化工进展 ›› 2021, Vol. 40 ›› Issue (S2): 241-255.DOI: 10.16085/j.issn.1000-6613.2021-0951
收稿日期:
2021-05-06
修回日期:
2021-06-11
出版日期:
2021-11-12
发布日期:
2021-11-12
通讯作者:
晏太红
作者简介:
陈琦(1995—),女,博士研究生,研究方向为核燃料循环与材料。E-mail:基金资助:
CHEN Qi(), WANG Wentao, ZHANG Zhipeng, YAN Taihong()
Received:
2021-05-06
Revised:
2021-06-11
Online:
2021-11-12
Published:
2021-11-12
Contact:
YAN Taihong
摘要:
共价有机框架材料(covalent organic frameworks, COFs)是一类由轻质元素通过共价键连接的具有周期性和结晶性的新兴有机多孔聚合物。COFs具有比表面积大、孔隙高度可调及易于化学修饰等特点,使其能满足多样的设计需求,成为吸附剂的理想材料。本文综述了近年来COFs及其复合材料作为高效吸附剂在放射性核素吸附领域的研究进展,首先提出了COFs的结构优势,并对COFs与放射性核素的相互作用机理进行了分类,评估了多种COFs对几种代表性放射性核素的吸附性能,简要总结了吸附的作用方式,并分析了实现高吸附容量以及高选择性的原因,还讨论了COFs材料的可再生性。在文章的最后对用于吸附放射性核素的COFs材料的发展趋势进行了总结和展望,也就目前的局限性(COFs的制备、选择性的提高、稳定性的探究以及深度机理研究、工业规模的应用等)为设计和探究具有更优异吸附性能的COFs材料提供了一些建议。
中图分类号:
陈琦, 王文涛, 张志鹏, 晏太红. 共价有机框架材料对放射性核素吸附的研究进展[J]. 化工进展, 2021, 40(S2): 241-255.
CHEN Qi, WANG Wentao, ZHANG Zhipeng, YAN Taihong. Progress of covalent framework for radionuclides absorption[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 241-255.
1 | SUN Y B, WU Z Y, WANG X X, et al. Macroscopic and microscopic investigation of U(Ⅵ) and Eu(Ⅲ) adsorption on carbonaceous nanofibers[J]. Environmental Science & Technology, 2016, 50: 4459-4467. |
2 | LV S W, LIU J M, WANG Z H, et al. Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials[J]. Journal of Environmental Sciences, 2019, 80:169-185. |
3 | LI J, WU Z, DUAN Q Y, et al. Simultaneous removal of U(Ⅵ) and Re(Ⅶ) by highly efficient functionalized ZIF-8 nanosheets adsorbent[J]. Journal of Hazardous Materials, 2020, 393: 122398. |
4 | IMAM E A, EL-SAYED I E, MAHFOUZ M G, et al. Synthesis of α-aminophosphonate functionalized chitosan sorbents: effect of methyl vs phenyl group on uranium sorption[J]. Chemical Engineering Journal, 2018, 352: 1022-1034. |
5 | XIE Y, CHEN C, REN X, et al. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation[J]. Progress in Materials Science, 2019, 103:180-234. |
6 | ZOU Y, WANG X, WU F, et al. Controllable synthesis of Ca-Mg-Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(Ⅵ) from wastewater Solutions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 1173-1185. |
7 | WU Y, PANG H, LIU Y, et al. Environmental remediation of heavy metal ions by novel-nanomaterials: a review.[J]. Environmental Pollution, 2019, 246: 608-620. |
8 | MARTIN W J, GLASS R I, BALBUS J M, et al. A major environmental cause of death[J]. Science, 2011, 334: 180-181. |
9 | SONG S, HUANG S, ZHANG R, et al. Simultaneous removal of U(Ⅵ) and humic acid on defective TiO2-x investigated by batch and spectroscopy techniques[J]. Chemical Engineering Journal, 2017, 325: 576-587. |
10 | TAN W, GUO X, ZHANG S, et al. Synthesis of nitrogen-rich covalent organic framework and its adsorption property for volatile iodine [J]. Scientia Sinica Chimica, 2019, 49(1): 207-214. |
11 | WEN T, WANG J, YU S, et al. Magnetic porous carbonaceous material produced from tea waste for efficient removal of As(Ⅴ), Cr(Ⅵ), humic acid, and dyes[J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 4371-4380. |
12 | NA L, DU J, DI W, et al. Recent advances in facile synthesis and applications of covalent organic framework materials as superior adsorbents in sample pretreatment[J]. TrAC Trends in Analytical Chemistry, 2018, 108:154-166. |
13 | ZHU R, DING J, JIN L, et al. Interpenetrated structures appeared in supramolecular cages, MOFs, COFs[J]. Coordination Chemistry Reviews, 2019, 389:119-140. |
14 | LYLE S J, WALLER P J, YAGHI O M. Covalent organic frameworks: organic chemistry extended into two and three dimensions[J]. Trend Chem, 2019, 1:172-184. |
15 | 李路路, 刘帅, 章琴, 等.共价有机框架材料研究进展[J].物理化学学报, 2017, 33(10): 1960-1977. |
LI L, LIU S, ZHANG Q, et al. Advance in colvalent organic frameworks[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 1960-1977. | |
16 | GENG K, ARUMUGAM V, XU H, et al. Covalent organic frameworks: polymer chemistry and functional design[J]. Progress in Polymer Science, 2020, 108:101288. |
17 | ZHANG C, LI X, CHEN Z, et al. Synthesis of ordered mesoporous carbonaceous materials and their highly efficient capture of uranium from solutions[J]. Science China Chemistry, 2018, 61(3):281-293. |
18 | LI J, CHEN C, ZHANG S, et al. Surface functional groups and defects on carbon nanotubes affect adsorption-desorption hysteresis of metal cations and oxoanions in water[J]. Environmental Science: Nano, 2014, 1(5):488-495. |
19 | SHENG G, YANG S, SHENG J, et al. Maroscopic and microscopic investigation of Ni(Ⅱ) sequeatration on diatomite by batch, XPS, and EXAFS techniques[J]. Environmental Science & Technology, 2011, 45(18): 7718-7726. |
20 | MEUNIER N, DROGUI P, MONTANE C, et al. Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate[J]. Journal of Hazardous Materials, 2006, 137(1): 581-590. |
21 | ROMAN-ROSS G, CUELLO G J, TURRILLAS X, et al. Arsenite sorption and co-precipitation with calcite[J]. Chemical Geology, 2006. 233(3-4): 328-336. |
22 | GAUVIN D A, SOFFEL R W, FREEMAN W P, et al. Achieving low mercury concentrations in Chlor-Alkali wastewaters[J]. Environmental Progress, 2003, 22(3):167-173. |
23 | BOUHAMED F, ELOUEAR Z, BOUZID J. Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: equilibrium, kinetics and thermodynamic[J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(5): 741-749. |
24 | CHEN Q, LU C, HU Y F, et al. Extraction behavior of several lanthanides from nitric acid with DMDODGA in [C4 mim][NTf2 ] ionic liquid[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327: 565-573. |
25 | 刘耀阳, 刘志斌, 赵闯, 等. 锕系元素分离研究:不对称双酰胺荚醚的萃取化学及应用[J]. 化学进展, 2020, 32(S1): 219-229. |
LIU Y Y, LIU Z B, ZHAO C, et al. Separation of actinides: extraction chemistry and application of unsymmetric diglycolamides [J]. Progress in Chemistry. 2020, 32(S1): 219-229. | |
26 | HOCH L B, MACK E J, HYDUTSKY B W, et al. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent vhromium[J]. Environment Science Technology, 2008, 42(7): 2600-2605. |
27 | DING C, CHENG W, SUN Y, et al. Effects of Bacillus subtilis on the reduction of U(Ⅵ) by nano-Fe0[J]. Geochimica et Cosmochimica Acta, 2015, 165: 86-107. |
28 | LI J, CHEN C, ZHANG R, et al. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions[J]. Chemistry-an Asian Journal, 2015, 10(6):1410-1417. |
29 | SUN Y, DING C, CHENG W, et al. Simultaneous adsorption and reduction of U(Ⅵ) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280:399-408. |
30 | GAO J, SUN S, ZHU W, et al. Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal[J]. Water Research, 2014, 63:252-261. |
31 | MANOS M J, KANATZIDIS M G. Layered metal sulfides capture uranium from seawater[J]. Journal of the American Chemical Society, 2012, 134(39): 16441-16446. |
32 | YANG S, HU J, CHEN C, et al. Mutual effects of Pb(Ⅱ) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions[J]. Environmental Science & Technology, 2011, 45(8):3621-3627. |
33 | LI J, CHEN C, ZHANG R, et al. Reductive immobilization of Re(Ⅶ) by graphene modified nanoscale zero-valent iron particles using a plasma technique[J]. Science China Chemistry, 2016, 59:150-158. |
34 | YANG S, SHENG G, TAN X, et al. Determination of Ni(Ⅱ) uptake mechanisms on mordenite surfaces: a combined macroscopic and microscopic approach[J]. Geochimica et Cosmochimica Acta, 2011, 75(21):6520-6534. |
