化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1330-1339.DOI: 10.16085/j.issn.1000-6613.2021-1954
方书起1,2,3(), 王毓谦1,3, 李攀1,2,3(), 陈志勇2, 陈玮2, 白净1,2,3, 常春1,2,3
收稿日期:
2021-09-13
修回日期:
2021-11-19
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
李攀
作者简介:
方书起(1964—),男,教授,研究方向为生物质资源化利用。E-mail:基金资助:
FANG Shuqi1,2,3(), WANG Yuqian1,3, LI Pan1,2,3(), CHEN Zhiyong2, CHEN Wei2, BAI Jing1,2,3, CHANG Chun1,2,3
Received:
2021-09-13
Revised:
2021-11-19
Online:
2022-03-23
Published:
2022-03-28
Contact:
LI Pan
摘要:
随着各国新能源行业的兴起,氢能成为最具发展潜力的可再生能源。利用生物油进行催化重整是一种优良、高效的制氢方法,同时拓宽了生物油高值化利用的途径。本文对近年来该领域内的相关研究进行综述,重点介绍了原料对重整反应的影响(不同来源生物油及其模化物)、催化剂特性对重整反应的影响(负载贵金属与非贵金属)以及操作条件对重整反应的影响,对新兴的微波催化重整技术进行了简要介绍,并针对目前该领域所面临的困难提出了一些展望及发展方向,为生物油催化重整制氢提供重要理论依据。
中图分类号:
方书起, 王毓谦, 李攀, 陈志勇, 陈玮, 白净, 常春. 生物油催化重整制氢研究进展[J]. 化工进展, 2022, 41(3): 1330-1339.
FANG Shuqi, WANG Yuqian, LI Pan, CHEN Zhiyong, CHEN Wei, BAI Jing, CHANG Chun. Research progress of hydrogen production by catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1330-1339.
1 | GARCIA G, ARRIOLA E, CHEN W H, et al. A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability[J]. Energy, 2021, 217: 119384. |
2 | AHMED M H M, BATALHA N, MAHMUDUL H M D, et al. A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: insights into synergistic effect, catalyst development and reaction mechanism[J]. Bioresource Technology, 2020, 310: 123457. |
3 | NAQVI S R, NAQVI M, INAYAT A, et al. Impact of layered and delaminated zeolites on catalytic fast pyrolysis of microalgae using fixed-bed reactor and Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105025. |
4 | PARTHASARATHY P, NARAYANAN K S. Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield—A review[J]. Renewable Energy, 2014, 66: 570-579. |
5 | 王诗瑶. 镍基多级孔Beta分子筛催化剂的制备及其乙醇水蒸气重整制氢的催化性能研究[D]. 太原: 太原理工大学, 2019. |
WANG Shiyao. Preparation of nickel-supported hierarchical beta zeolite catalysts and their catalytic performance for ethanol steam reforming[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
6 | 杨飞龙. 高分散Ni-Co/C催化剂的制备及催化重整玉米芯挥发分的研究[D]. 徐州: 中国矿业大学, 2020. |
YANG Feilong. Preparation of high-dispersion Ni-Co/C catalyst and its performance in catalytic reforming of corncob volatiles[D]. Xuzhou: China University of Mining and Technology, 2020. | |
7 | 刘锐. 解耦双循环反应系统中白松热解油提质研究[D]. 大连: 大连理工大学, 2021. |
LIU Rui. Upgrading of white pine pyrolysis oil in a decoupled dual loop reaction system[D]. Dalian: Dalian University of Technology, 2021. | |
8 | EL-EMAM R S, ÖZCAN H. Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production[J]. Journal of Cleaner Production, 2019, 220: 593-609. |
9 | KHAN R, MEHRAN M T, BAIG M M, et al. 3D hierarchical heterostructured LSTN@NiMn-layered double hydroxide as a bifunctional water splitting electrocatalyst for hydrogen production[J]. Fuel, 2021, 285: 119174. |
10 | BALAT H, KıRTAY E. Hydrogen from biomass—Present scenario and future prospects[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7416-7426. |
11 | NI M, LEUNG D Y C, LEUNG M K H, et al. An overview of hydrogen production from biomass[J]. Fuel Processing Technology, 2006, 87(5): 461-472. |
12 | TAN R S, TUAN ABDULLAH T A, JOHARI A, et al. Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review[J]. Frontiers in Energy, 2020, 14(3): 545-569. |
13 | SETIABUDI H D, AZIZ M A A, ABDULLAH S, et al. Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: a review[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18376-18397. |
14 | MONTERO C, DE OAR-ARTETA L, REMIRO A, et al. Thermodynamic comparison between bio-oil and ethanol steam reforming[J]. International Journal of Hydrogen Energy, 2015, 40(46): 15963-15971. |
15 | MARQUEVICH M, CZERNIK S, CHORNET E, et al. Hydrogen from biomass: steam reforming of model compounds of fast-pyrolysis oil[J]. Energy & Fuels, 1999, 13(6): 1160-1166. |
16 | 彭旷野. 稻壳催化热解及其半焦产物催化裂解焦油特性研究[D]. 徐州: 中国矿业大学, 2020. |
PENG Kuangye. Study on rice husk catalytic pyrolysis and catalytic cracking of tar over the as-produced char product[D]. Xuzhou: China University of Mining and Technology, 2020. | |
17 | MALEK N H, SYED-HASSAN S S A, ZHANG S, et al. Hydrogen- and methane-rich clean producer gas from the reforming of bio-oil with Fe/AC catalyst prepared by a stepwise impregnation method[J]. BioEnergy Research, 2021, . |
18 | CHEN T J, WU C, LIU R H. Steam reforming of bio-oil from rice husks fast pyrolysis for hydrogen production[J]. Bioresource Technology, 2011, 102(19): 9236-9240. |
19 | FU P, ZHANG A D, LUO S, et al. Comparative study on the catalytic steam reforming of biomass pyrolysis oil and its derivatives for hydrogen production[J]. RSC Advances, 2020, 10(22): 12721-12729. |
20 | 张帆. 基于催化剂开发的生物油催化重整制氢研究[D]. 杭州: 浙江大学, 2017. |
ZHANG Fan. Catalytic steam reforming of bio-oil for hydrogen production based on catalysts development[D]. Hangzhou: Zhejiang University, 2017. | |
21 | 王治斌, 孙来芝, 陈雷, 等. 生物油水蒸气催化重整制氢研究进展[J]. 化工进展, 2021, 40(1): 151-163. |
WANG Zhibin, SUN Laizhi, CHEN Lei, et al. Progress in hydrogen production by steam catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 151-163. | |
22 | HE S F, MEI Z Q, LIU N S, et al. Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming: effect of nickel precursor[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14429-14438. |
23 | WANG Y R, SUN K, ZHANG S, et al. Steam reforming of alcohols and carboxylic acids: importance of carboxyl and alcoholic hydroxyl groups on coke properties[J]. Journal of the Energy Institute, 2021, 98: 85-97. |
24 | 刘嘉辉, 孙道安, 杜咏梅, 等. 芳烃蒸汽催化重整制氢研究进展[J]. 化工进展, 2021, 40(9): 4782-4790. |
LIU Jiahui, SUN Dao’an, DU Yongmei, et al. Progress on hydrogen production from catalytic steam reforming of aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4782-4790. | |
25 | 吴蔚, 樊啟洲, 易宝军, 等. Ni-Mg/RHA催化剂催化水蒸气焦油模型化合物重整反应研究[J]. 华中农业大学学报, 2021, 40(1): 218-226. |
WU Wei, FAN Qizhou, YI Baojun, et al. Steam reforming tar model compound with Ni-Mg/RHA catalyst[J]. Journal of Huazhong Agricultural University, 2021, 40(1): 218-226. | |
26 | AHMED T, XIU S N, WANG L J, et al. Investigation of Ni/Fe/Mg zeolite-supported catalysts in steam reforming of tar using simulated-toluene as model compound[J]. Fuel, 2018, 211: 566-571. |
27 | 王东旭, 肖显斌, 李文艳. 乙酸蒸汽催化重整制氢的研究进展[J]. 化工进展, 2017, 36(5): 1658-1665. |
WANG Dongxu, XIAO Xianbin, LI Wenyan. A review of literatures on catalytic steam reforming of acetic acid for hydrogen production[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1658-1665. | |
28 | 王治斌, 孙来芝, 华栋梁, 等. Ni/Al2O3催化剂作用下乙酸水蒸气催化重整制氢研究[J]. 现代化工, 2020, 40(12): 87-92. |
WANG Zhibin, SUN Laizhi, HUA Dongliang, et al. Hydrogen production by steam catalytic reforming of acetic acid over Ni/Al2O3 catalyst[J]. Modern Chemical Industry, 2020, 40(12): 87-92. | |
29 | FU P, ZHANG A D, LUO S, et al. Catalytic steam reforming of biomass-derived acetic acid over two supported Ni catalysts for hydrogen-rich syngas production[J]. ACS Omega, 2019, 4(8): 13585-13593. |
30 | GAO K, SAHRAEI O A, ILIUTA M C. Development of residue coal fly ash supported nickel catalyst for H2 production via glycerol steam reforming[J]. Applied Catalysis B: Environmental, 2021, 291: 119958. |
31 | 焦桐, 许雪莲, 张磊, 等. CuO/CeO2-ZrO2/SiC整体催化剂催化甲醇水蒸气重整制氢的研究[J]. 化学学报, 2021, 79(4): 513-519. |
JIAO Tong, XU Xuelian, ZHANG Lei, et al. Research on CuO/CeO2-ZrO2/SiC monolithic catalysts for hydrogen production by methanol steam reforming[J]. Acta Chimica Sinica, 2021, 79(4): 513-519. | |
32 | 谢华清, 袁佳伟, 蓝碧兰, 等. 基于双效催化剂的生物油吸附强化重整实验[J]. 东北大学学报(自然科学版), 2019, 40(12): 1721-1725. |
XIE Huaqing, YUAN Jiawei, LAN Bilan, et al. Experimental study on bio-oil adsorption enhanced reforming by using double-effect catalysts[J]. Journal of Northeastern University (Natural Science), 2019, 40(12): 1721-1725. | |
33 | RUIVO L C M, PIO D T, YAREMCHENKO A A, et al. Iron-based catalyst (Fe2- x Ni x TiO5) for tar decomposition in biomass gasification[J]. Fuel, 2021, 300: 120859. |
34 | GONZÁLEZ-GIL R, CHAMORRO-BURGOS I, HERRERA C, et al. Production of hydrogen by catalytic steam reforming of oxygenated model compounds on Ni-modified supported catalysts. Simulation and experimental study[J]. International Journal of Hydrogen Energy, 2015, 40(34): 11217-11227. |
35 | GARBARINO G, WANG C Y, VALSAMAKIS I, et al. A study of Ni/Al2O3 and Ni-La/Al2O3 catalysts for the steam reforming of ethanol and phenol[J]. Applied Catalysis B: Environmental, 2015, 174/175: 21-34. |
36 | ARTETXE M, ALVAREZ J, NAHIL M A, et al. Steam reforming of different biomass tar model compounds over Ni/Al2O3 catalysts[J]. Energy Conversion and Management, 2017, 136: 119-126. |
37 | BAMPENRAT A, MEEYOO V, KITIYANAN B, et al. Naphthalene steam reforming over Mn-doped CeO2-ZrO2 supported nickel catalysts[J]. Applied Catalysis A: General, 2010, 373(1/2): 154-159. |
38 | CHOI I H, HWANG K R, LEE K Y, et al. Catalytic steam reforming of biomass-derived acetic acid over modified Ni/γ-Al2O3 for sustainable hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(1): 180-190. |
39 | DUC L, MORISHITA K, TAKAR T. Catalytic decomposition of biomass tars at low-temperature[M]//Biomass now-sustainable growth and use. Rijeka Croatia: InTech, 2013. |
40 | BEPARI S, KUILA D. Steam reforming of methanol, ethanol and glycerol over nickel-based catalysts—A review[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18090-18113. |
41 | FORZATTI P. Catalyst deactivation[J]. Catalysis Today, 1999, 52(2/3): 165-181. |
42 | XING R, DAGLE V L, FLAKE M, et al. Steam reforming of fast pyrolysis-derived aqueous phase oxygenates over Co, Ni, and Rh metals supported on MgAl2O4 [J]. Catalysis Today, 2016, 269: 166-174. |
43 | ITO S I, KAMEOKA S. Effect of strong metal-oxide interaction on low-temperature ethanol reforming over Fe-promoted Rh/SiO2 catalyst[J]. Applied Catalysis A: General, 2021, 617: 118113. |
44 | LARIMI A, KHORASHEH F. Renewable hydrogen production over Pt/Al₂O₃ nano-catalysts: effect of M-promoting (M=Pd, Rh, Re, Ru, Ir, Cr)[J]. International Journal of Hydrogen Energy, 2019, 44(16): 8243-8251. |
45 | GAO N B, SALISU J, QUAN C, et al. Modified nickel-based catalysts for improved steam reforming of biomass tar: a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111023. |
46 | 杨殿才, 潘宇涵, 黄群星, 等. 废轮胎热解炭低温催化焦油重整制备富氢气体的研究[J]. 化工学报, 2020, 71(2): 642-650. |
YANG Diancai, PAN Yuhan, HUANG Qunxing, et al. Study on catalytic reforming of tar at low temperature to produce hydrogen-rich gas by tire pyrolysis char[J]. CIESC Journal, 2020, 71(2): 642-650. | |
47 | KAEWPANHA M, KARNJANAKOM S, GUAN G Q, et al. Removal of biomass tar by steam reforming over calcined scallop shell supported Cu catalysts[J]. Journal of Energy Chemistry, 2017, 26(4): 660-666. |
48 | SANTAMARIA L, LOPEZ G, ARREGI A, et al. Influence of the support on Ni catalysts performance in the in-line steam reforming of biomass fast pyrolysis derived volatiles[J]. Applied Catalysis B: Environmental, 2018, 229: 105-113. |
49 | LU M, XIONG Z H, LI J Q, et al. Catalytic steam reforming of toluene as model tar compound using Ni/coal fly ash catalyst[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(6): e2529. |
50 | 刘粤, 车庆丰, 易为, 等. 微介孔Ni/ZSM-5分子筛对甲苯催化重整的影响[J]. 可再生能源, 2021, 39(4): 427-433. |
LIU Yue, CHE Qingfeng, YI Wei, et al. Effect of micro-mesoporous Ni/ZSM-5 zeolites on catalytic reforming of toluene[J]. Renewable Energy Resources, 2021, 39(4): 427-433. | |
51 | CHEN M Q, LIANG D F, WANG Y S, et al. Hydrogen production by ethanol steam reforming over M-Ni/sepiolite (M=La, Mg or Ca) catalysts[J]. International Journal of Hydrogen Energy, 2021, 46(42): 21796-21811. |
52 | 李亮荣, 孙戊辰, 陈祖杰, 等. 载体改性对Ni/La2O2CO3催化乙醇水蒸气重整制氢的影响[J]. 稀有金属与硬质合金, 2021, 49(4): 50-54. |
LI Liangrong, SUN Wuchen, CHEN Zujie, et al. Effect of carrier modification on reforming to produce hydrogen of ethanol steam catalyzed by Ni/La2O2CO3 [J]. Rare Metals and Cemented Carbides, 2021, 49(4): 50-54. | |
53 | ZHU J Q, PENG X X, YAO L, et al. The promoting effect of La, Mg, Co and Zn on the activity and stability of Ni/SiO2 catalyst for CO2 reforming of methane[J]. International Journal of Hydrogen Energy, 2011, 36(12): 7094-7104. |
54 | SANTAMARIA L, LOPEZ G, ARREGI A, et al. Stability of different Ni supported catalysts in the in-line steam reforming of biomass fast pyrolysis volatiles[J]. Applied Catalysis B: Environmental, 2019, 242: 109-120. |
55 | ANG M L, OEMAR U, KATHIRASER Y, et al. High-temperature water-gas shift reaction over Ni/xK/CeO2 catalysts: suppression of methanation via formation of bridging carbonyls[J]. Journal of Catalysis, 2015, 329: 130-143. |
56 | MEI Z F, HE X C, CHEN D Z, et al. Comparison of chars from municipal solid waste and wheat straw for understanding the role of inorganics in char-based catalysts during volatile reforming process[J]. Energy, 2021, 229: 120619. |
57 | OSAKI T. Effect of nickel diameter on the rates of elementary steps involved in CO2 reforming of CH4 over Ni/Al2O3 catalysts[J]. Catalysis Letters, 2015, 145(11): 1931-1940. |
58 | HE Z, WANG X Q. Renewable energy and fuel production over transition metal oxides: the role of oxygen defects and acidity[J]. Catalysis Today, 2015, 240: 220-228. |
59 | BIAN Z F, KAWI S. Highly carbon-resistant Ni-Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane[J]. Journal of CO2 Utilization, 2017, 18: 345-352. |
60 | TOMISHIGE K, LI D L, TAMURA M, et al. Nickel-iron alloy catalysts for reforming of hydrocarbons: preparation, structure, and catalytic properties[J]. Catalysis Science & Technology, 2017, 7(18): 3952-3979. |
61 | WU T, ZHANG Q, CAI W Y, et al. Phyllosilicate evolved hierarchical Ni-and Cu-Ni/SiO2 nanocomposites for methane dry reforming catalysis[J]. Applied Catalysis A: General, 2015, 503: 94-102. |
62 | ASHOK J, KATHIRASER Y, ANG M L, et al. Bi-functional hydrotalcite-derived NiO-CaO-Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions[J]. Applied Catalysis B: Environmental, 2015, 172/173: 116-128. |
63 | ARREGI A, LOPEZ G, AMUTIO M, et al. Role of operating conditions in the catalyst deactivation in the in-line steam reforming of volatiles from biomass fast pyrolysis[J]. Fuel, 2018, 216: 233-244. |
64 | AKUBO K, NAHIL M A, WILLIAMS P T. Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas[J]. Journal of the Energy Institute, 2019, 92(6): 1987-1996. |
65 | CHEN W H, FAROOQ W, SHAHBAZ M, et al. Current status of biohydrogen production from lignocellulosic biomass, technical challenges and commercial potential through pyrolysis process[J]. Energy, 2021, 226: 120433. |
66 | FU P, YI W M, LI Z H, et al. Investigation on hydrogen production by catalytic steam reforming of maize stalk fast pyrolysis bio-oil[J]. International Journal of Hydrogen Energy, 2014, 39(26): 13962-13971. |
67 | LAN P, LAN L H, XIE T, et al. The preparation of syngas by the reforming of bio-oil in a fluidized-bed reactor[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(3): 242-249. |
68 | LI H Y, XU Q L, XUE H S, et al. Catalytic reforming of the aqueous phase derived from fast-pyrolysis of biomass[J]. Renewable Energy, 2009, 34(12): 2872-2877. |
69 | LI L Z, MENG B, QIN X M, et al. Toluene microwave cracking and reforming over bio-char with in situ activation and ex-situ impregnation of metal[J]. Renewable Energy, 2020, 149: 1205-1213. |
70 | XIN S Z, ZHANG Y H, DUAN L H, et al. Microwave-assisted calcined olivine catalyst steam reforming of tar for hydrogen production[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, DOI: 10.1080/15567036.2020.1716112 . |
71 | FUKUSHIMA H. Hydrogen production by microwave steam reforming[J]. Journal of the Japan Petroleum Institute, 2018, 61(2): 106-112. |
72 | SHI K Q, YAN J F, MENÉNDEZ J A, et al. Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming[J]. Frontiers in Chemistry, 2020, 8: 3. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[13] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[14] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[15] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |