化工进展 ›› 2023, Vol. 42 ›› Issue (6): 3087-3096.DOI: 10.16085/j.issn.1000-6613.2022-1441
收稿日期:
2022-08-01
修回日期:
2022-09-26
出版日期:
2023-06-25
发布日期:
2023-06-29
通讯作者:
吴文娟
作者简介:
任建鹏(1997—),男,硕士研究生,研究方向为天然分子改性与应用。E-mail:jpeng@njfu.edu.cn。
基金资助:
REN Jianpeng(), WU Caiwen, LIU Huijun, WU Wenjuan()
Received:
2022-08-01
Revised:
2022-09-26
Online:
2023-06-25
Published:
2023-06-29
Contact:
WU Wenjuan
摘要:
以木质素磺酸盐(Lig)为原料,采用化学聚合法与聚苯胺(PANI)复合制备出木质素/聚苯胺(Lig/PANI)复合材料。利用扫描电子显微镜、透射电镜、红外光谱等手段对材料的形貌、结构进行了表征,并研究了复合材料对刚果红(CR)的吸附性能,探究了吸附剂用量、染料初始浓度和吸附时间等因素对吸附性能的影响。结果表明,在20mg的吸附剂用量和350mg/L的起始浓度下,刚果红在200min内的吸附效果最佳,最高吸附量为431.17mg/g。该吸附过程遵循Freundlich吸附模型和准二级吸附动力模型,以化学吸附为主,属于多分子层吸附。刚果红的吸附机制主要存在着静电吸引、孔隙吸附,且吸附过程中存在电子的转移,内扩散模型表明粒子内扩散不是控制吸附速率的唯一因素;整个吸附过程是熵增、自发进行的。
中图分类号:
任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096.
REN Jianpeng, WU Caiwen, LIU Huijun, WU Wenjuan. Preparation of lignin-polyaniline composites and adsorption of Congo red[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3087-3096.
样品 | Langmuir吸附等温模型 | Freundlich吸附等温模型 | ||||
---|---|---|---|---|---|---|
R2 | R2 | |||||
PANI | 3.39×10-3 | 538.46 | 0.91 | 21.14 | 2.26 | 0.98 |
Lig/PANI | 3.31×10-3 | 608.76 | 0.93 | 22.94 | 2.23 | 0.98 |
表1 木质素复合材料吸附CR的Langmuir模型参数和Freundlich模型参数
样品 | Langmuir吸附等温模型 | Freundlich吸附等温模型 | ||||
---|---|---|---|---|---|---|
R2 | R2 | |||||
PANI | 3.39×10-3 | 538.46 | 0.91 | 21.14 | 2.26 | 0.98 |
Lig/PANI | 3.31×10-3 | 608.76 | 0.93 | 22.94 | 2.23 | 0.98 |
样品 | ||||||||
---|---|---|---|---|---|---|---|---|
283K | 298K | 313K | 328K | 343K | 358K | |||
PANI | -3.73 | -4.28 | -4.83 | -5.38 | -5.93 | -6.48 | 6.63 | 36.62 |
Lig/PANI | -4.62 | -5.26 | -5.90 | -6.54 | -7.18 | -7.82 | 7.48 | 42.74 |
表2 木质素复合材料吸附CR的热力学参数
样品 | ||||||||
---|---|---|---|---|---|---|---|---|
283K | 298K | 313K | 328K | 343K | 358K | |||
PANI | -3.73 | -4.28 | -4.83 | -5.38 | -5.93 | -6.48 | 6.63 | 36.62 |
Lig/PANI | -4.62 | -5.26 | -5.90 | -6.54 | -7.18 | -7.82 | 7.48 | 42.74 |
样品 | 准一级吸附动力学模型 | 准二级吸附动力学模型 | ||||
---|---|---|---|---|---|---|
R2 | R2 | |||||
PANI | 201.39 | 3.42×10-2 | 0.80 | 220.94 | 2.50×10-4 | 0.96 |
Lig/PANI | 219.95 | 5.03×10-2 | 0.76 | 233.22 | 4.30×10-4 | 0.97 |
表3 木质素复合材料吸附CR的准一级动力学模型和准二级动力学模型相关参数
样品 | 准一级吸附动力学模型 | 准二级吸附动力学模型 | ||||
---|---|---|---|---|---|---|
R2 | R2 | |||||
PANI | 201.39 | 3.42×10-2 | 0.80 | 220.94 | 2.50×10-4 | 0.96 |
Lig/PANI | 219.95 | 5.03×10-2 | 0.76 | 233.22 | 4.30×10-4 | 0.97 |
样品 | ||||||
---|---|---|---|---|---|---|
PANI | 7.19 | 107.23 | 0.96 | 1.06 | 191.99 | 0.79 |
Lig/PANI | 5.80 | 149.60 | 0.98 | 0.42 | 219.31 | 0.56 |
表4 木质素复合材料吸附CR的内扩散模型相关参数
样品 | ||||||
---|---|---|---|---|---|---|
PANI | 7.19 | 107.23 | 0.96 | 1.06 | 191.99 | 0.79 |
Lig/PANI | 5.80 | 149.60 | 0.98 | 0.42 | 219.31 | 0.56 |
振动基团 | 波数/cm-1 | ||
---|---|---|---|
PANI | Lig/PANI | Lig | |
O—H 伸缩振动 | — | — | 3432 |
N—H 面外弯曲振动 | 3421 | 3421 | — |
C—H 伸缩振动 | 2931 | 2931 | 2931 |
C | 1563 | 1565 | 1600 |
C | 1481 | 1486 | 1506 |
C—N 苯型结构拉伸 | 1301 | 1301 | — |
C—N 醌型结构拉伸 | 1249 | 1245 | — |
N—(B)—N 伸缩振动 | 1128 | 1133 | — |
S | — | 1041 | 1039 |
C—H 面外芳环弯曲振动 | 802 | 808 | — |
表5 Lig、PANI、Lig/PANI谱峰对应的特定官能团
振动基团 | 波数/cm-1 | ||
---|---|---|---|
PANI | Lig/PANI | Lig | |
O—H 伸缩振动 | — | — | 3432 |
N—H 面外弯曲振动 | 3421 | 3421 | — |
C—H 伸缩振动 | 2931 | 2931 | 2931 |
C | 1563 | 1565 | 1600 |
C | 1481 | 1486 | 1506 |
C—N 苯型结构拉伸 | 1301 | 1301 | — |
C—N 醌型结构拉伸 | 1249 | 1245 | — |
N—(B)—N 伸缩振动 | 1128 | 1133 | — |
S | — | 1041 | 1039 |
C—H 面外芳环弯曲振动 | 802 | 808 | — |
吸附剂 | 污染物 | 吸附量/mg·g-1 | 文献 |
---|---|---|---|
改性纤维素气凝胶 | 刚果红 | 478.00 | [ |
L-半胱氨酸/rGO/PANI | 刚果红 | 56.57 | [ |
PANI/羧甲基纤维素/二氧化钛 | 刚果红 | 119.90 | [ |
钛酸锌/PANI | 刚果红 | 64.51 | [ |
马酸铝-MOF硅藻 | 刚果红 | 181.82 | [ |
硬硅钙石纤维 | 刚果红 | 574.71 | [ |
MOF-5/Cu | 刚果红 | 357.42 | [ |
Lig/PANI | 刚果红 | 431.17 | 本研究 |
表6 Lig/PANI复合材料与其他材料吸附CR的性能比较
吸附剂 | 污染物 | 吸附量/mg·g-1 | 文献 |
---|---|---|---|
改性纤维素气凝胶 | 刚果红 | 478.00 | [ |
L-半胱氨酸/rGO/PANI | 刚果红 | 56.57 | [ |
PANI/羧甲基纤维素/二氧化钛 | 刚果红 | 119.90 | [ |
钛酸锌/PANI | 刚果红 | 64.51 | [ |
马酸铝-MOF硅藻 | 刚果红 | 181.82 | [ |
硬硅钙石纤维 | 刚果红 | 574.71 | [ |
MOF-5/Cu | 刚果红 | 357.42 | [ |
Lig/PANI | 刚果红 | 431.17 | 本研究 |
1 | MINISY I M, SALAHUDDIN N A, AYAD M M. Chitosan/polyaniline hybrid for the removal of cationic and anionic dyes from aqueous solutions[J]. Journal of Applied Polymer Science, 2019, 136(6): 47056. |
2 | SUN Chencheng, XIONG Bowen, PAN Yang, et al. Adsorption removal of tannic acid from aqueous solution by polyaniline: Analysis of operating parameters and mechanism[J]. Journal of Colloid and Interface Science, 2017, 487: 175-181. |
3 | YAN Bo, CHEN Zhonghui, CAI Lu, et al. Fabrication of polyaniline hydrogel: Synthesis, characterization and adsorption of Methylene blue[J]. Applied Surface Science, 2015, 356: 39-47. |
4 | DUHAN Monika, KAUR Raminder. Nano-structured polyaniline as a potential adsorbent for Methylene blue dye removal from effluent[J]. Journal of Composites Science, 2020, 5(1): 7. |
5 | BHAUMIK Madhumita, MCCRINDLE Rob I, MAITY Arjun, et al. Polyaniline nanofibers as highly effective re-usable adsorbent for removal of Reactive black 5 from aqueous solutions[J]. Journal of Colloid and Interface Science, 2016, 466: 442-451. |
6 | LI Changzhi, ZHAO Xiaochen, WANG Aiqin, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. |
7 | XU Wenjing, CHEN Yizhen, KANG Jianxun, et al. Synthesis of polyaniline/lignosulfonate for highly efficient removal of Acid red 94 from aqueous solution[J]. Polymer Bulletin, 2019, 76(8): 4103-4116. |
8 | DEBNATH Sushanta, BALLAV Niladri, MAITY Arjun, et al. Development of a polyaniline-lignocellulose composite for optimal adsorption of Congo red[J]. International Journal of Biological Macromolecules, 2015, 75: 199-209. |
9 | 贾羽洁, 孙康, 陈超. 聚苯胺-改性木质素磺酸的制备及电化学性能[J]. 电源技术, 2018, 42(8): 1204-1208. |
JIA Yujie, SUN Kang, CHEN Chao. Synthesis and electrochemical performance of polyaniline doped with sulfonation modified lignosulfonate[J]. Chinese Journal of Power Sources, 2018, 42(8): 1204-1208. | |
10 | Qiufeng LYU, HE Zhiwei, ZHANG Jiayin, et al. Preparation and properties of nitrogen-containing hollow carbon nanospheres by pyrolysis of polyaniline-lignosulfonate composites[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(1): 152-157. |
11 | Zümriye AKSU. Biosorption of reactive dyes by dried activated sludge: Equilibrium and kinetic modelling[J]. Biochemical Engineering Journal, 2001, 7(1): 79-84. |
12 | ZAIR Zyad R, ALISMAEEL Ziad T, EYSSA Mohammed Y, et al. Optimization, equilibrium, kinetics and thermodynamic study of Congo red dye adsorption from aqueous solutions using Iraqi porcelanite rocks[J]. Heat and Mass Transfer, 2022, 58(8): 1393-1410. |
13 | ALSENANI Ghadah. Removal of Congo red dye from aqueous solution by date palm leaf base[J]. American Journal of Applied Sciences, 2014, 11(9): 1553-1557. |
14 | MEHRIZAD Ali, BEHNAJADY Mohammad A, GHARBANI Parvin, et al. Sonocatalytic degradation of Acid Red 1 by sonochemically synthesized zinc sulfide-titanium dioxide nanotubes: Optimization, kinetics and thermodynamics studies[J]. Journal of Cleaner Production, 2019, 215: 1341-1350. |
15 | HU Lishuang, GUANG Chunyu, LIU Yang, et al. Adsorption behavior of dyes from an aqueous solution onto composite magnetic lignin adsorbent[J]. Chemosphere, 2020, 246: 1-12. |
16 | ASEFA Misikir Tamiru, FEYISA Gebisa Bekele. Comparative investigation on two synthesizing methods of zeolites for removal of Methylene blue from aqueous solution[J]. International Journal of Chemical Engineering, 2022, 2022: 9378712. |
17 | WU Chung Hsin. Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics[J]. Journal of Hazardous Materials, 2007, 144(1/2): 93-100. |
18 | TANZIFI Marjan, TAVAKKOLI YARAKI Mohammad, KARAMI Mojtaba, et al. Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethyl cellulose/TiO2 nanocomposites[J]. Journal of Colloid and Interface Science, 2018, 519: 154-173. |
19 | 陈凤贵, 李娇, 黄露, 等. 木质素改性及其对染料的吸附性能[J]. 中山大学学报(自然科学版), 2019, 58(2): 103-109. |
CHEN Fenggui, LI Jiao, HUANG Lu, et al. The application of freeze-dried and cross-linked lignin in water treatment[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(2): 103-109. | |
20 | LI Penghui, WEI Yumeng, WU Caiwen, et al. Lignin-based composites for high-performance supercapacitor electrode materials[J]. RSC Advances, 2022, 12(30): 19485-19494. |
21 | BHAUMIK Madhumita, MCCRINDLE Rob, MAITY Arjun. Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole-polyaniline nanofibres[J]. Chemical Engineering Journal, 2013, 228: 506-515. |
22 | Alica BARTOŠOVÁ, Lenka BLINOVÁ, SIROTIAK Maroš, et al. Usage of FTIR-ATR as non-destructive analysis of selected toxic dyes[J]. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 2017, 25(40): 103-111. |
23 | 宋文琦, 霍文娟, 杨金腾, 等. 氨丙基咪唑离子液体修饰纤维素气凝胶吸附剂对刚果红的清除研究:高性能与吸附机理[J]. 材料导报, 2022, 36(12): 202-208. |
SONG Wenqi, HUO Wenjuan, YANG Jinteng, et al. Aminopropyl imidazolium ionic liquid modified cellulosic aerogel adsorbent for Congo red removal: High-performance and adsorption mechanism[J]. Materials Reports, 2022, 36(12): 202-208. | |
24 | RAZZAQ Saba, AKHTAR Mehwish, ZULFIQAR Sonia, et al. Adsorption removal of Congo red onto L-cysteine/rGO/PANI nanocomposite: Equilibrium, kinetics and thermodynamic studies[J]. Journal of Taibah University for Science, 2021, 15(1): 50-62. |
25 | SINGH Somendra, PERWEEN Shama, RANJAN Amit. Dramatic enhancement in adsorption of Congo red dye in polymer-nanoparticle composite of polyaniline-zinc titanate[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105149. |
26 | HEGDE Vinayak, UTHAPPA U T, ARVIND SWAMI O R, et al. Sustainable green functional nano aluminium fumarate-MOF decorated on 3D low-cost natural diatoms for the removal of Congo red dye and fabric whitening agent from wastewater: Batch & continuous adsorption process[J]. Materials Today Communications, 2022, 32: 103887. |
27 | HAN Mingyu, SHEN Xiaoyi, SHAO Hongmei, et al. Adsorption of Congo red by fibrous xonotlite prepared from waste silicon residue[J]. Water Science and Technology, 2022, 85(11): 3159-3168. |
28 | MOSAVI S H, ZARE‐DORABEI R, BEREYHI M. Rapid and effective ultrasonic-assisted adsorptive removal of Congo red onto MOF‐5 modified by CuCl2 in ambient conditions: Adsorption isotherms and kinetics studies[J]. ChemistrySelect, 2021, 6(18):4432-4439. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[3] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[4] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
[5] | 王书燕, 张新波, 彭安萍, 刘阳, NGO HUU HAO, 郭文珊, 温海涛. 生物炭回收水中氮磷营养物质的研究进展与挑战[J]. 化工进展, 2023, 42(10): 5459-5469. |
[6] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
[7] | 张鹏, 王绍庆, 李志合, 张安东, 高亮, 万震, 宋宁. 赤泥/木质素共热解制备复合吸附材料及其性能[J]. 化工进展, 2022, 41(S1): 407-414. |
[8] | 蒲福龙, 伍尚炜, 郑映玲, 郑玉意, 侯雪丹. 基于乳酸的深度共熔溶剂提取秸秆木质素对纤维素酶水解效率的影响[J]. 化工进展, 2022, 41(9): 4937-4945. |
[9] | 龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865. |
[10] | 汪兴, 赵子龙, 张小山, 王宏杰, 董文艺, 陈慧慧. 制备条件对生物炭载铁催化剂催化破络Ni-EDTA性能及活性组分浸出的影响[J]. 化工进展, 2022, 41(9): 4831-4839. |
[11] | 张伟, 安兴业, 刘利琴, 龙垠荧, 张昊, 程正柏, 曹海兵, 刘洪斌. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能[J]. 化工进展, 2022, 41(7): 3770-3783. |
[12] | 张丽珠, 王欢, 李琼, 杨东杰. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744. |
[13] | 娄瑞, 刘钰, 田杰, 张亚男. 纳米木质素基多孔炭的制备及其电化学性能[J]. 化工进展, 2022, 41(6): 3170-3177. |
[14] | 申琪, 薛雨源, 杨涛伟, 张妍, 李胜任. 木质素荧光研究进展[J]. 化工进展, 2022, 41(5): 2672-2685. |
[15] | 王鲁元, 金春江, 陈惠敏, 程星星, 安东海, 张兴宇, 孙荣峰, 耿文广. 一步热解活化法制备纳米木质素基多孔炭材料[J]. 化工进展, 2022, 41(5): 2582-2592. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |