化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2582-2592.doi: 10.16085/j.issn.1000-6613.2021-1219
王鲁元1,2(), 金春江1,2,3, 陈惠敏3, 程星星4, 安东海3(
), 张兴宇2, 孙荣峰1,2, 耿文广1,2
收稿日期:
2021-06-10
修回日期:
2021-10-07
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
安东海
E-mail:luyuanwang1988@126.com;adhcjxy@163.com
作者简介:
王鲁元(1988—),男,博士,主要研究方向为VOCs环保治理及炭材料、脱硫脱硝催化剂的制备。E-mail:基金资助:
WANG Luyuan1,2(), JIN Chunjiang1,2,3, CHEN Huimin3, CHENG Xingxing4, AN Donghai3(
), ZHANG Xingyu2, SUN Rongfeng1,2, GENG Wenguang1,2
Received:
2021-06-10
Revised:
2021-10-07
Online:
2022-05-05
Published:
2022-05-24
Contact:
AN Donghai
E-mail:luyuanwang1988@126.com;adhcjxy@163.com
摘要:
以木质素为原料,采用管式炉反应器通过一步热解-半活化法获得木质素基多孔炭材料(LPC)。采用氮吸附(BET)、扫描电镜(SEM)和傅里叶变换红外光谱(FTIR)对多孔炭材料的物化性质进行分析。在900℃的恒定炭化温度下,CO2体积分数为6%、水蒸气体积分数约为20%时,LPC-C6S20表面具有良好的纳米结构,并且总孔容和比表面积分别达到0.77cm3/g和1497.51m2/g,活化气氛促进了多孔炭材料颗粒趋于均匀和微孔、中孔的形成。LPC样品含有—OH、C—H、C=C、C—O、C=O、CO—C、C—N、C=N等丰富的表面官能团。随着活化剂浓度的变化,这些官能团保持相对稳定。因此,通过该方法获得的样品具有良好的纳米结构,具有较大的孔容、比表面积和表面官能团。
中图分类号:
王鲁元, 金春江, 陈惠敏, 程星星, 安东海, 张兴宇, 孙荣峰, 耿文广. 一步热解活化法制备纳米木质素基多孔炭材料[J]. 化工进展, 2022, 41(5): 2582-2592.
WANG Luyuan, JIN Chunjiang, CHEN Huimin, CHENG Xingxing, AN Donghai, ZHANG Xingyu, SUN Rongfeng, GENG Wenguang. Preparation of nano-lignin-based porous carbon materials by one-step pyrolysis activation method[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2582-2592.
1 | LI H Y, HE J, CHEN K Y, et al. Dynamic adsorption of sulfamethoxazole from aqueous solution by lignite activated coke[J]. Materials, 2020, 13(7): 1785. |
2 | BELL J G, BENHAM M J, THOMAS K M. Adsorption of carbon dioxide, water vapor, nitrogen, and sulfur dioxide on activated carbon for capture from flue gases: competitive adsorption and selectivity aspects[J]. Energy & Fuels, 2021, 35(9): 8102-8116. |
3 | WILSON S M W, AL-ENZI F, GABRIEL V A, et al. Effect of pore size and heterogeneous surface on the adsorption of CO2, N2, O2, and Ar on carbon aerogel, RF aerogel, and activated carbons[J]. Microporous and Mesoporous Materials, 2021, 322: 111089. |
4 | LIANG H X, SONG B, PENG P, et al. Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2019, 367: 9-16. |
5 | CHERRAD N. Conditioning of hydrogen storage by continuous solar adsorption in activated carbon AX-21 with simultaneous production[J]. International Journal of Hydrogen Energy, 2019, 44(4): 2153-2163. |
6 | 曾茂株, 佘煜琪, 胡玉彬, 等. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586. |
ZENG Maozhu, SHE Yuqi, HU Yubin, et al. Progress in preparation and application of lignin porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586. | |
7 | PREMARATHNA K S D, RAJAPAKSHA A U, SARKAR B, et al. Biochar-based engineered composites for sorptive decontamination of water: a review[J]. Chemical Engineering Journal, 2019, 372: 536-550. |
8 | ZHUANG H F, XIE Q N, SHAN S D, et al. Performance, mechanism and stability of nitrogen-doped sewage sludge based activated carbon supported magnetite in anaerobic degradation of coal gasification wastewater[J]. Science of the Total Environment, 2020, 737: 140285. |
9 | LIU H, CHENG C, WU H M. Sustainable utilization of wetland biomass for activated carbon production: a review on recent advances in modification and activation methods[J]. Science of the Total Environment, 2021, 790: 148214. |
10 | MOCHIZUKI Y, TSUBOUCHI N. Preparation of pelletized coke by co-carbonization of caking coal and pyrolyzed char modified with tar produced during pyrolysis of woody biomass[J]. Fuel Processing Technology, 2019, 193: 328-337. |
11 | ALZAID M, ALSALH F, IQBAL M Z. Biomass derived activated carbon based hybrid supercapacitors[J]. Journal of Energy Storage, 2021, 40: 102751. |
12 | CHEN K, ZHANG H R, IBRAHIM U K, et al. The quantitative assessment of coke morphology based on the Raman spectroscopic characterization of serial petroleum cokes[J]. Fuel, 2019, 246: 60-68. |
13 | 邢宝林, 黄光许, 谌伦建, 等. 高品质低阶煤基活性炭的制备与表征[J]. 煤炭学报, 2013, 38(S1): 217-222. |
XING Baolin, HUANG Guangxu, CHEN Lunjian, et al. Preparation and characterization of high quality low-rank coal based activated carbon[J]. Journal of China Coal Society, 2013, 38(S1): 217-222. | |
14 | 姜勇, 张庆伟, 王胜, 等. 中孔煤基磁性活性炭的制备及性能表征[J]. 洁净煤技术, 2015, 21(3): 1-5, 10. |
JIANG Yong, ZHANG Qingwei, WANG Sheng, et al. Preparation and characterization of magnetic mesopores activated carbon from lignite[J]. Clean Coal Technology, 2015, 21(3): 1-5, 10. | |
15 | 俞志敏, 卫新来, 娄梅生, 等. 氯化锌活化生物质炭制备活性炭及其表征[J]. 化工进展, 2014, 33(12): 3318-3323. |
YU Zhimin, WEI Xinlai, LOU Meisheng, et al. Preparation and characterization of activated carbon from bio-char by chemical activation with ZnCl2 [J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3318-3323. | |
16 | MALDHURE A, WAGHELA A, NAGARNAIK P, et al. Microwave treated activated carbon from industrial waste lignin for denitrification of surface water[J]. International Journal of Environmental Science and Technology, 2021: 1-10. |
17 | 李岩松, 徐国忠, 李白冰, 等. CO2活化兰炭粉制备粉状微孔活性炭[J]. 辽宁科技大学学报, 2018, 41(6): 462-468. |
LI Yansong, XU Guozhong, LI Baibing, et al. Preparation of micro-pore dominated active carbon powder by using semicoke powder activated with CO2 [J]. Journal of University of Science and Technology Liaoning, 2018, 41(6): 462-468. | |
18 | 蒋绪, 兰新哲, 景兴鹏, 等. 不同介质下物理法活化制备兰炭基活性炭实验研究[J]. 煤炭转化, 2019, 42(2): 65-71. |
JIANG Xu, LAN Xinzhe, JING Xingpeng, et al. Research on experiment of blue coke-based activated carbon by physical activation with different media[J]. Coal Conversion, 2019, 42(2): 65-71. | |
19 | 李海红, 薛慧, 裴盼盼, 等. 棉纤维基活性炭制备工艺的优化及性能表征[J]. 化工进展, 2018, 37(5): 1916-1922. |
LI Haihong, XUE Hui, PEI Panpan, et al. Preparation and characterization of activated carbon from cotton fiber[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1916-1922. | |
20 | 魏庆玲, 陈志敏, 王晓峰,等. 以氯化铵为成孔助剂两步法制备玉米芯基活性炭 [J]. 新型炭材料, 2018, 33(5): 402-408. |
WEI Qingling, CHEN Zhimin, WANG Xiaofeng, et al. A two-step method for the preparation of high performance corncob-based activated carbons as supercapacitor electrodes using ammonium chloride as a pore forming additive[J]. New Carbon Materials, 2018, 33(5): 402-408. | |
21 | 左宋林. 磷酸活化法活性炭孔隙结构的调控机制[J]. 新型炭材料, 2018, 33(4): 289-302. |
ZUO Songlin. A review of the control of pore texture of phosphoric acid-activated carbons[J]. New Carbon Materials, 2018, 33(4): 289-302. | |
22 | 王晶, 韩巧宁, 雷以廷, 等. 一步法制备富氧木质素活性炭及其亚甲基蓝吸附性能[J]. 化工学报, 2021, 72(5): 2826-2836. |
WANG Jing, HAN Qiaoning, LEI Yiting, et al. One-step preparation of oxygen-enriched lignin activated carbon and its methylene blue adsorption performance[J]. CIESC Journal, 2021, 72(5): 2826-2836. | |
23 | DONG Z, CHEN B B, ZHANG M J, et al. One-step preparation of carbon fiber-ZrO2 hybrid and its enhancement on the wear-resistant properties of polyimide[J]. Polymer Composites, 2021, 42(5): 2598-2607. |
24 | JIANG Y, WANG X, YU Z Z, et al. One-step preparation of non-covalent functionalized carboxylic multi-walled carbon nanotubes/polymethyl methacrylate nanocomposites via in situ polymerization[J]. Advances in Polymer Technology, 2018, 37(4): 1008-1015. |
25 | 姜晓威, 王会刚, 李龙之, 等. 微波辐照下炭材料升温特性试验研究[J]. 洁净煤技术, 2017, 23(5): 62-66. |
JIANG Xiaowei, WANG Huigang, LI Longzhi, et al. Heating characteristics of carbon-based materials under microwave irradiation[J]. Clean Coal Technology, 2017, 23(5): 62-66. | |
26 | CETIN E, GUPTA R, MOGHTADERI B. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity[J]. Fuel, 2005, 84(10): 1328-1334. |
27 | CAI H Y, GÜELL A J, CHATZAKIS I N, et al. Combustion reactivity and morphological change in coal chars: effect of pyrolysis temperature, heating rate and pressure[J]. Fuel, 1996, 75(1): 15-24. |
28 | OKUMURA Y. Effect of heating rate and coal type on the yield of functional tar components[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2075-2082. |
29 | 张本镔, 刘运权, 叶跃元. 活性炭制备及其活化机理研究进展[J]. 现代化工, 2014, 34(3): 34-39. |
ZHANG Benbin, LIU Yunquan, YE Yueyuan. Progress in preparation of activated carbon and its activation mechanism[J]. Modern Chemical Industry, 2014, 34(3): 34-39. | |
30 | 田叶顺, 任文, 王国袖, 等. 微波加热CO2活化法制备生物质活性炭及其脱硫性能研究[J]. 化工学报, 2020, 71(12): 5774-5784. |
TIAN Yeshun, REN Wen, WANG Guoxiu, et al. Study on preparation and desulfurization characteristics of biomass activated carbon by microwave heating CO2 activation method[J].CIESC Journal, 2020, 71(12): 5774-5784. | |
31 | RAVIKOVITCH P I, NEIMARK A V. Density functional theory model of adsorption on amorphous and microporous solids[J] . Langmuir, 2006, 22(26): 11171-11179. |
32 | ZHANG X Y, GAO B, CREAMER A E, et al. Adsorption of VOCs onto engineered carbon materials: a review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. |
33 | YANG X, YI H H, TANG X L, et al. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure[J]. Journal of Environmental Sciences, 2018, 67: 104-114. |
34 | ZELLAGUI S, SCHÖNNENBECK C, ZOUAOUI-MAHZOUL N, et al. Pyrolysis of coal and woody biomass under N2 and CO2 atmospheres using a drop tube furnace — Experimental study and kinetic modeling[J]. Fuel Processing Technology, 2016, 148: 99-109. |
35 | SUN Y, YANG G, ZHANG J, et al. Activated carbon preparation from lignin by H3PO4 activation and its application to gas separation[J]. Chemical Engineering & Technology, 2012, 35(2): 309-316. |
36 | 黎先发. 木质素活性炭的制备及其对硝基苯的吸附[J]. 化工环保, 2014, 34(4): 305-310. |
LI Xianfa. Preparation of lignin-based activated carbons and adsorption of nitrobenzene[J]. Environmental Protection of Chemical Industry, 2014, 34(4): 305-310. | |
37 | HO P H, LOFTY V, BASTA A, et al. Designing microporous activated carbons from biomass for carbon dioxide adsorption at ambient temperature. A comparison between bagasse and rice by-products[J]. Journal of Cleaner Production, 2021, 294: 126260. |
38 | WEERAWAT C, POMRNSAWAN A. Production of activated carbon from peanut hill using phosphoric acid and microwave activation[J]. KKU Engineering Journal, 2015, 42(2): 185-191. |
39 | LIM H K, MD ALI U F, AHMAD R, et al. Adsorption of carbon dioxide (CO2) by activated carbon derived from waste coffee grounds[J]. IOP Conference Series: Earth and Environmental Science, 2021, 765(1): 012034. |
40 | PASTOR-VILLEGAS J, DURÁN-VALLE C J. Pore structure of chars and activated carbons prepared using carbon dioxide at different temperatures from extracted rockrose[J]. Journal of Analytical and Applied Pyrolysis, 2001, 57(1): 1-13. |
41 | 许伟, 孙康, 缪存标, 等. 水蒸气活化制备竹质成型活性炭及其对二硫化碳的吸附性能[J]. 林业工程学报, 2018, 3(2): 40-46. |
XU Wei, SUN Kang, MIAO Cunbiao, et al. Preparation of bamboo molding activated carbon by steam activation and its adsorption performance on carbon disulfide[J]. Journal of Forestry Engineering, 2018, 3(2): 40-46. | |
42 | CHEN X, GE X, ZHANG X, et al. Preparation of activated carbon from the residue of plasma pyrolysis of coal by steam activation[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2015, 37(4): 440-446. |
43 | GUPTA V K, MITTAL A, JAIN R, et al. Adsorption of Safranin-T from wastewater using waste materials—activated carbon and activated rice husks[J]. Journal of Colloid and Interface Science, 2006, 303(1): 80-86. |
44 | RIVERA-UTRILLA J, SÁNCHEZ-POLO M, GÓMEZ-SERRANO V, et al. Activated carbon modifications to enhance its water treatment applications. An overview[J]. Journal of Hazardous Materials, 2011, 187(1/2/3): 1-23. |
45 | AMIN N K. Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith[J]. Desalination, 2008, 223(1/2/3): 152-161. |
46 | PIERGROSSI V, FASOLATO C, CAPITANI F, et al. Application of Raman spectroscopy in chemical investigation of impregnated activated carbon spent in hydrogen sulfide removal process[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1227-1238. |
47 | ALI R, ASLAM Z, SHAWABKEH R A, et al. BET, FTIR, and RAMAN characterizations of activated carbon from waste oil fly ash[J]. Turkish Journal of Chemistry, 2020, 44(2): 279-295. |
48 | CROCE A, RE G, BISIO C, et al. On the correlation between Raman spectra and structural properties of activated carbons derived by hyper-crosslinked polymers[J]. Research on Chemical Intermediates, 2021, 47(1): 419-431. |
49 | MASOUM RAMAN S N, ISMAIL N A, JAMARI S S. Preparation and characterization of impregnated commercial rice husks activated carbon with piperazine for carbon dioxide (CO2) capture[J]. IOP Conference Series: Materials Science and Engineering, 2017, 206: 012005. |
50 | LAZZARINI A, PIOVANO A, PELLEGRINI R, et al. Graphitization of activated carbons: a molecular-level investigation by INS, DRIFT, XRD and Raman techniques[J]. Physics Procedia, 2016, 85: 20-26. |
51 | LIU Y P, LU Z W, HASI W, et al. Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface-enhanced Raman spectroscopy[J]. Analytical Methods, 2017, 9(47): 6622-6628. |
[1] | 张伟, 安兴业, 刘利琴, 龙垠荧, 张昊, 程正柏, 曹海兵, 刘洪斌. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能[J]. 化工进展, 2022, 41(7): 3770-3783. |
[2] | 张丽珠, 王欢, 李琼, 杨东杰. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744. |
[3] | 娄瑞, 刘钰, 田杰, 张亚男. 纳米木质素基多孔炭的制备及其电化学性能[J]. 化工进展, 2022, 41(6): 3170-3177. |
[4] | 薛李静, 费星, 刘江淋, 吴林军, 仇中杰, 许权洲, 钟晓文, 林绪亮, 秦延林. 木质素基碳材料催化剂的制备及应用研究进展[J]. 化工进展, 2022, 41(5): 2441-2450. |
[5] | 张雷, 王海英, 韩洪晶, 陈彦广, 王程昊. 木质素催化热解用催化剂的研究进展[J]. 化工进展, 2022, 41(5): 2429-2440. |
[6] | 段曼华, 程丹, 肖伟, 杨占旭. 聚丙烯腈/聚酯无纺布微孔复合锂电隔膜的制备及性能[J]. 化工进展, 2022, 41(5): 2615-2622. |
[7] | 申琪, 薛雨源, 杨涛伟, 张妍, 李胜任. 木质素荧光研究进展[J]. 化工进展, 2022, 41(5): 2672-2685. |
[8] | 简雅婷, 余强, 陈小燕, 王帆, 王忠铭, 袁振宏. 木质素制备生物液体燃料进展[J]. 化工进展, 2021, 40(S2): 109-116. |
[9] | 杨妍, 刘国涛, 余庆慧, 李晓娟, 张颖. 多孔炭材料改性纳米零价铁的研究进展[J]. 化工进展, 2021, 40(S2): 198-202. |
[10] | 李赛赛, 詹硕, 李继定, 何静, 王璐莹. 木质素磺酸钙/海藻酸钠渗透汽化膜的制备及性能调控[J]. 化工进展, 2021, 40(S1): 311-318. |
[11] | 葛睿, 胡旭, 董灵玉, 李丹, 郝广平. 电化学耦合阴极二氧化碳还原与阳极氧化合成[J]. 化工进展, 2021, 40(9): 5132-5144. |
[12] | 曾茂株, 佘煜琪, 胡玉彬, 吴林军, 袁慢景, 漆毅, 王欢, 林绪亮, 秦延林. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586. |
[13] | 郑超, 康凯, 周术元, 宋华, 白书培. 水分子在多孔炭材料上的吸附行为研究进展[J]. 化工进展, 2021, 40(7): 3803-3812. |
[14] | 王晶, 倪金荧, 王利群, 卿青, 严生虎, 张跃. 一株木质素降解细菌的筛选及其降解途径[J]. 化工进展, 2021, 40(7): 4021-4026. |
[15] | 侯璐, 胡友仁, 李文翠, 董晓玲, 陆安慧. 富氧多孔炭的合成及其在电化学储能中的作用[J]. 化工进展, 2021, 40(6): 3020-3033. |
|