化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3770-3783.doi: 10.16085/j.issn.1000-6613.2021-1797
张伟1(), 安兴业1(
), 刘利琴1, 龙垠荧1, 张昊1, 程正柏2, 曹海兵2, 刘洪斌1(
)
收稿日期:
2021-08-22
修回日期:
2021-11-22
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
安兴业,刘洪斌
E-mail:1435048976@qq.com;anxingye@tust.edu.cn;hongbin@tust.edu.cn
作者简介:
张伟(1996—),男,硕士研究生,研究方向为先进纤维与纸基功能材料。E-mail:基金资助:
ZHANG Wei1(), AN Xingye1(
), LIU Liqin1, LONG Yinying1, ZHANG Hao1, CHENG Zhengbai2, CAO Haibing2, LIU Hongbin1(
)
Received:
2021-08-22
Revised:
2021-11-22
Online:
2022-07-25
Published:
2022-07-23
Contact:
AN Xingye,LIU Hongbin
E-mail:1435048976@qq.com;anxingye@tust.edu.cn;hongbin@tust.edu.cn
摘要:
以木质素纳米颗粒(LNPs)负载的天然纤维复合材料为研究对象,利用KOH活化的方法对其进行处理制备生物质基复合多孔活性碳纤维电极材料。随后在三电极体系中对合成的复合多孔活性碳纤维电极材料进行了电化学性能测试。研究表明,在0.5A/g的电流密度下,KOH活化的复合碳纤维电极材料的比电容为351.13F/g,远高于相同条件下未活化的复合碳纤维电极材料的比电容(7.88F/g)和未负载LNPs的天然纤维基活性碳纤维材料(306.50F/g)。而且在活化过程中,负载在纤维表面的LNPs会形成多孔的活性碳层结构,这会进一步提高复合活性碳纤维材料的循环稳定性,同时LNPs中丰富的羟基赋予复合材料额外的赝电容。在10A/g的电流密度下经过10000次循环后,复合活性碳纤维电极材料的电容保持率仍然为95%,高于未负载LNPs的活性碳纤维电极材料的电容保持率87%。结果表明,木质素纳米颗粒/天然纤维基活性碳纤维材料是一种理想的电极材料,本研究也为LNPs在生物质碳纤维作为储能电极材料的高值化应用提供了一条新途径。
中图分类号:
张伟, 安兴业, 刘利琴, 龙垠荧, 张昊, 程正柏, 曹海兵, 刘洪斌. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能[J]. 化工进展, 2022, 41(7): 3770-3783.
ZHANG Wei, AN Xingye, LIU Liqin, LONG Yinying, ZHANG Hao, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Preparation and electrochemical performance of lignin nanoparticles/natural fiber based activated carbon fiber materials[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3770-3783.
表3
各生物质碳纤维样品的制备条件"
样品名 | 材料 | 活化条件(前体与KOH的比例,m/m) |
---|---|---|
LF0 | LNPs/天然纤维复合材料 | 未活化 |
LFC | LNPs/天然纤维基复合碳纤维材料 | 未活化 |
LFC1∶2 | 复合多孔生物质活性碳纤维材料 | 1∶2 |
LFC1∶4 | 复合多孔生物质活性碳纤维材料 | 1∶4 |
LFC1∶6 | 复合多孔生物质活性碳纤维材料 | 1∶6 |
LFC1∶8 | 复合多孔生物质活性碳纤维材料 | 1∶8 |
LFC1∶10 | 复合多孔生物质活性碳纤维材料 | 1∶10 |
FC1∶2 | 天然纤维基活性碳纤维材料 | 1∶2 |
FC1∶4 | 天然纤维基活性碳纤维材料 | 1∶4 |
FC1∶6 | 天然纤维基活性碳纤维材料 | 1∶6 |
FC1∶8 | 天然纤维基活性碳纤维材料 | 1∶8 |
FC1∶10 | 天然纤维基活性碳纤维材料 | 1∶10 |
1 | XU Yuandong, ZHANG Yujun. Synthesis of polypyrrole/sodium carboxymethyl cellulose nanospheres with enhanced supercapacitor performance[J]. Materials Letters, 2015, 139: 145-148. |
2 | LIU Panbo, YAN Jing, GUANG Zhaoxu, et al. Recent advancements of polyaniline-based nanocomposites for supercapacitors[J]. Journal of Power Sources, 2019, 424: 108-130. |
3 | WANG Zhaohui, CARLSSON Daniel O, TAMMELA Petter, et al. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances[J]. ACS Nano, 2015, 9(7): 7563-7571. |
4 | KHOSROZADEH Ali, DARABI Mohammad Ali, XING Malcolm, et al. Flexible electrode design: fabrication of freestanding polyaniline-based composite films for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(18): 11379-11389. |
5 | LIU Xianbin, LAI Changgan, XIAO Zechen, et al. Superb electrolyte penetration/absorption of three-dimensional porous carbon nanosheets for multifunctional supercapacitor[J]. ACS Applied Energy Materials, 2019, 2(5): 3185-3193. |
6 | WANG Li, YU Jie, DONG Xuantong, et al. Three-dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high-performance supercapacitor[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1531-1537. |
7 | TAN Yueming, XU Chaofa, CHEN Guangxu, et al. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor[J]. ACS Applied Materials & Interfaces, 2013, 5(6): 2241-2248. |
8 | YAHYA M A, AL-QODAH Z, NGAH C W Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review[J]. Renewable and Sustainable Energy Reviews, 2015, 46: 218-235. |
9 | ZHANG Lei, HU Xiaosong, WANG Zhenpo, et al. A review of supercapacitor modeling, estimation, and applications: a control/management perspective[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1868-1878. |
10 | WANG Yiliang, CHANG Binbin, GUAN Daxiang, et al. Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors[J]. Journal of Solid State Electrochemistry, 2015, 19(6): 1783-1791. |
11 | CHEN Haichao, JIANG Jianjun, ZHANG Li, et al. Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors[J]. Journal of Power Sources, 2014, 248: 28-36. |
12 | ABIOYE Adekunle Moshood, Farid Nasir ANI. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 1282-1293. |
13 | VOLPERTS Aleksandrs, PLAVNIECE Ance, DOBELE Galina, et al. Biomass based activated carbons for fuel cells[J]. Renewable Energy, 2019, 141: 40-45. |
14 | SU Xiaoli, CHENG Mingyu, FU Lin, et al. Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins[J]. Journal of Power Sources, 2017, 362: 27-38. |
15 | SU Xiaoli, LI Shuaihui, JIANG Shuai, et al. Superior capacitive behavior of porous activated carbon tubes derived from biomass waste-cotonier strobili fibers[J]. Advanced Powder Technology, 2018, 29(9): 2097-2107. |
16 | 董仕安. 生物质基碳材料的表面修饰及其电化学性能研究[D]. 马鞍山: 安徽工业大学, 2018. |
DONG Shi’an. Surface modification of biomass-derived carbons and their electrochemical properties[D]. Maanshan: Anhui University of Technology, 2018. | |
17 | 王帅, 甘林火, 吕丽. 木质素基介孔碳材料的制备及应用进展[J]. 化工进展, 2019, 38(8): 3720-3729. |
WANG Shuai, GAN Linhuo, Li LYU. Progress in preparation and application of lignin-derived mesoporous carbon materials[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3720-3729. | |
18 | 曾茂株, 佘煜琪, 胡玉彬, 等. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586. |
ZENG Maozhu, SHE Yuqi, HU Yubin, et al. Progress in preparation and application of lignin porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586. | |
19 | GARCÍA-MATEOS FRANCISCO José, Ramiro RUIZ-ROSAS, MARÍA Rosas Juana, et al. Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes[J]. Separation and Purification Technology, 2020, 241: 116724. |
20 | PENG Zhiyuan, ZOU Yubo, XU Shiqi, et al. High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22190-22200. |
21 | CAO Qiping, ZHU Mengni, CHEN Jiaai, et al. Novel lignin-cellulose-based carbon nanofibers as high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1210-1221. |
22 | SCHLEE Philipp, HEROU Servann, JERVIS Rhodri, et al. Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density[J]. Chemical Science, 2019, 10(10): 2980-2988. |
23 | LIU Tao, REN Xinle, ZHANG Junmei, et al. Highly compressible lignin hydrogel electrolytes via double-crosslinked strategy for superior foldable supercapacitors[J]. Journal of Power Sources, 2020, 449: 227532. |
24 | JEON Ju Won, ZHANG Libing, LUTKENHAUS Jodie L, et al. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications[J]. ChemSusChem, 2015, 8(3): 428-432. |
25 | LIU Wanshuang, YAO Yimin, FU Ouli, et al. Lignin-derived carbon nanosheets for high-capacitance supercapacitors[J]. RSC Advances, 2017, 7(77): 48537-48543. |
26 | 熊福全, 韩雁明, 王思群, 等. 纳米木质素的制备及应用研究现状[J]. 高分子材料科学与工程, 2016, 32(12): 156-161. |
XIONG Fuquan, HAN Yanming, WANG Siqun, et al. Progress of preparation and application of lignin nanoparticles[J]. Polymer Materials Science and Engineering, 2016, 32(12): 156-161. | |
27 | LIU Xiaoguang, MA Changde, LI Jiaxin, et al. Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors[J]. Journal of Power Sources, 2019, 412: 1-9. |
28 | WANG Kai, ZHAO Ning, LEI Shiwen, et al. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors[J]. Electrochimica Acta, 2015, 166: 1-11. |
29 | SONG Shijiao, MA Fangwei, WU Guang, et al. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(35): 18154-18162. |
30 | LIN Gaoxin, MA Ruguang, ZHOU Yao, et al. KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction[J]. Electrochimica Acta, 2018, 261: 49-57. |
31 | HE Jingjing, ZHANG Deyi, HAN Mei, et al. One-step large-scale fabrication of nitrogen doped microporous carbon by self-activation of biomass for supercapacitors application[J]. Journal of Energy Storage, 2019, 21: 94-104. |
32 | WANG Yulin, QU Qingli, GAO Shuting, et al. Biomass derived carbon as binder-free electrode materials for supercapacitors[J]. Carbon, 2019, 155: 706-726. |
33 | SU Xiaoli, CHEN Jingran, ZHENG Guangping, et al. Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications[J]. Applied Surface Science, 2018, 436: 327-336. |
34 | SAHA Dipendu, LI Yunchao, BI Zhonghe, et al. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon[J]. Langmuir, 2014, 30(3): 900-910. |
35 | SHANG Zhen, AN Xingye, LIU Liqin, et al. Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor[J]. Carbohydrate Polymers, 2021, 251: 117107. |
36 | RAYMUNDO-PIÑERO E, AZAÏS P, CACCIAGUERRA T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon, 2005, 43(4): 786-795. |
37 | LI Yubing, ZHANG Deyi, ZHANG Yameng, et al. Biomass-derived microporous carbon with large micropore size for high-performance supercapacitors[J]. Journal of Power Sources, 2020, 448: 227396. |
38 | WANG Jiacheng, KASKEL Stefan. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725. |
39 | ROMANOS J, BECKNER M, RASH T, et al. Nanospace engineering of KOH activated carbon[J]. Nanotechnology, 2012, 23(1): 15401. |
40 | BORENSTEIN Arie, HANNA Ortal, ATTIAS Ran, et al. Carbon-based composite materials for supercapacitor electrodes: a review[J]. Journal of Materials Chemistry A, 2017, 5(25): 12653-12672. |
41 | Noel DÍEZ, FERRERO Guillermo A, SEVILLA Marta, et al. A sustainable approach to hierarchically porous carbons from tannic acid and their utilization in supercapacitive energy storage systems[J]. Journal of Materials Chemistry A, 2019, 7(23): 14280-14290. |
42 | 曲可琪, 尤月, 孙哲, 等. 氮硼掺杂菌糠炭: 蜂窝结构用于电极材料[J]. 化工进展, 2021, 40(3): 1527-1536. |
QU Keqi, YOU Yue, SUN Zhe, et al. N, B-doped carbon from fungus bran: honeycomb structure as electrode material[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1527-1536. | |
43 | SHANG Zhen, AN Xingye, ZHANG Hao, et al. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor[J]. Carbon, 2020, 161: 62-70. |
44 | ZHANG Xiudong, BAI Yuanyuan, CAO Xuefei, et al. Pretreatment of Eucalyptus in biphasic system for furfural production and accelerated enzymatic hydrolysis[J]. Bioresource Technology, 2017, 238: 1-6. |
45 | ZHANG Weijie, CHEN Zhongtao, GUO Xinli, et al. N/S co-doped three-dimensional graphene hydrogel for high performance supercapacitor[J]. Electrochimica Acta, 2018, 278: 51-60. |
46 | WANG Yahui, LIU Ruonan, TIAN Yadong, et al. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors[J]. Chemical Engineering Journal, 2020, 384: 123263. |
47 | GAO Shuyan, LI Xiaoge, LI Lingyu, et al. A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation[J]. Nano Energy, 2017, 33: 334-342. |
48 | CHEN Wei, LI Kaixu, CHEN Zhiqun, et al. A new insight into chemical reactions between biomass and alkaline additives during pyrolysis process[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3881-3890. |
49 | JI Linlin, WANG Bin, YU Yanling, et al. N, S co-doped biomass derived carbon with sheet-like microstructures for supercapacitors[J]. Electrochimica Acta, 2020, 331: 135348. |
50 | 李诗杰, 韩奎华. 活性炭孔结构及电化学性能协同优化[J]. 化工进展, 2020, 39(1): 287-293. |
LI Shijie, HAN Kuihua. Synergistic optimization of pore structure and electrochemical properties of activated carbon[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 287-293. | |
51 | CHEN Mingfeng, YU Dan, ZHENG Xiaozhong, et al. Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors[J]. Journal of Energy Storage, 2019, 21: 105-112. |
52 | WAN Mimi, SUN Xiaodan, LI Yanyan, et al. Facilely fabricating multifunctional N-enriched carbon[J]. ACS Applied Materials & Interfaces, 2016, 8(2): 1252-1263. |
53 | LI Aijun, CHUAN Xiuyun, YANG Yang, et al. Influence of activated condition on the structure of diatomite-templated carbons and their electrochemical properties as supercapacitors[J]. Electrochemistry, 2017, 85(11): 708-714. |
54 | ZHANG Guoxiong, CHEN Yuemei, CHEN Yigang, et al. Activated biomass carbon made from bamboo as electrode material for supercapacitors[J]. Materials Research Bulletin, 2018, 102: 391-398. |
55 | YIN Weiming, TIAN Linfei, PANG Bo, et al. Fabrication of dually N/S-doped carbon from biomass lignin: porous architecture and high-rate performance as supercapacitor[J]. International Journal of Biological Macromolecules, 2020, 156: 988-996. |
56 | TANG Diyong, LUO Yanyue, LEI Weidong, et al. Hierarchical porous carbon materials derived from waste lentinus edodes by a hybrid hydrothermal and molten salt process for supercapacitor applications[J]. Applied Surface Science, 2018, 462: 862-871. |
57 | LI Xing, TANG Yao, SONG Junhua, et al. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor[J]. Carbon, 2018, 129: 236-244. |
[1] | 关浩然, 朱丽娜, 朱凌岳, 苑丹丹, 张雨晴, 王宝辉. 利用不同氢源及氮源电化学合成氨研究进展与挑战[J]. 化工进展, 2022, 41(8): 4098-4110. |
[2] | 马静, 马子然, 林德海, 马少丹, 王宝冬. 活化液助溶剂对再生脱硝催化剂性能的影响[J]. 化工进展, 2022, 41(8): 4173-4180. |
[3] | 李想, 葛武杰, 马先果, 彭工厂. 高镍正极材料微裂纹诱导容量衰减的应对策略研究进展[J]. 化工进展, 2022, 41(8): 4277-4287. |
[4] | 潘杰, 王明新, 高生旺, 夏训峰, 韩雪. 氮硫掺杂生物炭/过一硫酸盐体系降解水中磺胺异![]() |
[5] | 金玮. 微孔碳材料修饰的隔膜用于高性能锂硫电池[J]. 化工进展, 2022, 41(8): 4386-4396. |
[6] | 熊永志, 刘艳艳, 陈晓荭, 卢贝丽, 黄彪, 林冠烽. 甘蔗渣基磷掺杂活性炭的制备及其电化学性能[J]. 化工进展, 2022, 41(8): 4397-4405. |
[7] | 王玥, 郑晓洪, 陶天一, 刘秀庆, 李丽, 孙峙. 废锂离子电池正极材料中锂元素选择性回收的研究进展[J]. 化工进展, 2022, 41(8): 4530-4543. |
[8] | 伊学农, 李京梅, 高玉琼. 紫外-高铁酸盐体系氧化降解水中的萘普生[J]. 化工进展, 2022, 41(8): 4562-4570. |
[9] | 李玉峰, 王绍庆, 张安东, 毕冬梅, 李志合, 高亮, 万震. 催化型多孔陶瓷球制备及催化玉米秸秆热解[J]. 化工进展, 2022, 41(7): 3597-3607. |
[10] | 张丽珠, 王欢, 李琼, 杨东杰. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744. |
[11] | 庄雨婷, 王建华, 向智艳, 赵娟, 徐琼, 刘贤响, 尹笃林. 半纤维素及其衍生物转化为γ-戊内酯及其动力学研究进展[J]. 化工进展, 2022, 41(7): 3519-3533. |
[12] | 姚亚丽, 马利利, 王嘉鑫, 朱雪丹, 彭磊, 何金梅, 李侃社, 屈孟男. 煤基石墨烯及复合材料在储能领域的应用[J]. 化工进展, 2022, 41(6): 3077-3088. |
[13] | 马续, 邹明贵, 崔巍巍, 付安然, 廖小龙, 巩桂芬. 一种水性负极黏结剂的合成及性能[J]. 化工进展, 2022, 41(6): 3138-3145. |
[14] | 娄瑞, 刘钰, 田杰, 张亚男. 纳米木质素基多孔炭的制备及其电化学性能[J]. 化工进展, 2022, 41(6): 3170-3177. |
[15] | 刘环博, 李健, 颜蓓蓓, 董晓珊, 陈冠益. 湿式烘焙技术研究进展[J]. 化工进展, 2022, 41(6): 3221-3234. |
|