35 | SUN Y, ZHANG R, DING C, et al. Adsorption of U(Ⅵ) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques[J]. Geochimica Et Cosmochimica Acta, 2016, 180:51-65. |
36 | CHEN C, YANG X, WEI J, et al. Eu(Ⅲ) uptake on rectorite in the presence of humic acid: a macroscopic and spectroscopic study[J]. Journal of Colloid & Interface Science, 2013, 393: 249-256. |
37 | TAN X, FAN Q, WANG X, et al. Eu(Ⅲ) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies[J]. Environmental Science & Technology, 2009, 43(9): 3115-3121. |
38 | YANG S, SHENG G, MONTAVON G, et al. Investigation of Eu(Ⅲ) immobilization on γ-Al2O3 surfaces by combining batch technique and EXAFS analyses: role of contact time and humic acid[J]. Geochimica Et Cosmochimica Acta, 2013, 121: 84-104. |
39 | LI J, FAN Q, WU Y, et al. Magnetic polydopamine decorated with Mg-Al LDH nanoflakes as a novel bio-based adsorbent for simultaneous removal of potentially toxic metals and anionic dyes[J]. Journal of Materials Chemistry A, 2016, 4(5): 1737-1746. |
40 | WEN T, WU X, TAN X, et al. One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(Ⅴ) from aqueous solutions[J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3304-3311. |
41 | WU X, TAN X, YANG S, et al. Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides[J]. Water Research, 2013, 47(12): 4159-4168. |
42 | SARAFRAZ H, MINUCHEHR A, ALAHYARIZADEH G, et al. Synthesis of enhanced phosphonic functional groups mesoporous silica for uranium selective adsorption from aqueous solutions[J]. Scientific Reports, 2017, 7(1): 11675. |
43 | SELLIN P, LEUPIN O X. The use of clay as an engineered barrier in radioactive-waste management-a review[J]. Clays and Clay Minerals, 2013, 61(5): 477-498. |
44 | LI W, LIU J, ZHAO D. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials, 2016, 1(6): 16023. |
45 | REN X, LI J, TAN X, et al. Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination[J]. Dalton Transactions, 2013, 42: 5266-5274. |
46 | HADI P, TO M, HUI C, et al. Aqueous mercury adsorption by activated carbons[J]. Water Research, 2015, 73: 37-55. |
47 | TIAN G, GENG J X, JIN Y D, et al. Sorption of uranium(Ⅵ) using oximegrafted ordered mesoporous carbon CMK-5[J]. Journal of Hazard Materials, 2011, 190(1/2/3): 442-50. |
48 | WANG X, FAN Q, YU S, et al. RETRACTED: High sorption of U(Ⅵ) on graphene oxides studied by batch experimental and theoretical calculations[J]. Chemical Engineering Journal, 2016, 287: 448-455. |
49 | ZHAO G, LI J, REN X, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environmental Science & Technology, 2011, 45(24): 10454-10462. |
50 | LINGAMDINNE L, KODURU J, KARRI R. A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification[J]. Journal of Environmental Management, 2019, 231: 622-634. |
51 | KODURU J R, KARRI R R, MUBARAK N M. Smart materials, magnetic graphene oxide-based nanocomposites for sustainable water purification[M]. In: INAMUDDIN Thomas S, KUMAR Mishra R, Asiri A M, Eds. Sustainable Polymer Composites and Nanocomposites. Cham: Springer, 2019: 759-781 |
52 | MAUTER M S, ELIMELECH M. Environmental applications of carbon-based nanomaterials[J]. Environmental Science & Technology, 2008, 42(16): 5843. |
53 | 刘大前,刘峥嵘,蔡之望. 功能树脂吸附分离锕系元素的研究进展[J]. 铀矿冶, 2017, 36(3):182-187. |
LIU D Q, LIU Z R, CAI Z W, et al. Research progress of functional resin adsorption and separation of actinides[J]. Uranium Mining and Metallurgy, 2017, 36(3): 182-187. | |
54 | WU D, XU F, SUN B, et al. Design and preparation of porous polymers[J]. Chemical Reviews, 2012, 112(7): 3959-4015. |
55 | XU S, LUO Y, TAN B. Recent development of hypercrosslinked microporous organic polymers[J]. Macromolecular Rapid Communications, 2013, 34(6): 471-484. |
56 | MCKEOWN N B, BUDD P M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage[J]. Chemical Society Reviews, 2006, 35(8): 675-683. |
57 | XU Y, JIN S, XU H, et al. Conjugated microporous polymers: design, synthesis and application[J]. ChemInform, 2013, 44(20): 8012-8031. |
58 | BEN T, REN H, MA S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie International Edition, 2009, 48(50): 9457-9460. |
59 | XIAO C, SILVER M A, WANG S. Metal-organic frameworks for radionuclide sequestration from aqueous solution: a brief overview and outlook[J]. Dalton Transactions, 2017, 46(47): 16381-16386. |
60 | TENG B, REN H, MA S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie International Edition, 2009, 48(50): 9457-9460. |
61 | ZHU L, SHENG D, CHAO X, et al. Identifying the recognition site for selective trapping of 99TcO4- in a hydrolytically stable and radiation resistant cationic metal-organic framework[J]. Journal of the American Chemical Society, 2017, 139(42): 14873-14876. |
62 | ZHANG J, ZHOU L, JIA Z, et al. Construction of covalent organic framework with unique double-ring pore for size-matching adsorption of uranium[J]. Nanoscale, 2020, 12(47): 24044-24053. |
63 | YU J P, YUAN L Y, WANG S, et al. Phosphonate-decorated covalent organic frameworks for actinide extraction: a breakthrough under highly acidic conditions[J].CCS Chemistry, 2019, 1(3): 286-295. |
64 | CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
65 | DOONAN C J, TRANCHEMONTAGNE D J, GLOVER T G, et al. Exceptional ammonia uptake by a covalent organic framework[J]. Nature Chemistry, 2010, 2(3): 235-238. |
66 | MODAK A, JANA S. Advancement in porous adsorbents for post-combustion CO2 capture[J]. Microporous and Mesoporous Materials, 2019, 276: 107-132. |
67 | KLONTZA E, TYLIANAKIS E, FROUDAKIS G E. Designing 3D COFs with enhanced hydrogen storage capacity[J]. Nano Letters, 2010, 10(2): 452-454. |
68 | XIA L, WANG F, LIU Q. Effects of substituents on the H2 storage properties of COF-320[J]. Materials Letter, 2016, 162: 9-12. |
69 | YANG Y, FAHEEM M, WANG L, et al. Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches[J]. ACS Central Science, 2018, 4: 748-754. |
70 | KUMAR R, SINGH L, ZULARISAM. Mesoporous Co3O4 nanoflasks as an efficient and non-precious cathode catalyst for oxygen reduction reaction in air-cathode microbial fuel cells[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 329-336. |
71 | YANG D H, YAO Z Q, WU D, et al. Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(47): 18621-18627. |
72 | WANG S, WANG Q, SHAO P, et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries[J]. Journal of the American Chemical Society, 2017, 139(12): 4258-4261. |
73 | ZHANG X, LI G, WU D, et al. Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing[J]. Biosen. Bioelectron., 2019, 145(12): 111699-111699. |
74 | DING S, DONG M, WANG Y, et al. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(Ⅱ)[J]. Journal of the American Chemical Society, 2016, 138(9): 3031-3031. |
75 | CHEN L, FURUKAWA K, GAO J, et al. Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions[J]. Journal of the American Chemical Society, 2014, 136(28) 9806-9809. |
76 | DING X, GUO J, FENG X, et al. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity[J]. Angewandte Chemie International Edition, 2011, 50: 1289-1293. |
77 | ZHENG W, TSANG C S, LEE L Y S, et al. Two-dimensional metal-organic framework and covalent-organic framework: synthesis and their energy-related applications[J]. Materials Today Chemistry, 2019, 12: 34-60. |
78 | ZHANG Y, RIDUAN S N, WANG J. Redox active metal- and covalent organic frameworks for energy storage: balancing porosity and electrical conductivity[J]. Chemistry-A European Journal, 2017, 23:16419-16431. |
79 | EL-Mahdy A F M, Hung Y H, Mansoure T H, et al. Synthesis of [3+3] β-ketoenamine-tethered covalent organic frameworks (COFs) for high-performance supercapacitance and CO2 storage[J]. Journal of the Taiwan Institute Chemical Engineers, 2019, 103:199-208. |
80 | ZHANG N, ISHAG A, LI Y, et al. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: a review[J]. Journal of Cleaner Production, 2020, 277: 123360. |
81 | LI J, YANG X, BAI C, et al. A novel benzimidazole-functionalized 2-D COF material: synthesis and application as a selective solid-phase extractant for separation of uranium[J]. Journal of Colloid and Interface Science, 2015, 437: 211-218. |
82 | YIN Z J, XU S Q, ZHAN T G, et al. Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework[J]. Chemical Communications, 2017, 53: 7266-7269. |
83 | WEN R, YANG L, ZHANG M, et al. Graphene-synergized 2D covalent organic framework for adsorption: a mutual promotion strategy to achieve stabilization and functionalization simultaneously[J]. Journal of Hazardous Materials, 2018, 358: 273-285. |
84 | LI Y, GUO X, LI X, et al. Redox-active two-dimensional covalent organic frameworks (COFs) for selective reductive separation of valence-variable, redox-sensitive and long‐lived radionuclides[J]. Angewandte Chemie International Edition, 2020, 132: 4197-4204. |
85 | HE L, LIU S, CHEN L, et al. Mechanism unravelling for ultrafast and selective 99TcO4- uptake by a radiation-resistant cationic covalent organic framework: a combined radiological experiment and molecular dynamics simulation study[J]. Chemical Science, 2019, 10(15): 4293-4305. |
86 | SCHNUG E, LOTTERMOSER B G. Fertilizer-derived uranium and its threat to human health[J]. Environmental Science & Technology, 2013, 47(6): 2433-2434. |
87 | HU Y Z, WANG X X, ZOU Y D, et al. Superior sorption capacities of Ca-Ti and Ca-Al bimetallic oxides for U(Ⅵ) from aqueous solutions[J]. Chemical Engineering Journal, 2017, 316: 419-428. |
88 | SUN Q, AGUILA B, EARL L D, et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration[J]. Advanced Materials, 2018, 30(20): 1705479. |
89 | XIONG X H, YU Z W, GONG L L, et al. Ammoniating covalent organic framework (COF) for high-performance and selective extraction of toxic and radioactive uranium ions[J]. Advanced Science, 2019, 6(16): 1900547-1900655. |
90 | LI Z D, ZHANG H Q, XIONG X H, et al. U(Ⅵ) adsorption onto covalent organic frameworks-TpPa-1[J]. Journal of Solid State Chemistry, 2019, 277: 484-492. |
91 | ZHONG X, LU Z, LIANG W, et al. The fabrication of 3D hierarchical flower-like δ-MnO2@COF nanocomposites for the efficient and ultrafast removal of UO22+ ions from aqueous solution[J]. Environmental Science: Nano, 2020, 7: 3303-3317. |
92 | YOU Z, ZHANG N, GUAN Q, et al. High sorption capacity of U(Ⅵ) by COF-based material doping hydroxyapatite microspheres: kinetic, equilibrium and mechanism investigation[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30: 1966-1979. |
93 | LI F F, CUI W R, JIANG W, et al. Stable sp2 carbon-conjugated covalent organic framework for detection and efficient adsorption of uranium from radioactive wastewater[J]. Journal of Hazardous Materials, 2020, 392: 122333. |
94 | ZHANG C R, CUI W R, JIANG W, et al. Simultaneous sensitive detection and rapid adsorption of UO22+ based on a post-modified sp2 carbon-conjugated covalent organic framework[J]. Environmental Science: Nano, 2020, 7: 842-850. |
95 | CUI W R, ZHANG C R, JIANG W, et al. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium[J]. Nature Communications, 2020, 11(1): 436. |
96 | ZHANG S, ZHAO X, LI B, et al. "Stereoscopic" 2D super-microporous phosphazene-based covalent organic framework: design, synthesis and selective sorption towards uranium at high acidic condition[J]. Journal of Hazardous Materials, 2016, 314: 95-104. |
97 | BAI C, LI J, LIU S, et al. In situ preparation of nitrogen-rich and functional ultramicroporous carbonaceous COFs by "segregated" microwave irradiation[J]. Microporous & Mesoporous Materials, 2014, 197: 148-155. |
98 | BAI C, ZHANG M, LI B, et al. Modifiable diyne-based covalent organic framework: a versatile platform for in situ multipurpose functionalization[J]. RSC Advances, 2016, 6(45): 39150-39158. |
99 | LI X, QI Y, YUE G, et al. Solvent- and catalyst-free synthesis of an azine-linked covalent organic framework and the induced tautomerization in the adsorption of U(Ⅵ) and Hg(Ⅱ)[J]. Green Chemistry, 2019, 21(3): 649-657. |
100 | ZHONG X, LIANG W, LU Z, et al. Highly efficient enrichment mechanism of U(Ⅵ) and Eu(Ⅲ) by covalent organic frameworks with intramolecular hydrogen-bonding from solutions[J]. Applied Surface Science, 2019, 504: 144403. |
101 | GECKEIS H, LÜTZENKIRCHEN J, POLLY R, et al. Mineral-water interface reactions of actinides[J]. Chemical Reviews, 2013, 113(2): 1016-1062. |
102 | SUN Y, LU S, WANG X, et al. Plasma-facilitated synthesis of amidoxime/carbon nanofiber hybrids for effective enrichment of 238U(Ⅵ) and 241Am(Ⅲ)[J]. Environmental Science & Technology, 2017, 51(21): 12274-12282. |
103 | SUN Q, AGUILA B, EARL L D, et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration[J]. Advanced Materials, 2018, 30(20): 1705479. |
104 | KELLEY S P, BARBER P S, MULLINS P H K, et al. Structural clues to UO22+/VO2+ competition in seawater extraction using amidoxime-based extractants[J]. Chemical Communications, 2014, 50(83): 12504-12507. |
105 | WANG P, XU Q, LI Z, et al. Exceptional iodine capture in 2D covalent organic frameworks[J]. Advanced Materials, 2018, 30(29): 1801991.1-1801991.7. |
106 | YAN Z J, YUAN Y, TIAN Y Y, et al. Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites[J]. Angewandte Chemie International Edition, 2015, 54: 12733-12737. |
107 | SUN Y H, SONG S A, XIAO D H, et al. Easily constructed imine-bonded COFs for iodine capture at ambient temperature[J]. ACS Omega, 2020, 5(38): 24262-24271. |
108 | LI L, CHEN R, LI Y, et al. Novel cotton fiber-covalent organic framework hybrid monolith for reversible capture of iodine[J]. Cellulose, 2020, 27: 5879-5892. |
109 | PAN X, QIN X, ZHANG Q, et al. N- and S-rich covalent organic framework for highly efficient removal of indigo carmine and reversible iodine capture[J]. Microporous and Mesoporous Materials, 2020, 296:109990. |
110 | GUO X, TIAN Y, ZHANG M, et al. Mechanistic insight into hydrogen-bond-controlled crystallinity and adsorption property of covalent organic frameworks from flexible building blocks[J]. Chemistry of Materials, 2018, 30(7): 2299-2308. |
111 | GUO X, LI Y, ZHANG M, et al. Colyliform crystalline 2D covalent organic frameworks (COFs) with quasi-3D topologies for rapid I2 adsorption[J]. Angewandte Chemie International Edition, 2020, 59(50): 22697-22705. |
112 | LI J, ZHANG H, ZHANG L, et al. Two-dimensional covalent-organic frameworks for ultrahigh iodine capture[J]. Journal of Materials Chemistry A, 2020, 8: 9523-9527. |
113 | AN S, ZHU X, HE Y, et al. Porosity modulation in two-dimensional covalent organic frameworks leads to enhanced iodine adsorption performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(24): 10495-10502. |
114 | WANG C, WANG Y, GE R, et al.A 3D covalent organic framework with exceptionally high iodine capture capability[J]. Chemistry—A European Journal, 2018, 24(3): 585-589. |
115 | LI Y, LI Y, ZHAO Q, et al. Cotton fiber functionalized with 2D covalent organic frameworks for iodine capture[J]. Cellulose, 2020, 27(3):1517-1529. |
116 | LAN Y S, TONG M M, YANG Q Y, et al. Computational screening of covalent organic frameworks for the capture of radioactive iodine and methyl iodide[J]. Crystengcomm, 2017(33): 4920-4926. |
117 | XIONG S H, TANG X, PAN C Y, et al. Carbazole-bearing porous organic polymers with a mulberry-like morphology for efficient iodine capture[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27335-27342. |
118 | DEMARTIN F, DEPLANO P, DEVILLANOVA F A, et al. Conductivity, FT-Raman spectra and X-ray crystal structures of two novel [D2I]In (n=3 and D=N-methylbenzothiazole-2(3H)-selone; n=7 and D=N-methylbenzothiazole-2(3H)-thione) iodonium salts. first example of I-.3I2 heptaiodide[J]. Inorganic Chemistry, 1993, 32(17): 3694-3699. |
119 | DIEL B, INABE T, LYING J, et al. Cofacial assembly of partially oxidized metallamacrocycles as an approach to controlling lattice architecture in low-dimensional molecular solids. chemical, structural, oxidation state, transport, magnetic, and optical properties of halogen-doped [M(phthalocyaninato)O]n macromolecules, where M=Si, Ge, and Sn[J]. Journal of the American Chemical Society, 1983, 14(39): 1551-1567. |
120 | HASSEL O, HOPE H, SÖRENSEN N A, et al. Structure of the solid compound formed by addition of two molecules of iodine to one molecule of pyridine[J]. Acta Chemica Scandinavica, 1961, 15: 407-416. |
121 | LEE M S, UM W, WANG G, et al. Impeding 99Tc(IV) mobility in novel waste forms[J]. Nature Communications, 2016, 7:12067. |
122 | WILDUNG R E, MCFADDEN K M, GARLAND T R. Technetium sources and behavior in the environment[J]. Journal of Environmental Quality, 1979, 8: 156-161. |
123 | ALBERTO R, BERGAMASCHI G, BRABAND H, et al. 99TcO4-: selective recognition and trapping in aqueous solution[J]. Angewandte Chemie International Edition, 2012, 51(39): 9772-9776. |
124 | GU B, DOWLEN K E. An investigation of groundwater organics, soil minerals, and activated carbon on the complexation, adsorption, and separation of technetium-99[J]. Office of Scientific & Technical Information Technical Reports, 1996. |
125 | MOLLICK S, FAJAL S, et al. Nanotrap grafted anion exchangeable hybrid materials for efficient removal of toxic oxoanions from water[J]. ACS Central Science, 2020, 6(9): 1534-1541. |
126 | WANG Y, XIE M, LAN J, et al. Radiation controllable synthesis of robust covalent organic framework conjugates for efficient dynamic column extraction of 99TcO4[J]. Chem, 2020, 6(10): 2796-2809. |
127 | DA H J, YANG C X, YAN X P.Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: an analogue of radioactive pertechnetate from aqueous solution[J]. Environmental Science & Technology, 2019, 53(9): 5212-5220. |
128 | LU Q, MA Y, LI H, et al. Frontispiz: postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions[J]. Angewandte Chemie, 2018, 57(21): 6042-6048. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 张婷婷, 左旭乾, 田玲娣, 王世猛. 化工园区挥发性有机物排放清单及因子库构建方法[J]. 化工进展, 2023, 42(S1): 549-557. |
[7] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[10] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[11] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[12] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[13] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
[14] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[15] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |