化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6197-6206.DOI: 10.16085/j.issn.1000-6613.2023-0148
• 化工过程与装备 • 上一篇
蒋佳骏1(
), 吴张永1(
), 朱启晨1, 蔡昌礼2, 朱家军2, 王志强1
收稿日期:2023-02-06
修回日期:2023-03-27
出版日期:2023-12-25
发布日期:2024-01-08
通讯作者:
吴张永
作者简介:蒋佳骏(1996—),男,博士研究生,研究方向为极端环境液压传动技术。E-mail:jiangjiajun2023@163.com。
基金资助:
JIANG Jiajun1(
), WU Zhangyong1(
), ZHU Qichen1, CAI Changli2, ZHU Jiajun2, WANG Zhiqiang1
Received:2023-02-06
Revised:2023-03-27
Online:2023-12-25
Published:2024-01-08
Contact:
WU Zhangyong
摘要:
现有水基、油基及其他无水合成类液压传动介质存在高温稳定性差、温-黏变化大等问题。In-Bi-Sn合金熔点低、流动性好、高温性质稳定,是极端高温液压传动介质的理想基础液。本文采用两步法制备体积分数为0、5%、10%、20%、30%的In-Bi-Sn基Si3N4/GNFs混合纳米流体。利用TEM、SEM+EDS、热重分析等手段表征样品形貌、分散性和热稳定性,通过高温旋转流变仪和摩擦磨损试验机研究样品的流变性和润滑性,对比分析样品与现有高温液压介质在热稳定性、流变性、润滑性上的性能差异。结果表明:Si3N4嵌于GNFs片层之间,以团聚体形式分散于In-Bi-Sn基质,10%样品中的混合纳米颗粒团聚体尺寸小于20%样品;样品黏度随混合纳米颗粒体积分数增加而增大,液态静置时间和相变次数对<30%样品黏度的影响不明显;受纳米颗粒布朗运动影响,分散相体积分数越高,样品的温-黏变化越显著;因剪切改变了纳米颗粒团聚体的粒度,20%样品显示出明显的剪切致稀特征;添加Si3N4/GNFs混合纳米颗粒能够显著改善润滑特性;相较于现有高温液压介质,In-Bi-Sn基Si3N4/GNFs混合纳米流体热稳定性优异、温-黏变化更小、高温润滑性能佳。
中图分类号:
蒋佳骏, 吴张永, 朱启晨, 蔡昌礼, 朱家军, 王志强. In-Bi-Sn基Si3N4/GNFs混合纳米流体的流变性和润滑性[J]. 化工进展, 2023, 42(12): 6197-6206.
JIANG Jiajun, WU Zhangyong, ZHU Qichen, CAI Changli, ZHU Jiajun, WANG Zhiqiang. Rheological properties and lubricity of In-Bi-Sn based Si3N4/GNFs hybrid nanofluid[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6197-6206.
| 1 | 路甬祥. 机械学科近期发展战略——流体传动与控制部分[J]. 液压与气动, 1989(3): 4-5. |
| LU Yongxiang. Recent development strategy of mechanical discipline—Fluid power transmission and control part[J]. Chinese Hydraulics & Pneumatics, 1989(3): 4-5. | |
| 2 | 訚耀保. 极端环境下的电液伺服控制理论及应用技术[M]. 上海: 上海科学技术出版社, 2012. |
| YIN Yaobao. Theory and application technology of electro-hydraulic servo control in extreme environment[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2012. | |
| 3 | KIM J-H, HAN S M, KIM Y-J. Effects of viscosity of hydraulic oil on the performance of actuator[J]. The KSFM Journal of Fluid Machinery, 2016, 19(1): 31-36. |
| 4 | ZHANG Jian, QI Naiming, JIANG Jihai. Effect of oil viscosity on hydraulic cavitation luminescence[J]. Fluid Dynamics, 2021, 56(3): 371-382. |
| 5 | 姚勇伟, 吴张永, 朱启晨, 等. Ni0.5Zn0.5Fe2O4磁流体相变稳定性及黏度特性实验研究[J]. 工程热物理学报, 2022, 43(3): 817-823. |
| YAO Yongwei, WU Zhangyong, ZHU Qichen, et al. Experimental study on stability and viscosity properties of phase change of Ni0.5Zn0.5Fe2O4 magnetic fluid[J]. Journal of Engineering Thermophysics, 2022, 43(3): 817-823. | |
| 6 | CHEN Sen, WANG Hongzhang, ZHAO Ruiqi, et al. Liquid metal composites[J]. Matter., 2020, 2(6): 1446-1480. |
| 7 | WANG Qian, YU Yang, LIU Jing. Preparations, characteristics and applications of the functional liquid metal materials[J]. Advanced Engineering Materials, 2018, 20(5): 1700781. |
| 8 | 刘静. 液态金属科技与工业的崛起: 进展与机遇[J]. 中国工程科学, 2020, 22(5): 93-103. |
| LIU Jing. Rise of the liquid metal science, technology and industry: Advancements and opportunities[J]. Strategic Study of CAE, 2020, 22(5): 93-103. | |
| 9 | DENG Yueguang, LIU Jing. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs[J]. Journal of Electronic Packaging, 2010, 132(3): 031009. |
| 10 | 孙英, 刘乃源, 翁玲, 等. 基于镓基液态金属的高带宽柔性NFC标签天线设计及特性测试[J]. 仪器仪表学报, 2021, 42(7): 216-225. |
| SUN Ying, LIU Naiyuan, WENG Ling, et al. Design and characteristic test of high bandwidth flexible NFC tag antenna based on gallium-based liquid metal[J]. Chinese Journal of Scientific Instrument, 2021, 42(7): 216-225. | |
| 11 | 白冰鹤, 陆规, 闵琪, 等. 电毛细驱动液态金属液滴可寻址运动特性研究[J]. 工程热物理学报, 2020, 41(8): 1845-1850. |
| BAI Binghe, LU Gui, MIN Qi, et al. Research on addressable motion of liquid capillary driven liquid metal droplets[J]. Journal of Engineering Thermophysics, 2020, 41(8): 1845-1850. | |
| 12 | SHU Jian, GE Duan, WANG Erlong, et al. A liquid metal artificial muscle[J]. Advanced Materials, 2021, 33(43): 2103062. |
| 13 | 汪璐阳, 曾梦琪, 付磊. 液态金属上“赏”石墨烯舞动[J]. 科学通报, 2021, 66(33): 4205-4206. |
| WANG Luyang, ZENG Mengqi, FU Lei. Observing graphene dancing on liquid metal[J]. Chinese Science Bulletin, 2021, 66(33): 4205-4206. | |
| 14 | WANG Qian, YU Yang, PAN Keqin, et al. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy[J]. IEEE Transactions on Bio medical Engineering, 2014, 61(7): 2161-2166. |
| 15 | FU Junheng, GAO Jianye, QIN Peng, et al. Liquid metal hydraulics paradigm: Transmission medium and actuation of bimodal signals[J]. Science China Technological Sciences, 2022, 65(1): 77-86. |
| 16 | 李德才. 磁性液体理论及应用[M]. 北京: 科学出版社, 2003. |
| LI Decai. Theory and application of magnetic liquid[M]. Beijing: Science Press, 2003. | |
| 17 | GUO Cuixia, WU Zhangyong, WANG Xing, et al. Comparison in performance by emulsion and SiC nanofluids HS-WEDM multi-cutting process[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(9/10): 3315-3324. |
| 18 | ALI A R, SALAM B. A review on nanofluid: Preparation, stability, thermophysical properties, heat transfer characteristics and application[J]. SN Applied Sciences, 2020, 2(10): 1636. |
| 19 | 宋铮铮, 吴张永, 莫子勇, 等. 纳米碳化硼在水基础液中的分散稳定性[J]. 化工进展, 2015, 34(4): 1055-1058. |
| SONG Zhengzheng, WU Zhangyong, MO Ziyong, et al. Dispersing stability of nano boron carbide in water-based fluid[J]. Chemical Industry and Engineering Progress, 2015, 34(4): 1055-1058. | |
| 20 | MOHAMMADFAM Y, ZEINALI H S, KHAZINI L. Experimental Investigation of Fe3O4/hydraulic oil magnetic nanofluids rheological properties and performance in the presence of magnetic field[J]. Tribology International, 2020, 142: 105995. |
| 21 | 陈文, 吴张永, 张莲芝, 等. 环烷基NiFe2O4磁流体的制备及有磁场沉降稳定性[J]. 化工进展, 2019, 38(6): 2665-2673. |
| CHEN Wen, WU Zhangyong, ZHANG Lianzhi, et al. Preparation of oil-based NiFe2O4 magnetic fluid and stability of magnetic field settlement[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2665-2673. | |
| 22 | 朱启晨, 吴张永, 王志强, 等. 低温下硅油基纳米磁流体沉降稳定性与黏度特性研究[J]. 化工进展, 2022, 42(10): 5101-5110. |
| ZHU Qichen, WU Zhangyong, WANG Zhiqiang, et al. Study on sedimentation stability and viscosity properties of silicone oil-based magnetic nanofluid at low temperature[J]. Chemical Industry and Engineering Progress, 2022, 42(10): 5101-5110. | |
| 23 | MA Kunquan, LIU Jing. Nano liquid-metal fluid as ultimate coolant[J]. Physics Letters A, 2007, 361(3): 252-256. |
| 24 | LI Xing, QI Penghao, LIU Qi, et al. Improving tribological behaviors of gallium-based liquid metal by h-BN nano-additive[J]. Wear, 2021, 484/485: 203852. |
| 25 | 马明琰, 翟玉玲, 轩梓灏, 等. 三元混合纳米流体稳定性及热性能[J]. 化工进展, 2021, 40(8): 4179-4186. |
| MA Mingyan, ZHAI Yuling, XUAN Zihao, et al. Stability and thermal performance of ternary hybrid nanofluids[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4179-4186. | |
| 26 | SEPEHRNIA M, MALEKI H, FOROUZANDEH B M. Tribological and rheological properties of novel MoO3-GO-MWCNTs/5W30 ternary hybrid nanolubricant: Experimental measurement, development of practical correlation, and artificial intelligence modeling[J]. Powder Technology, 2023, 421: 118389. |
| 27 | YOSHIMURA Masashi, KOMURA Osamu, YAMAKAWA Akira. Microstructure and tribological properties of nano-sized Si3N4 [J]. Scripta Materialia, 2001, 44(8/9): 1517-1521. |
| 28 | GODFREY D J, MAY E R. The resistance of silicon nitride ceramics to thermal shock and other hostile environments[C]//Kriegel WW, Palmour H. Ceramics in Severe Environments. Boston, MA: Spring, 1971: 149-162. |
| 29 | 秦建, 刘天霞, 王建, 等. 油酸改性石墨烯/二硫化钼复合材料润滑添加剂的制备及摩擦学特性[J]. 化工进展, 2022, 41(9): 4973-4985. |
| QIN Jian, LIU Tianxia, WANG Jian, et al. Preparation and tribological properties of oleic acid modified graphene/molybdenum disulfide composite lubricating additives[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4973-4985. | |
| 30 | 王玉书. 液态金属与碳基材料界面作用机制及应用研究[D]. 北京: 中国科学院大学, 2020. |
| WANG Yushu. Study on interface mechanism and application of liquid metal and carbon-based materials[D]. Beijing: University of Chinese Academy of Sciences, 2020. | |
| 31 | WANG Dawei, WANG Xiaohong, RAO Wei. Precise regulation of Ga-based liquid metal oxidation[J]. Accounts of Materials Research, 2021, 2(11): 1093-1103. |
| 32 | CHEN Yuan, ZHANG Junhui, XU Bing, et al. Multi-objective optimization of micron-scale surface textures for the cylinder/valve plate interface in axial piston pumps[J]. Tribology International, 2019, 138: 316-329. |
| 33 | ALLIOUX F M, GHASEMIAN M B, XIE W J, et al. Applications of liquid metals in nanotechnology[J]. Nanoscale Horizons, 2022, 7(2): 141-167. |
| 34 | DATTA R S, SYED N, ZAVABETI A, et al. Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique[J]. Nature Electronics, 2020, 3(1): 51-58. |
| 35 | GHASEMIAN M B, ZAVABETI A, MOUSAVI M, et al. Doping process of 2D materials based on the selective migration of dopants to the interface of liquid metals[J]. Advanced Materials, 2021, 33(43): e2104793. |
| 36 | WANG C, GONG Y, CUNNING B V, et al. A general approach to composites containing nonmetallic fillers and liquid gallium[J]. Science Advances, 2021, 7(1): eabe3767. |
| 37 | KHADEM M, PENKOV O V, PUKHA V E, et al. Ultra-thin carbon-based nanocomposite coatings for superior wear resistance under lubrication with nano-diamond additives[J]. RSC Advances, 2016, 6(62): 56918-56929. |
| 38 | 陈国庆, 谭雅文, 黄卿, 等. 一种油溶性季铵盐离子液体作为PAO基础油添加剂的摩擦学研究[J]. 摩擦学学报, 2021, 41(6): 802-812. |
| CHEN Guoqing, TAN Yawen, HUANG Qing, et al. Tribological properties of an oil-soluble quaternary ammonium salt ionic liquids as PAO base oil additives[J]. Tribology, 2021, 41(6): 802-812. | |
| 39 | ELTON E S, REEVE T C, THORNLEY L E, et al. Dramatic effect of oxide on measured liquid metal rheology[J]. Journal of Rheology, 2020, 64(1): 119-128. |
| 40 | BOCK Wolfgang. Lubricants and Lubrication: Hydraulic oils[M]. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017: 345-420. |
| 41 | 国家质量监督检验检疫总局. 润滑剂、工业用油和相关产品(L类)的分类 第2部分:H组: [S]. 北京: 中国标准出版社, 2003. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Lubricants, industrial oils and related products (class L)—Classification—Part 2: Family H(Hydraulic systems): [S]. Beijing: Standards Press of China, 2003. | |
| 42 | XU Qin, OUDALOV Nikolai, GUO Qiti, et al. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium[J]. Physics of Fluids, 2012, 24(6): 063101. |
| 43 | RITWIK Ritwik. Measuring the viscous flow behaviour of molten metals under shear[D]. London: Brunel University, 2012. |
| 44 | LUO Ting, WEI Xiaowei, ZHAO Haiyan, et al. Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives[J]. Ceramics International, 2014, 40(7): 10103-10109. |
| [1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
| [2] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
| [3] | 张岱凌, 丁玉梅, 左夏华, 黎昊为, 杨卫民, 阎华, 安瑛. 废弃墨粉纳米流体的光热特性[J]. 化工进展, 2023, 42(9): 4791-4798. |
| [4] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
| [5] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
| [6] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
| [7] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
| [8] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
| [9] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
| [10] | 李云闯, 谢方明, 席亚男, 万新月, 孙玉虎, 赵永峰, 李根, 刘宏海, 高雄厚, 刘洪涛. 高水热稳定性介孔分子筛的低成本合成研究进展[J]. 化工进展, 2023, 42(4): 1877-1884. |
| [11] | 张晨光, 封硕, 邢玉烨, 沈伯雄, 苏立超. 柴油车用NH3-SCR铜基分子筛催化剂孤立态Cu2+研究进展[J]. 化工进展, 2023, 42(3): 1321-1331. |
| [12] | 陈文哲, 王霜, 翟玉玲, 李舟航. 颗粒团聚状态对纳米流体热导率的影响[J]. 化工进展, 2023, 42(11): 5700-5706. |
| [13] | 宋超, 叶学民, 李春曦. 纳米颗粒与表面活性剂的自组装行为对硅油-水界面性质影响的分子动力学[J]. 化工进展, 2022, 41(S1): 366-375. |
| [14] | 罗源皓, 林凌, 郭拥军, 杨玉坤, 熊贵霞, 任仁, 屈沅治. 纳米材料在抗高温钻井液中的应用进展[J]. 化工进展, 2022, 41(9): 4895-4906. |
| [15] | 陆诗建, 刘玲, 刘滋武, 郭伯文, 俞徐林, 梁艳, 赵东亚, 朱全民. AEP-DPA-CuO相变纳米流体吸收CO2稳定性[J]. 化工进展, 2022, 41(8): 4555-4561. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |