化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 407-414.DOI: 10.16085/j.issn.1000-6613.2022-0620
张鹏1,2(), 王绍庆1,2, 李志合1,2(), 张安东1,2, 高亮1,2, 万震1,2, 宋宁1,2
收稿日期:
2022-04-11
修回日期:
2022-05-23
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
李志合
作者简介:
张鹏(1996—),男,硕士研究生,研究方向为生物质能源与材料。E-mail:17861425605@163.com。
基金资助:
ZHANG Peng1,2(), WANG Shaoqing1,2, LI Zhihe1,2(), ZHANG Andong1,2, GAO Liang1,2, WAN Zhen1,2, SONG Ning1,2
Received:
2022-04-11
Revised:
2022-05-23
Online:
2022-10-20
Published:
2022-11-10
Contact:
LI Zhihe
摘要:
炼铝工业产生的赤泥废渣以不合理的方式处置,会造成严重的环境污染和资源浪费。赤泥中富含的铁元素以Fe2O3的形式存在,不利于铁资源回收,可通过还原方式制取磁性材料用于重金属离子的去除。基于此,本研究采用碳热还原法耦合赤泥与木质素制备一种复合吸附材料。系统探究还原温度、还原时间、还原剂用量对还原效果的影响,并开展铅离子吸附实验。研究表明,通过与烟煤还原赤泥对比得出木质素还原赤泥最佳工艺参数:还原温度625℃、还原时间30min、木质素与赤泥质量比为1∶1;GC对共热解气体产物进行分析得出赤泥的引入能够提高氢气产量;GC-MS对共热解液体产物进行分析得出木质素/赤泥共热解能够提升芳烃类化合物产量;吸附实验得出制备的复合材料能够有效去除水溶液中的铅离子。通过耦合赤泥、木质素残渣两种废弃物制备复合吸附材料,能够响应国家环保政策,具备潜在的经济、能源、环境效益。
中图分类号:
张鹏, 王绍庆, 李志合, 张安东, 高亮, 万震, 宋宁. 赤泥/木质素共热解制备复合吸附材料及其性能[J]. 化工进展, 2022, 41(S1): 407-414.
ZHANG Peng, WANG Shaoqing, LI Zhihe, ZHANG Andong, GAO Liang, WAN Zhen, SONG Ning. Preparation and properties of composite adsorbents by co-pyrolysis of red mud and lignin[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 407-414.
Fe2O3/% | Na2O/% | MgO/% | Al2O3/% | SiO2/% | P2O5/% | SO3/% | K2O/% | CaO/% | TiO2/% | LOI/% |
---|---|---|---|---|---|---|---|---|---|---|
33.8 | 11.8 | 0.125 | 27.5 | 17.7 | 0.526 | 0.862 | 0.224 | 2.11 | 4.60 | 4.62 |
表1 赤泥主要化学成分(质量分数)
Fe2O3/% | Na2O/% | MgO/% | Al2O3/% | SiO2/% | P2O5/% | SO3/% | K2O/% | CaO/% | TiO2/% | LOI/% |
---|---|---|---|---|---|---|---|---|---|---|
33.8 | 11.8 | 0.125 | 27.5 | 17.7 | 0.526 | 0.862 | 0.224 | 2.11 | 4.60 | 4.62 |
1 | KHAIRUL M A, ZANGANEH Jafar, MOGHTADERI Behdad. The composition, recycling and utilisation of Bayer red mud[J]. Resources, Conservation and Recycling, 2019, 141: 483-498. |
2 | LIU Xiao, HAN Yuexin, HE Fayu, et al. Characteristic, hazard and iron recovery technology of red mud–A critical review[J]. Journal of Hazardous Materials, 2021, 420: 126542. |
3 | PANDA Sandeep, COSTA Rachel Binacalana, SHAH Syed Sikandar, et al. Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud) – A review[J].Rresources, Conservation and Recycling, 2021, 171: 105645. |
4 | SUSHIL Snigdha, BATRA Vidya S. Catalytic applications of red mud, an aluminium industry waste: a review[J]. Applied Catalysis B: Environmental, 2008, 81(1/2): 64-77. |
5 | QAIDI Shaker M A, TAYEH Bassam A, ISLEEM Haytham F, et al. Sustainable utilization of red mud waste (bauxite residue) and slag for the production of geopolymer composites: a review[J]. Case Studies in Construction Materials, 2022, e00994. |
6 | AGRAWAL Shrey, DHAWAN Nikhil. Evaluation of red mud as a polymetallic source—A review[J].Minerals Engineering, 2021, 171: 107084. |
7 | ZHANG Jizhe, YAO Zhanyong, WANG Kai, et al. Sustainable utilization of bauxite residue (ted mud) as a road material in pavements: a critical review[J]. Construction and Building Materials, 2021, 270: 121419. |
8 | SAHU Manoj Kumar, PATEL Raj Kishore, KURWADKAR Sudarshan. Mechanistic insight into the adsorption of mercury (Ⅱ) on the surface of red mud supported nanoscale zero-valent iron composite[J]. Journal of Contaminant Hydrology, 2022, 246: 103959. |
9 | GAO Yujie, ZHANG Jia, CHEN Chaowen, et al.Functional biochar fabricated from waste red mud and corn straw in China for acidic dye wastewater treatment[J]. Journal of Cleaner Production, 2021, 320: 128887. |
10 | KAZAK Omer, Ali TOR. In situ preparation of magnetic hydrochar by co-hydrothermal treatment of waste vinasse with red mud and its adsorption property for Pb(Ⅱ) in aqueous solution[J]. Journal of Hazardous Materials, 2020, 393: 122391. |
11 | 孙开, 王维, 张子阳, 等.高铁赤泥碳热还原制备镍铁合金[J]. 粉末冶金材料科学与工程, 2021, 26(6): 560-566. |
SUN Kai, WANG Wei, ZHANG Ziyang, et al. Preparation of Ni-Fe alloy by carbothermal reduction of high iron red mud[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(6): 560-566. | |
12 | WANG Shaoqing, LI Zhihe, BAI Xueyuan, et al. Catalytic pyrolysis of lignin with red mud derived hierarchical porous catalyst for alkyl-phenols and hydrocarbons production[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 8-17. |
13 | WAN Zhen, WANG Shaoqing, LI Zhihe, et al. Co-pyrolysis of lignin and spent bleaching clay: insight into the catalytic characteristic and hydrogen supply of spent bleaching clay[J]. Journal of Analytical and Applied Pyrolysis, 2022, 105491. |
14 | 王绍庆, 李志合, 易维明, 等. 活化赤泥催化热解玉米芯木质素制备高值单酚[J]. 农业工程学报, 2020, 36(13): 203-211. |
WANG Shaoqing, LI Zhihe, YI Weiming, et al. Catalytic pyrolysis of maize cob lignin over activated red mud catalyst for value-added mono-phenol production[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 203-211. | |
15 | WANG Huabin, CAI Jiayi, LIAO Zhuwei, et al. Black liquor as biomass feedstock to prepare zero-valent iron embedded biochar with red mud for Cr(VI) removal: mechanisms insights and engineering practicality[J]. Bioresource Technology, 2020, 311: 123553. |
16 | CHO Dongwan, YOON Kwangsuk, Yongtae AHN, et al. Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes[J]. Journal of Hazardous Materials, 2019, 374: 412-419. |
17 | 李恒, 刘晓明, 赵喜彬, 等.生物质松木锯末中低温还原高铁拜耳法赤泥[J]. 工程科学学报, 2017, 39(9): 1331-1338. |
LI Heng, LIU Xiaoming, ZHAO Xibin, et al. Medium-low temperature reduction of high-iron Bayer process red mud using biomass pine sawdust[J]. Chinese Journal of Engineering, 2017, 39(9): 1331-1338. | |
18 | 汪永斌, 朱国才, 池汝安, 等. 生物质还原磁化褐铁矿的实验研究[J]. 过程工程学报, 2009, 9(3): 508-513. |
WANG Yongbin, ZHU Guocai, CHI Ruan, et al. An investigation on reduction and magnetization of limonite using biomass[J]. The Chinese Journal of Process Engineering, 2009, 9(3): 508-513. | |
19 | WAN Junying, CHEN Tiejun, ZHOU Xianlin, et al. Efficient improvement for the direct reduction of high-iron red mud by co-reduction with high-manganese iron ore[J]. Minerals Engineering, 2021, 174: 107024. |
20 | 袁帅, 陈雪莉, 李军, 等. 煤快速热解固相和气相产物生成规律[J]. 化工学报, 2011, 62(5): 1382-1388. |
YUAN Shuai, CHEN Xueli, LI Jun, et al. Formations of solid and gas phase products during rapid pyrolysis of coal [J]. CIESC Journal, 2011, 62(5): 1382-1388. | |
21 | 田杰, 娄瑞, 薛香玉, 等. 纳米木质素的热解特性及其反应动力学分析[J]. 林产化学与工业, 2021, 41(6): 97-104. |
TIAN Jie, LOU Rui, XUE Xiangyu, et al. Thermal degradation characteristics of ligin nanoparticles and its reaction kinetics analysis[J]. Chemistry and Industry of Forest Products, 2021, 41(6): 97-104. | |
22 | 陈磊, 陈汉平, 陆强, 等. 木质素结构及热解特性[J]. 化工学报, 2014, 65(9): 3626-3633. |
CHEN Lei, CHEN Hanping, LU Qiang, et al. Characterization of structure and pyrolysis behavior of lignin [J]. CIESC Journal, 2014, 65(9): 3626-3633. | |
23 | WANG Shaoqing, LI Zhihe, BAI Xueyuan, et al. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production[J]. Bioresource Technology, 2019, 278: 66-72. |
24 | Sumin RYU, LEE Hyung Won, KIM Young Min, et al. Catalytic fast co-pyrolysis of organosolv lignin and polypropylene over in-situ red mud and ex-situ HZSM-5 in two-step catalytic micro reactor[J]. Applied Surface Science, 2020, 511: 145521. |
25 | 程皓. 木质素热解过程化学键的断裂规律与产物调控途径[D]. 广州: 华南理工大学, 2017. |
CHENG Hao.The breaking law of chemical bonds during lignin pyrolysis and the products regulation[D]. Guangzhou: South China University of Technology, 2017. | |
26 | 王浚浩. 木质素化学结构与烘焙、热解产物特性的关联机制研究[D]. 杭州: 浙江农林大学, 2019. |
WANG Junhao. Investigation on the relevance between chemical structure of lignin and products derived from lignin torrefaction and pyrolysis[D]. Hangzhou: Zhejiang A&F University, 2019. | |
27 | WANG Shaoqing, LI Zhihe, YI Weiming, et al. Regulating aromatic hydrocarbon components from catalytic pyrolysis of corn cob lignin with a tailored HZSM-5@Al-SBA-15 hierarchical zeolite[J]. Industrial Crops and Products, 2022, 181: 114813. |
28 | VICHAPHUND Supawan, WIMUKTIWAN Panida, SOONGPRASIT Chakrit, et al. Aromatic and aliphatic production of catalytic pyrolysis of lignin using ZSM-5/Al-SBA-15 catalyst derived from high-calcium fly ash[J]. Energy Reports, 2021, 7: 232-247. |
29 | 韩轩, 王丽红, 柏雪源, 等. 脱碱赤泥催化剂制备及对秸秆催化热解生物油成分的影响研究[J]. 化工进展, 2022, 41(9): 4723-4732. |
HAN Xuan, WANG Lihong, BAI Xueyuan, et al. Preparation of dealkalized red mud catalysts and its effect on biooil composition of corn straw catalytic pyrolysis[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4723-4732. | |
30 | 王一青, 王丽红, 张安东, 等. 赤泥对玉米秸秆催化热解生物油的影响规律研究[J]. 生物质化学工程, 2020, 54(3): 18-24. |
WANG Yiqing, WANG Lihong, ZHANG Andong, et al. Effect of red mud on bio-oil from catalytic pyrolysis of corn straw[J]. Biomass Chemical Engineering, 2020, 54(3): 18-24. | |
31 | WANG Chang’an, GAO Xinyue, LIU Chengchang, et al. Experimental investigation on physical and chemical properties of solid products from co-pyrolysis of bituminous coal and semi-coke[J]. Journal of the Energy Institute, 2021, 99: 59-72. |
32 | 龚志军, 王凯兴, 武文斐. 基于热重红外联用技术的煤热解特性研究[J]. 内蒙古科技大学学报, 2016, 35(3): 247-251. |
GONG Zhijun, WANG Kaixing, WU Wenfei. Study of coal pyrolysis characteristics based on the TG-FTIR technology[J]. Journal of Inner Mongolia University of Science and Technology, 2016, 35(3): 247-251. | |
33 | ZHAO Lei, CHENG Zhanwang, LING Qiang, et al. Ling investigating the trigger mechanism of Shenfu bituminous coal pyrolysis[J]. Fuel, 2022, 313:122995. |
34 | 金伟. 木质素共混热解制备单体芳香族化合物机理研究[D]. 南京: 东南大学, 2017. |
JIN Wei. Research on the production of monomeric aromatics from co-pyrolysis of lignin[D]. Nanjing: Southeast University, 2017. | |
35 | 王建飞, 赵建涛, 李风海, 等. 烟煤与生物质快速共热解产物特性分析[J]. 燃料化学学报, 2015, 43(6): 641-648. |
WANG Jianfei, ZHAO Jiantao, LI Fenghai, et al. Product characteristics for fast co-pyrolysis of bituminous coal and biomass[J]. Journal of Fuel Chemistry and Technology, 2015, 43(6): 641-648. | |
36 | SUN Ruirui, ZHANG Xue, WANG Chongqing, et al. Co-carbonization of red mud and waste sawdust for functional application as fenton catalyst: evaluation of catalytic activity and mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105368. |
37 | KARIMI Elham, TEIXEIRA Ivo Freitas, RIBEIRO Leandro Passos, et al. Ketonization and deoxygenation of alkanoic acids and conversion of levulinic acid to hydrocarbons using a red mud bauxite mining waste as the catalyst[J]. Catalysis Today, 2012, 190(1): 73-88. |
38 | 康彩艳, 李秋燕, 刘金玉, 等. 不同热解温度生物炭对Cd2+的吸附影响[J]. 工业水处理, 2021, 41(5): 68-72, 79. |
KANG Caiyan, LI Qiuyan, LIU Jinyu, et al. Effect of biochar at different pyrolysis temperatures on the adsorption of Cd2+ [J]. Industrial Water Treatment, 2021, 41(5): 68-72, 79. | |
39 | 邓顺明, 戴本林. 热解温度对棉杆生物炭中水可提取有机物与Cu(Ⅱ)络合特性的影响[J]. 环境化学, 2021, 40(12): 3919-3926. |
DENG Shunming, DAI Benlin. Effect of pyrolysis temperature on the binding properties of Cu(Ⅱ) with WEOM extracted from cotton stem biochar[J]. Environmental Chemistry, 2021, 40(12): 3919-3926. | |
40 | GAO Liang, LI Zhihe, YI Weiming, et al. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105602. |
41 | SUN Dezheng, LI Fayong, JIN Junwei, et al. Qualitative and quantitative investigation on adsorption mechanisms of Cd(Ⅱ) on modified biochar derived from co-pyrolysis of straw and sodium phytate[J]. Science of the Total Environment, 2022, 829: 154599. |
42 | DOU Shuai, KE Xiaoxue, SHAO Zaidong, et al. Fish scale-based biochar with defined pore size and ultrahigh specific surface area for highly efficient adsorption of ciprofloxacin[J]. Chemosphere, 2022, 287: 131962. |
43 | GAO Liang, LI Zhihe, YI Weiming, et al. Quantitative contribution of minerals and organics in biochar to Pb(Ⅱ) adsorption: considering the increase of oxygen-containing functional groups[J]. Journal of Cleaner Production, 2021, 325: 129328. |
44 | WU Fangfang, CHEN Long, HU Peng, et al. Comparison of properties, adsorption performance and mechanisms to Cd(Ⅱ) on lignin-derived biochars under different pyrolysis temperatures by microwave heating[J]. Environmental Technology & Innovation, 2022, 25: 102196. |
45 | 高亮, 李志合, 易维明, 等. 棉秆生物炭去除水中Pb(Ⅱ)吸附机理的量化分析[J]. 农业工程学报, 2022, 38(3): 230-238. |
GAO Liang, LI Zhihe, YI Weiming, et al. Quantifying the adsorption mechanisms of Pb(Ⅱ) in aqueous solution by cotton stalk biochar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 230-238. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[5] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[6] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[7] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[8] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[9] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[10] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[11] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[12] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[13] | 姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
[14] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[15] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |