[J]. CrystEngComm, 2019, 21(14): 2409-2415. |
33 | FANG Zhenlan, BUEKEN Bart, DE VOS Dirk E, et al. Defect-engineered metal-organic frameworks[J]. ChemInform, 2015, 46(31): 7234-7254. |
34 | CHENG Hongtao, WANG Qian, DING Min, et al. Modifying a partial corn-sql layer-based (3,3,3,3,4,4)-c topological MOF by substitution of OH- with Cl- and its highly selective adsorption of C2 hydrocarbons over CH4 [J]. Dalton Transactions, 2021, 50: 4840. |
1 | SOMNATH, AHMAD Musheer, SIDDIQUI Kafeel Ahmad. Synthesis of mixed ligand 3D cobalt MOF: Smart responsiveness towards photocatalytic dye degradation in environmental contaminants[J]. Journal of Molecular Structure, 2022, 1265: 133399. |
2 | 张丽珠, 王欢, 李琼, 等. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744. |
ZHANG Lizhu, WANG Huan, LI Qiong, et al. Research progress on the preparation of lignin-derived adsorption materials and their application in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3731-3744. | |
3 | SRIRAM Ganesan, BENDRE Akhilesh, MARIAPPAN Eniya, et al. Recent trends in the application of metal-organic frameworks (MOFs) for the removal of toxic dyes and their removal mechanism-a review[J]. Sustainable Materials and Technologies, 2022, 31: 00378. |
4 | 姚庆达, 温会涛, 杨长凯, 等. 多层氧化石墨烯膜的结构、性能及在水处理中的应用进展[J]. 材料导报, 2020, 34(15): 15047-15058. |
YAO Qingda, WEN Huitao, YANG Changkai, et al. Structure and performance of multilayer graphene oxide membrane and its application in water treatment: A review[J]. Materials Reports, 2020, 34(15): 15047-15058. | |
5 | 张德宁, 石中玉, 肖彦奎, 等. 3D打印制备三维石墨烯及其在水处理中的应用[J]. 化工进展, 2022, 41(5): 2231-2242. |
ZHANG D N, SHI Z Y, XIAO Y K, et al. Preparation of 3D graphene by 3D printing and its application in water treatment[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2231-2242. | |
6 | 姚庆达, 梁永贤, 王小卓, 等. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 36-48. |
YAO Q D, LIANG Y X, WANG X Z, et al. Structure and performance of graphene oxide/chitosan composite and its application in water treatment: a review[J]. Materials Report, 2022, 36(4): 36-48. | |
7 | 谢琼华, 陈启杰, 梁春艳, 等. 生物基吸附剂的研究现状与进展[J]. 中国造纸学报, 2022, 37(1): 124-132. |
XIE Qionghua, CHEN Qijie, LIANG Chunyan, et al. Research statues and process of bio-based adsorbents[J]. Transactions of China Pulp and Paper, 2022, 37(1): 124-132. | |
35 | LIN Yuhan, LI Yuzhe, WANG Hao, et al. Separation of ethane and ethylene by a robust ethane-selective calcium based metal-organic framework[J]. New Journal of Chemistry, 2020, 44(28): 11933-11936. |
36 | JIANG Zhenzhen, FAN Lihui, ZHOU Ping, et al. An aromatic-rich cage-based MOF with inorganic chloride ions decorating the pore surface displaying the preferential adsorption of C2H2 and C2H6 over C2H4 [J]. Inorganic Chemistry Frontiers, 2021, 8: 1243. |
37 | HAN Bo, CHAKRABORTY Anutosh. Experimental investigation for water adsorption characteristics on functionalized MIL-125 (Ti) MOFs: Enhanced water transfer and kinetics for heat transformation systems[J]. International Journal of Heat and Mass Transfer, 2022, 186: 122473. |
38 | WANG Sihan, WANG Zile, ZHANG Liang, et al. Adsorption and convenient ELISA detection of sulfamethazine in milk based on MOFs pretreatment[J]. Food Chemistry, 2022, 374: 131712. |
39 | HAN Bo, CHAKRABORTY Anutosh. Highly efficient adsorption desalination employing protonated-amino-functionalized MOFs[J]. Desalination, 2022, 541: 116045. |
40 | ZHONG Jingping, ZHOU Jian, XIAO Minsi, et al. Design and syntheses of functionalized copper-based MOFs and its adsorption behavior for Pb(Ⅱ)[J]. Chinese Chemical Letters, 2022, 33: 973-978. |
41 | LU Xueting, PU Yanfeng, LI Lei, et al. Preparation of metal-organic frameworks Cu3(BTC)2 with amino-functionalization for CO2 adsorption[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 338-343. |
42 | ZHANG Zhi, ZHAO Jiachun, ZHANG Hao, et al. Synthesis of amine grafted Cu-BTC and its application in regenerable adsorption of ultra-low concentration methyl mercaptan[J]. Separation and Purification Technology, 2023, 304: 122356. |
43 | LIU Wancui, WU Huashu, HUANG Ziying, et al. Substituent dependence on series of cationic gyroidal MOFs in utc-c topology with High CO2 affinity and ultrahigh anionic dye adsorption capacity[J]. Inorganic Chemistry, 2022, 61: 9897-9905. |
44 | JI Chenghan, XU Mujian, YU Hang, et al. Mechanistic insight into selective adsorption and easy regeneration of carboxyl-functionalized MOFs towards heavy metals[J]. Journal of Hazardous Materials, 2022, 424: 127684. |
45 | HOU Jinxin, GAO Juping, LIU Jie, et al. Highly selective and sensitive detection of Pb2+ and UO22+ ions based on carboxyl-functionalized Zn(Ⅱ)-MOF platform[J]. Dyes and Pigments, 2019, 160: 159-164. |
46 | NAJAH Aymane, BOIVIN Dimitri, Cédric NOËL, et al. Amino-grafting pre-functionalization of terephthalic acid by impulse dielectric-barrier discharge (DBD) plasma for amino-based metal-organic frameworks (MOFs)[J]. Materials Chemistry and Physics, 2022, 290(15): 126629. |
47 | HAN Gang, STUDER Robin Michel, LEE Moonjoo, et al. Post-synthetic modification of MOFs to enhance interfacial compatibility and selectivity of thin-film nanocomposite (TFN) membranes for water purification[J]. Journal of Membrane Science, 2022, 29: 121133. |
48 | BINAEIAN Ehsan, MOTAGHEDI Nazanin, MALEKI Sina, et al. Ibuprofen uptake through dimethyl ethylenediamine modified MOF: Optimization of the adsorption process by response surface methodology technique[J]. Journal of Dispersion Science and Technology, 2022, 43: 1-14. |
49 | JUSTIN Anita, Jordi ESPÍN, KOCHETYGOV Ilia, et al. A two step postsynthetic modification strategy: appending short chain polyamines to Zn-NH2- BDC MOF for enhanced CO2 adsorption[J]. Inorganic Chemistry, 2021, 60: 11720-11729. |
50 | WANG Chen, LIN Guo, ZHAO Jiling, et al. Enhancing Au(Ⅲ) adsorption capacity and selectivity via engineering MOF with mercaptio-1,3,4-tiadiazole[J]. Chemical Engineering Journal, 2020, 388: 124221. |
51 | WU Ke, YU Yunlong, HOU Zhaonan, et al. A humidity sensor based on ionic liquid modified metal organic frameworks for low humidity detection[J]. Sensors and Actuators B: Chemical, 2022, 355(15): 131136. |
52 | ASADI Elham, BAKHERAD Mohammad, GHASEMI Mohammad Hadi. High and selective adsorption of methylene blue using N-rich, microporous metal-organic framework [ZnBT(H2O)2]n [J]. Journal of the Iranian Chemical Society, 2022, 19: 173-185. |
53 | Shiwen LYU, LIU Jingmin, MA Hui, et al. Simultaneous adsorption of methyl orange and methylene blue from aqueous solution using amino functionalized Zr-based MOFs[J]. Microporous and Mesoporous Materials, 2019, 292: 179-187. |
54 | TRAN Vy Anh, Khanh B VU, Thu Thao Thi VO, et al. Experimental and computational investigation on interaction mechanism of Rhodamine B adsorption and photodegradation by zeolite imidazole frameworks-8[J]. Applied Surface Science, 2021, 538: 148065. |
55 | LI Huijie, GAO Kuan, MO Bingyan, et al. Construction of porous 2D MOF nanosheets for rapid and selective adsorption of cationic dyes[J]. Dalton Transactions, 2021, 50: 3348. |
56 | LUO Xiping, FU Shengyuan, DU Yiming, et al. Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101[J]. Microporous and Mesoporous Materials, 2017, 237: 268-274. |
57 | PAIMAN Syafikah Huda, RAHMAN Mukhlis A, UCHIKOSHI Tetsuo, et al. Functionalization effect of Fe-type MOF for methylene blue adsorption[J]. Journal of Saudi Chemical Society, 2020, 24: 896-905. |
58 | SINGH Hemant, Sankalp RAJ, SINGH Rathour Rishi Karan, et al. Bimetallic Fe/Al-MOF for the adsorptive removal of multiple dyes: optimization and modeling of batch and hybrid adsorbent-river sand column study and its application in textile industry wastewater[J]. Environmental Science and Pollution Research, 2022, 29: 56249-56264. |
8 | 颉亚玮, 黄静杰, 蒋毅恒, 等. Fe/Ti-MIL-NH2吸附-光催化降解NDPhA[J]. 中国环境科学, 2022, 42(4): 1652-1662. |
XIE Yawei, HUANG Jingjie, JIANG Yiheng, et al. Adsorption-photocatalysis for the removal of NDPhA by Fe/Ti-Mil-NH2 [J]. China Environmental Science, 2022, 42(4): 1652-1662. | |
9 | 李红林, 沈舒苏, 吴逸, 等. 金属有机框架改性膜在废水处理中的应用进展[J]. 功能材料, 2022, 53(4): 4028-4038. |
LI Honglin, SHEN Shusu, WU Yi, et al. Study The application progress of metal-organic framework modified membranes in wastewater treatment[J]. Journal of Functional Materials, 2022, 53(4): 4028-4038. | |
10 | ABDOLLAHI Nasrin, MOUSSAVI Gholamreza, GIANNAKIS Stefanos. A review of heavy metals’ removal from aqueous matrices by metal-organic frameworks (MOFs): State-of-the art and recent advances[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107394. |
11 | 谭远铭, 孟皓, 张霞, 等. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995. |
59 | NAZIR Muhammad Altaf, BASHIR Muhammad Sohail, JAMSHAID Muhammad, et al. Synthesis of porous secondary metal-doped MOFs for removal of Rhodamine B from water: Role of secondary metal on efficiency and kinetics[J]. Surface and Interfaces, 2021, 25: 101261. |
60 | NAZIR Muhammad Altaf, NAJAM Tayyaba, SHAHZAD Khurram, et al. Heterointerface engineering of water stable ZIF-8@ZIF-67: Adsorption of Rhodamine B from water[J]. Surface and Interfaces, 2022, 34: 102324. |
61 | EREN Muhammet Ş A, Hasan ARSLANOĞLUB, Harun ÇIFTÇI, et al. Production of microporous Cu-doped BTC (Cu-BTC) metal-organic framework composite materials, superior adsorbents for the removal of Methylene blue (Basic blue 9)[J]. Journal of Environmental Chemical Engineering, 2020, 8: 104247. |
62 | HAN Yitong, LIU Min, LI Keyan, et al. In situ synthesis of titanium doped hybrid metal-organic framework UiO-66 with enhanced adsorption capacity for organic dyes[J]. Inorganic Chemistry Frontiers, 2017, 4: 1870. |
63 | Meteo del RIO, ESCARABAJAL Juan Carlos Grimalt, PALOMINO Gemma Turnes, et al. Zinc/iro mixed-metal MOF-74 derived magnetic carbon nanorods for the enhanced removal of organic pollutants from water[J]. Chemical Engineering Journal, 2022, 428(15): 131147. |
64 | MARIYAM Abeda, SHAHID M, Mantasha I, et al. Tetrazole based porous meta-organic framework (MOF): Topological analysis and dye adsorption properties[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30: 1935-1943. |
65 | MOHAMMADI A A, ALINEJAD A, KAMAREHIE B, et al. Metal-organic framework Uio-66 for adsorption of methylene blue dye from aqueous solutions[J]. International Journal of Environmental Science and Technology, 2017, 14: 1959-1968. |
66 | SONI S, BAJPAI P K, MITTAL J, et al. Utilisation of cobalt doped iron based MOF for enhanced removal and recovery of methylene blue dye from waste water[J]. Journal of Molecular Liquids, 2020, 314: 113642. |
67 | ZHAO Tian, ZHU Hexin, GENG Wei, et al. Morphology control synthesis of Cr-benzenedicarboxylate MOFs for the removal of methylene blue[J]. Journal of Solid State Chemistry, 2022, 305: 122651. |
68 | LI Jiaxin, SUN Changyan, WEN Chaoxia, et al. A stable multifunctional Zn(Ⅱ) based metal-organic framework for sensitive detection of Hg(Ⅱ), Cr(Ⅵ), nitrobenzene and adsorption of methylene blue[J]. Journal of Environmental Chemical Engineering, 2022, 10: 107880. |
69 | NIMBALKAR Madhu N, BHAT Badekai Ramachandra. Simultaneous adsorption of methylene blue and heavy metals from water using Zr-MOF having free carboxylic group[J]. Journal of Environmental Chemical Engineering, 2021, 9: 106216. |
70 | MOHAMMADNEJAD Masoumeh, HAJIASHRAFI Taraneh, RASHNAVADI Razieh. An erbium-organic framework as an adsorbent for the fast and selective adsorption of methylene blue from aqueous solutions[J]. Journal of Porous Materials, 2018, 25: 761-769. |
71 | DONG Xue, LIN Yongcen, REN Gangli, et al. Catalytic degradation of Methylene blue by Fenton-like oxidation of Ce-doped MOF[J]. Colloids and surface A, 2021, 608: 125578. |
72 | YANG Yuting, TU Changzheng, SHI Junyou, et al. Cu(Ⅰ)-organic framework as a platform for high-efficiency selective adsorption of methylene blue and reversible iodine uptake[J]. Journal of Solid State Chemistry, 2022, 311: 123133. |
73 | WANG Hongting, YANG Li, QIN Yuanhang, et al. Highly effective removal of methylene blue from wastewater by modified hydroxyl groups materials: Adsorption performance and mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130290. |
74 | GUO Hongxu, LIN Fan, CHEN Jianhua, et al. Metal-organic framework MIL-125(Ti) for efficient adsorptive removal of Rhodamine B from aqueous solution[J]. Applied Organometallic Chemistry, 2014, 29: 12-19. |
75 | ISSA Razan, IBRAHIM Fayrouz Abou, Mazen AL-GHOUL, et al. Controlled growth and composition of multivariate metal-organic frameworks-199 via a reaction-diffusion process[J]. Nano Research, 2021, 14(2): 423-431. |
76 | PATTAPPAN Dhanaprabhu, VARGHEESE Stella, KAVYA K V, et al. Metal-organic frameworks with different oxidation states of metal nodes and aminoterephthalic acid ligand for degradation of Rhodamine B under solar light[J]. Chemosphere, 2022, 286: 131726. |
77 | VISWANATHAN Vandana P, MATHEW Siji V, DUBAL Deepak P, et al. Exploring the effect of morphologies of Fe(Ⅲ) metal-organic framework MIL-88A(Fe) on the photocatalytic degradation of Rhodamine B[J]. ChemistrySelect, 2020, 5: 7534-7542. |
78 | WU Jiayi, GAO Yingyun, WEI Shang, et al. Plasma modification of Fe-MOF for efficient organic pollutants removal[J]. Journal of Solid Chemistry, 2021, 302: 122350. |
79 | JIA Shifang, SONG Sufang, ZHAO Xudong. Selective adsorption and separation of dyes from aqueous solution by a zirconium-based porous framework material[J]. Applied Organometallic Chemistry, 2021, 35: 6314. |
80 | BOOL Reaner Jacqueline A, LUWALHATI Ghia C, TAN Nicole Elizabeth Y, et al. On the use of metal-organic framework-based adsorbent from recycled PET bottles for Eriochrome black T removal[J]. Materials Today: Proceedings, 2022, 65: 3312-3320. |
81 | Byung-Moon JUN, Jiyong HEO, Nader TAHERI-QAZVINI, PARK Chang Min, et al. Adsorption of selected dyes on Ti3C2T x Mxene and Al-based metal-organic framework[J]. Ceramics International, 2020, 46: 2960-2968. |
82 | GUO Xingzhe, HAN Shuaishuai, YANG Jimin, et al. Effect of synergistic interplay between surface charge, crystalline defects, and pore volume of MIL-100(Fe) on adsorption of aqueous organic dyes[J]. Industrial & Engineering Chemistry Research, 2020, 59: 2113-2122. |
83 | MA Zhilong, CAO Weiwei, WANG Jiajun, et al. A neutral zinc(Ⅱ) metal-organic framework with nanoporous channels for efficient and selective adsorption of anionic dyes[J]. Journal of Molecular Structure, 2022, 1265: 133413. |
84 | GHOSH Shankhamala, SARKAR Avishek, CHATTERJEE Soumit, et al. Elucidation of selective adsorption study of Congo red using new cadmium(Ⅱ) metal-organic frameworks: Adsorption kinetics, isotherm and thermodynamics[J]. Journal of Solid State Chemistry, 2021, 296: 121929. |
85 | SALEH Hatem A M, Mantasha I, QASEM Khalil M A, et al. A two dimensional Co(Ⅱ) metal-organic framework with bey topology for excellent dye adsorption and separation: Exploring kinetics and mechanism of adsorption[J]. Inorganica Chimica Acta, 2020, 512: 119900. |
86 | GUO Xiuling, KONG Lingjun, RUAN Yang, et al. Green and facile synthesis of cobalt-based metal-organic frameworks for the efficient removal of Congo red from aqueous solution[J]. Journal of Colloid and Interface Science, 2020, 578: 500-509. |
87 | HASANZADEH Mahdi, SIMCHI Abdolreza, Hossein Shahriyari FAR. Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: Synthesis, adsorption mechanism and kinetics studies [J]. Journal of Industrial and Engineering Chemistry, 2020, 81: 405-414. |
88 | WANG Xiaoxiao, LI Zuoxi, YU Baoyi, et al. Synthesis and characterizations of a bis(triazole)-based 3D crystalline copper(Ⅱ) MOF with high adsorption capacity for Congo red dye[J]. Inorganic Chemistry Communications, 2015, 54: 9-11. |
89 | NI Weiming, XIAO Xinfeng, GENG Weiwei, et al. Controllable preparation of amino-functionalized ZIF-8: A functionalized MOF material for adsorbing Congo red and Eriochrome black T in aqueous solution[J]. JCIS Open, 2021, 3: 100018. |
90 | TU Nguyen Thi Thanh, THIEN Tran Vinh, DU Pham Dinh, et al. Adsorption removal of Congo red from aqueous solution using zeolitic imidazolate framework-67[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 2269-2280. |
91 | LIU Yi, QIU Guangyao, LIU Yongfeng, et al. Fabrication of CoFe-MOF materials by different methods and adsorption properties for Congo red[J]. Journal of Molecular Liquids, 2022, 360: 119405. |
92 | ZHAO Shiyong, LI Yanhui, WANG Mingzhen, et al. Preparation of MIL-88A micro/nanocrystals with different morphologies in different solvents for efficient removal of Congo red from water: Synthesis, characterization, and adsorption mechanisms[J]. Microporous and Mesoporous Materials, 2022, 345: 112241. |
93 | FU Qiuping, LOU Jie, ZHANG Rongbin, et al. Highly effective and fast removal of Congo red from wastewater with metal-organic framework Fe-MIL-88NH2 [J]. Journal of Solid State Chemistry, 2021, 294: 121836. |
94 | MESHRAM Anjali A, SONTAKKE Sharad M. Synthesis of highly stable nanoscale MIL-53 MOF and its application for the treatment of complex mixed dye solutions and real-time dye industry effluent[J]. Separation and Purification Technology, 2021, 274: 119073. |
95 | HAGHIGHAT Gholam Ali, SADEGHI Shahram, SAGHI Mohammad Hossien, et al. Zeolitic imidazolate frameworks (ZIFs) of various morphologies against Eriochrome black-T (EBT): Optimizing the key physicochemical features by process modeling[J]. Colloids and Surfaces A, 2020, 606: 125391. |
96 | ROUSHANI Mahmoud, SAEDI Zahra, MUSA BEYGI Tahereh. Anionic dyes removal from aqueous solution using TMU-16 and TMU-16-NH2 as isoreticular nanoporous metal organic frameworks[J]. Journal of Taiwan Institute of Chemical Engineers, 2016, 66: 164-171. |
97 | SAEDI Zahra, HAJINIA Nahid. Concurrent first- and second-order photodegradation of azo dyes using TMU-16 pillared-layer microporous metal organic framework under visible light [J]. Journal of Solid State Chemistry, 2021, 300: 122210. |
98 | WU Ruixue, BI Caifeng, WANG Lulu, et al. Five functional Cd/Zn-based MOFs constructed from V-shaped tricarboxylate ligand for rapidly selective adsorption and efficiently photocatalytic degradation of hazardous aromatic dyes[J]. Synthetic Metals, 2021, 277: 116786. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[5] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[6] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[7] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[8] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[9] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[10] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[11] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[12] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[13] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[14] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[15] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |