化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1484-1491.DOI: 10.16085/j.issn.1000-6613.2023-1722
• 精细化工 • 上一篇
刘泽鹏(), 曾纪珺, 唐晓博, 赵波, 韩升, 廖袁淏, 张伟()
收稿日期:
2023-09-28
修回日期:
2023-12-05
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
张伟
作者简介:
刘泽鹏(1999—),男,硕士研究生,研究方向为催化反应工程。E-mail:245670889@qq.com。
基金资助:
LIU Zepeng(), ZENG Jijun, TANG Xiaobo, ZHAO Bo, HAN Sheng, LIAO Yuanhao, ZHANG Wei()
Received:
2023-09-28
Revised:
2023-12-05
Online:
2024-03-10
Published:
2024-04-11
Contact:
ZHANG Wei
摘要:
针对烷基咪唑磷酸酯离子液体的热物性数据较少的问题,本文在常压下测定了1-乙基-3-甲基咪唑磷酸二氢盐([EMIM][DHP])、1-乙基-3-甲基咪唑磷酸二甲酯盐([EMIM][DMP])、1-乙基-3-甲基咪唑磷酸二乙酯盐([EMIM][DEP])、1-丁基-3-甲基咪唑磷酸二丁酯盐([BMIM][DBP])四种烷基咪唑磷酸酯离子液体的密度、黏度(293.15~353.15K)和电导率(293.15~343.15K),并且测定了四种离子液体的热稳定性。结果表明,离子液体的密度、黏度随温度的升高而减小,而电导率随温度的升高而增大。采用自然对数方程关联四种离子液体的密度,根据实验值计算到了离子液体体积性质;采用VFT方程关联离子液体黏度和电导率,其中密度与电导率的实验值与模型相关系数R2达到0.9999,黏度相关系数R2达到0.99999,实验测定的数据与模型一致;四种离子液体的热稳定性相近,分解温度均在271.9~278.6℃范围内;瓦尔登规则分析表明,四种烷基咪唑磷酸酯离子液体符合Walden规则,而[EMIM][DMP]和[EMIM][DEP]被归类为“good ionic liquids”。
中图分类号:
刘泽鹏, 曾纪珺, 唐晓博, 赵波, 韩升, 廖袁淏, 张伟. 四种烷基咪唑磷酸酯离子液体的热力学性质[J]. 化工进展, 2024, 43(3): 1484-1491.
LIU Zepeng, ZENG Jijun, TANG Xiaobo, ZHAO Bo, HAN Sheng, LIAO Yuanhao, ZHANG Wei. Thermodynamic properties of four alkyl imidazolium phosphate ionic liquids[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1484-1491.
离子液体 | 简式 | 生产厂家 | 纯度(厂家) | 水分/μL·L-1 |
---|---|---|---|---|
1-乙基-3-甲基咪唑磷酸二氢盐 | [EMIM][DHP] | 中国科学院兰州化物所 | ≥99% | 210 |
1-乙基-3-甲基咪唑磷酸二甲酯盐 | [EMIM[DMP] | TCI | ≥98% | 220 |
1-乙基-3-甲基咪唑磷酸二乙酯盐 | [EMIM][DEP] | TCI | ≥98% | 240 |
1-丁基-3-甲基咪唑磷酸二丁酯盐 | [BMIM][DBP] | TCI | ≥98% | 168 |
表1 实验所用离子液体的生产厂家、纯度和水分
离子液体 | 简式 | 生产厂家 | 纯度(厂家) | 水分/μL·L-1 |
---|---|---|---|---|
1-乙基-3-甲基咪唑磷酸二氢盐 | [EMIM][DHP] | 中国科学院兰州化物所 | ≥99% | 210 |
1-乙基-3-甲基咪唑磷酸二甲酯盐 | [EMIM[DMP] | TCI | ≥98% | 220 |
1-乙基-3-甲基咪唑磷酸二乙酯盐 | [EMIM][DEP] | TCI | ≥98% | 240 |
1-丁基-3-甲基咪唑磷酸二丁酯盐 | [BMIM][DBP] | TCI | ≥98% | 168 |
T/K | 密度/g | |||
---|---|---|---|---|
[EMIM][DHP] | [EMIM][DMP] | [EMIM][DEP] | [BMIM][DBP] | |
293.15 | 1.3406 | 1.2198 | 1.1485 | 1.0468 |
298.15 | 1.3379 | 1.2164 | 1.1450 | 1.0435 |
303.15 | 1.3350 | 1.2131 | 1.1416 | 1.0401 |
313.15 | 1.3295 | 1.2064 | 1.1349 | 1.0332 |
323.15 | 1.3238 | 1.1998 | 1.1283 | 1.0265 |
333.15 | 1.3181 | 1.1929 | 1.1215 | 1.0198 |
343.15 | 1.3125 | 1.1863 | 1.1149 | 1.0131 |
353.15 | 1.3070 | 1.1798 | 1.1083 | 1.0064 |
文献值 (298.15) | — | 1.2161[ | 1.1442[ | 1.045[ |
— | 1.220[ | 1.145[ | 1.045[ | |
— | 1.2178[ | 1.1449[ | 1.045[ |
表2 四种离子液体在293.15~353.15K范围内的密度
T/K | 密度/g | |||
---|---|---|---|---|
[EMIM][DHP] | [EMIM][DMP] | [EMIM][DEP] | [BMIM][DBP] | |
293.15 | 1.3406 | 1.2198 | 1.1485 | 1.0468 |
298.15 | 1.3379 | 1.2164 | 1.1450 | 1.0435 |
303.15 | 1.3350 | 1.2131 | 1.1416 | 1.0401 |
313.15 | 1.3295 | 1.2064 | 1.1349 | 1.0332 |
323.15 | 1.3238 | 1.1998 | 1.1283 | 1.0265 |
333.15 | 1.3181 | 1.1929 | 1.1215 | 1.0198 |
343.15 | 1.3125 | 1.1863 | 1.1149 | 1.0131 |
353.15 | 1.3070 | 1.1798 | 1.1083 | 1.0064 |
文献值 (298.15) | — | 1.2161[ | 1.1442[ | 1.045[ |
— | 1.220[ | 1.145[ | 1.045[ | |
— | 1.2178[ | 1.1449[ | 1.045[ |
离子液体 | ρ0/g·cm-3 | R2 | ||
---|---|---|---|---|
[EMIM][DHP] | 4.24×10-4 | 1.5184 | 0.99996 | 0.0032% |
[EMIM][DMP] | 5.56×10-4 | 1.4358 | 0.99998 | 0.0034% |
[EMIM][DEP] | 5.92×10-4 | 1.3662 | 0.99998 | 0.0033% |
[BMIM][DBP] | 6.57×10-4 | 1.2691 | 0.99998 | 0.0043% |
表3 离子液体密度的自然对数方程拟合参数、相关系数及平均相对误差
离子液体 | ρ0/g·cm-3 | R2 | ||
---|---|---|---|---|
[EMIM][DHP] | 4.24×10-4 | 1.5184 | 0.99996 | 0.0032% |
[EMIM][DMP] | 5.56×10-4 | 1.4358 | 0.99998 | 0.0034% |
[EMIM][DEP] | 5.92×10-4 | 1.3662 | 0.99998 | 0.0033% |
[BMIM][DBP] | 6.57×10-4 | 1.2691 | 0.99998 | 0.0043% |
离子液体 | M/g∙mol-3 | Vm/nm3 | S0/J∙mol-1∙K-1 | UPOT/kJ∙mol-1 |
---|---|---|---|---|
[EMIM][DHP] | 208.15 | 0.2584 | 351.42 | 472.19 |
[EMIM][DMP] | 236.26 | 0.3225 | 431.40 | 445.93 |
[EMIM][DEP] | 264.26 | 0.3833 | 507.06 | 426.81 |
[BMIM][DBP] | 348.42 | 0.5545 | 720.41 | 389.40 |
表4 四种离子液体在298.15K下的分子体积、标准熵及晶格能
离子液体 | M/g∙mol-3 | Vm/nm3 | S0/J∙mol-1∙K-1 | UPOT/kJ∙mol-1 |
---|---|---|---|---|
[EMIM][DHP] | 208.15 | 0.2584 | 351.42 | 472.19 |
[EMIM][DMP] | 236.26 | 0.3225 | 431.40 | 445.93 |
[EMIM][DEP] | 264.26 | 0.3833 | 507.06 | 426.81 |
[BMIM][DBP] | 348.42 | 0.5545 | 720.41 | 389.40 |
T/K | 黏度/mPa | |||
---|---|---|---|---|
[EMIM][DHP] | [EMIM][DMP] | [EMIM][DEP] | [BMIM][DBP] | |
293.15 | 5996.100 | 353.387 | 555.920 | 1829.600 |
298.15 | 4014.100 | 251.860 | 388.783 | 1253.267 |
303.15 | 2774.167 | 184.733 | 279.847 | 879.270 |
313.15 | 1433.633 | 106.600 | 156.193 | 462.327 |
323.15 | 808.673 | 66.478 | 94.413 | 262.087 |
333.15 | 488.687 | 44.148 | 61.017 | 158.613 |
343.15 | 312.090 | 30.875 | 41.605 | 101.400 |
353.15 | 208.983 | 22.512 | 29.666 | 67.920 |
文献值(303.15) | — | 192.7[ | 285.0[ | — |
— | 186.0[ | 274.0[ | — | |
— | 194.5[ | 284.0[ | — |
表5 四种烷基咪唑磷酸酯离子液体在293.15~353.15K范围内的黏度
T/K | 黏度/mPa | |||
---|---|---|---|---|
[EMIM][DHP] | [EMIM][DMP] | [EMIM][DEP] | [BMIM][DBP] | |
293.15 | 5996.100 | 353.387 | 555.920 | 1829.600 |
298.15 | 4014.100 | 251.860 | 388.783 | 1253.267 |
303.15 | 2774.167 | 184.733 | 279.847 | 879.270 |
313.15 | 1433.633 | 106.600 | 156.193 | 462.327 |
323.15 | 808.673 | 66.478 | 94.413 | 262.087 |
333.15 | 488.687 | 44.148 | 61.017 | 158.613 |
343.15 | 312.090 | 30.875 | 41.605 | 101.400 |
353.15 | 208.983 | 22.512 | 29.666 | 67.920 |
文献值(303.15) | — | 192.7[ | 285.0[ | — |
— | 186.0[ | 274.0[ | — | |
— | 194.5[ | 284.0[ | — |
离子液体 | R2 | ||||
---|---|---|---|---|---|
[EMIM][DHP] | 0.2500 | 1219.0 | 172.28 | >0.99999 | 0.25% |
[EMIM][DMP] | 0.1380 | 870.1 | 182.24 | >0.99999 | 0.03% |
[EMIM][DEP] | 0.1150 | 963.3 | 179.58 | >0.99999 | 0.04% |
[BMIM][DBP] | 0.0287 | 1559.6 | 152.19 | >0.99999 | 0.21% |
表6 离子液体黏度的VFT方程拟合参数、相关系数及平均相对误差
离子液体 | R2 | ||||
---|---|---|---|---|---|
[EMIM][DHP] | 0.2500 | 1219.0 | 172.28 | >0.99999 | 0.25% |
[EMIM][DMP] | 0.1380 | 870.1 | 182.24 | >0.99999 | 0.03% |
[EMIM][DEP] | 0.1150 | 963.3 | 179.58 | >0.99999 | 0.04% |
[BMIM][DBP] | 0.0287 | 1559.6 | 152.19 | >0.99999 | 0.21% |
T/K | 电导率/mS | |||
---|---|---|---|---|
[EMIM][DHP] | [EMIM][DMP] | [EMIM][DEP] | [BMIM][DBP] | |
293.15 | 0.262 | 1.161 | 0.521 | 0.043 |
298.15 | 0.384 | 1.574 | 0.742 | 0.065 |
303.15 | 0.556 | 2.088 | 1.002 | 0.090 |
313.15 | 1.069 | 3.437 | 1.706 | 0.165 |
323.15 | 1.859 | 5.277 | 2.681 | 0.291 |
333.15 | 3.005 | 7.658 | 4.003 | 0.468 |
343.15 | 4.575 | 10.63 | 5.686 | 0.724 |
表7 四种离子液体在293.15~343.15 K范围内的电导率
T/K | 电导率/mS | |||
---|---|---|---|---|
[EMIM][DHP] | [EMIM][DMP] | [EMIM][DEP] | [BMIM][DBP] | |
293.15 | 0.262 | 1.161 | 0.521 | 0.043 |
298.15 | 0.384 | 1.574 | 0.742 | 0.065 |
303.15 | 0.556 | 2.088 | 1.002 | 0.090 |
313.15 | 1.069 | 3.437 | 1.706 | 0.165 |
323.15 | 1.859 | 5.277 | 2.681 | 0.291 |
333.15 | 3.005 | 7.658 | 4.003 | 0.468 |
343.15 | 4.575 | 10.63 | 5.686 | 0.724 |
离子液体 | C/K | R2 | |||
---|---|---|---|---|---|
[EMIM][DHP] | 2382.9 | 994.1 | 184.23 | >0.99999 | 0.34% |
[EMIM][DMP] | 1617.5 | 821.5 | 179.67 | >0.99999 | 0.05% |
[EMIM][DEP] | 1233.4 | 880.2 | 179.54 | 0.99998 | 0.57% |
[BMIM][DBP] | 1550.0 | 1433.6 | 156.22 | 0.99995 | 1.01% |
表8 离子液体电导率的VFT方程拟合参数、相关系数及平均相对误差
离子液体 | C/K | R2 | |||
---|---|---|---|---|---|
[EMIM][DHP] | 2382.9 | 994.1 | 184.23 | >0.99999 | 0.34% |
[EMIM][DMP] | 1617.5 | 821.5 | 179.67 | >0.99999 | 0.05% |
[EMIM][DEP] | 1233.4 | 880.2 | 179.54 | 0.99998 | 0.57% |
[BMIM][DBP] | 1550.0 | 1433.6 | 156.22 | 0.99995 | 1.01% |
参数 | [EMIM][DHP] | [EMIM][DMP] | [EMIM][DEP] | [BMIM][DBP] |
---|---|---|---|---|
Tstart/℃ | 184.8 | 198.0 | 190.9 | 151.4 |
Tonset/℃ | 275.8 | 278.6 | 274.5 | 271.9 |
表9 四种离子液体的Tstart和Tonset
参数 | [EMIM][DHP] | [EMIM][DMP] | [EMIM][DEP] | [BMIM][DBP] |
---|---|---|---|---|
Tstart/℃ | 184.8 | 198.0 | 190.9 | 151.4 |
Tonset/℃ | 275.8 | 278.6 | 274.5 | 271.9 |
1 | 刘洁, 牟浩文, 李文深. 1-丁基-3-甲基咪唑硫酸氢盐离子液体水溶液的密度、黏度与温度、组成的关系[J]. 石油学报(石油加工), 2019, 35(5): 995-1000. |
LIU Jie, MOU Haowen, LI Wenshen. Temperature and composition dependence on the density and viscosity of aqueous solutions of 1-butyl-3-methylimidazolium hydrosulphate ionic liquid[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(5): 995-1000. | |
2 | 何丽娟, 王飒, 吴夏梦, 等. 离子液体[BMP][Tf2N]基本物性的实验研究[J]. 工程热物理学报, 2021, 42(6): 1378-1383. |
HE Lijuan, WANG Sa, WU Xiameng, et al. Experimental study on basic physical properties of ionic liquid[BMP][Tf2N[J]. Journal of Engineering Thermophysics, 2021, 42(6): 1378-1383. | |
3 | 厉刚, 孙甜甜. 四种叠氮铵类离子液体的合成及其物性研究[J]. 含能材料, 2014, 22(2): 136-140. |
LI Gang, SUN Tiantian. Synthesis and physicochemical properties of four azidoammonium-based ionic liquids[J]. Chinese Journal of Energetic Materials, 2014, 22(2): 136-140. | |
4 | 王西亚, 陈俊, 左家家, 等. 离子液体在电催化领域的研究进展[J]. 当代化工研究, 2022(16): 163-165. |
WANG Xiya, CHEN Jun, ZUO Jiajia, et al. Research progress of ionic liquids in electrocatalysis[J]. Modern Chemical Research, 2022(16): 163-165. | |
5 | 张芳芳, 郑飞飞, 吴学红, 等. 离子液体[EMIm]Ac比热容、导热系数及黏度的研究[J]. 工程热物理学报, 2018, 39(8): 1809-1813. |
ZHANG Fangfang, ZHENG Feifei, WU Xuehong, et al. Research of ionic liquid[EMIm]Ac specific heat capacity, thermal conductivity and viscosity[J]. Journal of Engineering Thermophysics, 2018, 39(8): 1809-1813. | |
6 | SENG Leong Kok, MASDAR Mohd Shahbudin, SHYUAN Loh Kee. Ionic liquid in phosphoric acid-doped polybenzimidazole (PA-PBI) as electrolyte membranes for PEM fuel cells: A review[J]. Membranes, 2021, 11(10): 728. |
7 | MOHAMMED Sulafa Abdalmageed Saadaldeen, YAHYA Wan Zaireen Nisa, BUSTAM Mohamad Azmi, et al. Elucidation of the roles of ionic liquid in CO2 electrochemical reduction to value-added chemicals and fuels[J]. Molecules, 2021, 26(22): 6962. |
8 | 王吉林, 王璐璐. 离子液体1-丁基-3-甲基咪唑磷酸二丁酯的制备及其催化酯化反应的性能[J]. 石油化工, 2011, 40(6): 635-639. |
WANG Jilin, WANG Lulu. Synthesis of 1-butyl-3-methyl imidazolium dibutyl phosphate ionic liquid and its catalytic activity in esterification[J]. Petrochemical Technology, 2011, 40(6): 635-639. | |
9 | XING Lu, MA Xifei, HU Kaibo, et al. Selective separation of Nd from La/Ce/Pr using phosphate-based ionic liquids: Solvent extraction studies and density functional theory[J]. Minerals Engineering, 2023, 191: 107967. |
10 | THOMAS Marie F, LI Luen-Luen, HANDLEY-PENDLETON Jocelyn M, et al. Enzyme activity in dialkyl phosphate ionic liquids[J]. Bioresource Technology, 2011, 102(24): 11200-11203. |
11 | 卢向军, 窦辉, 戴耀东, 等. 磷酸酯盐离子液体的微波辅助合成及其在Knoevenagel反应中的应用[J]. 南京航空航天大学学报, 2009, 41(3): 414-417. |
LU Xiangjun, DOU Hui, DAI Yaodong, et al. Microwave-assisted synthesis of ionic liquids of phosphate and application in Knoevenagel reaction[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(3): 414-417. | |
12 | 冯婕, 李春喜, 孟洪, 等. 磷酸酯类离子液体在燃油深度脱硫中的应用[J]. 石油化工, 2006, 35(3): 272-276. |
FENG Jie, LI Chunxi, MENG Hong, et al. Application of phosphate ionic liquids in deep desulfurization of fuel[J]. Petrochemical Technology, 2006, 35(3): 272-276. | |
13 | 蒋小川, 于春影, 冯婕, 等. 离子液体1-丁基-3-甲基咪唑磷酸二丁酯的制备与应用[J]. 北京化工大学学报(自然科学版), 2006, 33(1): 5-7. |
JIANG Xiaochuan, YU Chunying, FENG Jie, et al. Synthesis and application of ionic liquid 1-butyl-3-methyl imidazolium dibutyl phosphate[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2006, 33(1): 5-7. | |
14 | 李静, 王克良, 吴红, 等. [DMIM]DMP萃取精馏分离丙酮和甲醇共沸体系的研究[J]. 天然气化工(C1化学与化工), 2017, 42(4): 46-50, 61. |
LI Jing, WANG Keliang, WU Hong, et al. Extractive distillation of acetone and methanol azeotrope using[DMIM]DMP as solvent[J]. Natural Gas Chemical Industry, 2017, 42(4): 46-50, 61. | |
15 | HAN Yunyan, QIAO Dan, GUO Yuexia, et al. Influence of competitive adsorption on lubricating property of phosphonate ionic liquid additives in PEG[J]. Tribology Letters, 2016, 64(2): 22. |
16 | HAN Yunyan, QIAO Dan, ZHANG Lin, et al. Study of tribological performance and mechanism of phosphonate ionic liquids for steel/aluminum contact[J]. Tribology International, 2015, 84: 71-80. |
17 | HAN Yunyan, QIAO Dan, ZHANG Songwei, et al. Influence of phosphate and phosphonate ionic liquid structures on lubrication for different alloys (Mg, Al, Cu)[J]. Tribology International, 2017, 114: 469-477. |
18 | Erika VATAŠČIN, DOHNAL Vladimír. Phase equilibria and energetics of binary mixtures of water with highly hydrophilic[EMIM]-based ionic liquids: Methanesulfonate, methylsulfate, and dimethylphosphate[J]. Fluid Phase Equilibria, 2020, 521: 112659. |
19 | WANG Junfeng, LI Chunxi, SHEN Chong, et al. Towards understanding the effect of electrostatic interactions on the density of ionic liquids[J]. Fluid Phase Equilibria, 2009, 279(2): 87-91. |
20 | SKONIECZNY Michał, Marta KRÓLIKOWSKA. Thermodynamic properties of{diethyl phosphate-based ionic liquid (1) + ethanol (2)} systems, experimental data and correlation[J]. Journal of Chemical & Engineering Data, 2022, 67(4): 869-885. |
21 | Mac DOWELL N, LLOVELL F, SUN N, et al. New experimental density data and soft-SAFT models of alkylimidazolium ([C n C1im]+) chloride (Cl-), methylsulfate ([MeSO4]-), and dimethylphosphate ([Me2PO4]-) based ionic liquids[J]. The Journal of Physical Chemistry B, 2014, 118(23): 6206-6221. |
22 | Vojtěch ŠTEJFA, Jan ROHLÍČEK, Ctirad ČERVINKA. Phase behaviour and heat capacities of selected 1-ethyl-3-methylimidazolium-based ionic liquids[J]. The Journal of Chemical Thermodynamics, 2020, 142: 106020. |
23 | Vojtěch ŠTEJFA, Jan ROHLÍČEK, Ctirad ČERVINKA. Phase behaviour and heat capacities of selected 1-ethyl-3-methylimidazolium-based ionic liquids II[J]. The Journal of Chemical Thermodynamics, 2021, 160: 106392. |
24 | GONG Yinhui, SHEN Chong, LU Yingzhou, et al. Viscosity and density measurements for six binary mixtures of water (methanol or ethanol) with an ionic liquid ([BMIM][DMP]or[EMIM][DMP]) at atmospheric pressure in the temperature range of (293.15 to 333.15) K[J]. Journal of Chemical & Engineering Data, 2012, 57(1): 33-39. |
25 | Edward ZORĘBSKI, Małgorzata MUSIAŁ, Karolina BAŁUSZYŃSKA, et al. Isobaric and isochoric heat capacities as well as isentropic and isothermal compressibilities of di- and trisubstituted imidazolium-based ionic liquids as a function of temperature[J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 5161-5172. |
26 | CHENG S, MUSIAŁ M, WOJNAROWSKA Z, et al. Universal scaling behavior of entropy and conductivity in ionic liquids[J]. Journal of Molecular Liquids, 2020, 316: 113824. |
27 | LIU Qingshan, LI Peipei, Urs WELZ-BIERMANN, et al. Density, electrical conductivity, and dynamic viscosity of N-alkyl-4-methylpyridinium bis(trifluoromethylsulfonyl)imide[J]. Journal of Chemical & Engineering Data, 2012, 57(11): 2999-3004. |
28 | ZHANG Qingguo, WEI Ying, SUN Sisi, et al. Study on thermodynamic properties of ionic liquid N-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide[J]. Journal of Chemical & Engineering Data, 2012, 57(8): 2185-2190. |
29 | 王义闹, 吴利丰. 基于平均相对误差绝对值最小的GM(1, 1)建模[J]. 华中科技大学学报(自然科学版), 2009, 37(10): 29-31. |
WANG Yinao, WU Lifeng. Modeling GM(1, 1) based on the minimum of mean absolute percentage error[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2009, 37(10): 29-31. | |
30 | GLASSER Leslie. Lattice and phase transition thermodynamics of ionic liquids[J]. Thermochimica Acta, 2004, 421(1/2): 87-93. |
31 | FREIRE Mara G, TELES Ana Rita R, ROCHA Marisa A A, et al. Thermophysical characterization of ionic liquids able to dissolve biomass[J]. Journal of Chemical & Engineering Data, 2011, 56(12): 4813-4822. |
32 | HIRAGA Yuya, KATO Aya, SATO Yoshiyuki, et al. Densities at pressures up to 200 MPa and atmospheric pressure viscosities of ionic liquids 1-ethyl-3-methylimidazolium methylphosphate, 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium acetate, and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[J]. Journal of Chemical & Engineering Data, 2015, 60(3): 876-885. |
33 | DE PABLO Laura, SEGOVIA PURAS José Juan, Carmen MARTÍN, et al. Determination of density and viscosity of binary mixtures of water and dimethyl sulfoxide with 1-ethyl-3-methylimidazolium diethylphosphate[EtMeIm]+[Et2PO4]– at atmospheric pressure[J]. Journal of Chemical & Engineering Data, 2018, 63(4): 1053-1064. |
34 | WAN NORMAZLAN Wan Melissa Diyana, SAIRI Nor Asrina, ALIAS Yatimah, et al. Composition and temperature dependence of density, surface tension, and viscosity of emim dep/mmim dmp + water + 1-propanol/2-propanol ternary mixtures and their mathematical representation using the jouyban-acree model[J]. Journal of Chemical & Engineering Data, 2014, 59(8): 2337-2348. |
35 | BITTNER Bożena, WROBEL Rafal J, MILCHERT Eugeniusz. Physical properties of pyridinium ionic liquids[J]. The Journal of Chemical Thermodynamics, 2012, 55: 159-165. |
36 | LIU Qingshan, LIU Jing, LIU Xiaoxia, et al. Density, dynamic viscosity, and electrical conductivity of two hydrophobic functionalized ionic liquids[J]. The Journal of Chemical Thermodynamics, 2015, 90: 39-45. |
37 | ANOUTI Mérièm, Magaly CAILLON-CARAVANIER, DRIDI Yosra, et al. Synthesis and characterization of new pyrrolidinium based protic ionic liquids. good and superionic liquids[J]. The Journal of Physical Chemistry B, 2008, 112(42): 13335-13343. |
38 | HEYM F, KORTH W, ETZOLD B J M, et al. Determination of vapor pressure and thermal decomposition using thermogravimetrical analysis[J]. Thermochimica Acta, 2015, 622: 9-17. |
[1] | 丁丽华, 徐洪涛, 张晨宇. 基于圆台波浪形换热管的潜热储热单元性能分析[J]. 化工进展, 2024, 43(3): 1214-1223. |
[2] | 刘泽鹏, 曾纪珺, 廖袁淏, 唐晓博, 赵波, 韩升, 张伟. 离子液体1-乙基-3-甲基咪唑亚磷酸甲酯盐与1-乙基-3-甲基咪唑亚磷酸乙酯盐的热物性[J]. 化工进展, 2024, 43(2): 1054-1062. |
[3] | 王一笑, 张丹, 涂茂萍, 周文博, 赵冰超. 双膜量子点表面热流密度场测量技术[J]. 化工进展, 2024, 43(2): 872-881. |
[4] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[5] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
[6] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[7] | 孙征楠, 李洪晶, 荆国林, 张福宁, 颜飚, 刘晓燕. EVA及其改性聚合物在原油降凝剂领域的应用[J]. 化工进展, 2023, 42(6): 2987-2998. |
[8] | 赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
[9] | 李云闯, 谢方明, 席亚男, 万新月, 孙玉虎, 赵永峰, 李根, 刘宏海, 高雄厚, 刘洪涛. 高水热稳定性介孔分子筛的低成本合成研究进展[J]. 化工进展, 2023, 42(4): 1877-1884. |
[10] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[11] | 李光文, 华渠成, 黄作鑫, 达志坚. 聚甲基丙烯酸酯类黏度指数改进剂的研究进展[J]. 化工进展, 2023, 42(3): 1562-1571. |
[12] | 张晨光, 封硕, 邢玉烨, 沈伯雄, 苏立超. 柴油车用NH3-SCR铜基分子筛催化剂孤立态Cu2+研究进展[J]. 化工进展, 2023, 42(3): 1321-1331. |
[13] | 蒋佳骏, 吴张永, 朱启晨, 蔡昌礼, 朱家军, 王志强. In-Bi-Sn基Si3N4/GNFs混合纳米流体的流变性和润滑性[J]. 化工进展, 2023, 42(12): 6197-6206. |
[14] | 崔腾达, 文华, 赵颖. 改性液滴撞击荷叶表面沉积特性对比[J]. 化工进展, 2023, 42(11): 5882-5890. |
[15] | 米泽豪, 花儿. 多元胺-TFSA型质子化离子液体吸收CO2的理论分析[J]. 化工进展, 2023, 42(11): 6015-6030. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |