1 |
路甬祥. 机械学科近期发展战略——流体传动与控制部分[J]. 液压与气动, 1989(3): 4-5.
|
|
LU Yongxiang. Recent development strategy of mechanical discipline—Fluid power transmission and control part[J]. Chinese Hydraulics & Pneumatics, 1989(3): 4-5.
|
2 |
訚耀保. 极端环境下的电液伺服控制理论及应用技术[M]. 上海: 上海科学技术出版社, 2012.
|
|
YIN Yaobao. Theory and application technology of electro-hydraulic servo control in extreme environment[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2012.
|
3 |
KIM J-H, HAN S M, KIM Y-J. Effects of viscosity of hydraulic oil on the performance of actuator[J]. The KSFM Journal of Fluid Machinery, 2016, 19(1): 31-36.
|
4 |
ZHANG Jian, QI Naiming, JIANG Jihai. Effect of oil viscosity on hydraulic cavitation luminescence[J]. Fluid Dynamics, 2021, 56(3): 371-382.
|
5 |
姚勇伟, 吴张永, 朱启晨, 等. Ni0.5Zn0.5Fe2O4磁流体相变稳定性及黏度特性实验研究[J]. 工程热物理学报, 2022, 43(3): 817-823.
|
|
YAO Yongwei, WU Zhangyong, ZHU Qichen, et al. Experimental study on stability and viscosity properties of phase change of Ni0.5Zn0.5Fe2O4 magnetic fluid[J]. Journal of Engineering Thermophysics, 2022, 43(3): 817-823.
|
6 |
CHEN Sen, WANG Hongzhang, ZHAO Ruiqi, et al. Liquid metal composites[J]. Matter., 2020, 2(6): 1446-1480.
|
7 |
WANG Qian, YU Yang, LIU Jing. Preparations, characteristics and applications of the functional liquid metal materials[J]. Advanced Engineering Materials, 2018, 20(5): 1700781.
|
8 |
刘静. 液态金属科技与工业的崛起: 进展与机遇[J]. 中国工程科学, 2020, 22(5): 93-103.
|
|
LIU Jing. Rise of the liquid metal science, technology and industry: Advancements and opportunities[J]. Strategic Study of CAE, 2020, 22(5): 93-103.
|
9 |
DENG Yueguang, LIU Jing. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs[J]. Journal of Electronic Packaging, 2010, 132(3): 031009.
|
10 |
孙英, 刘乃源, 翁玲, 等. 基于镓基液态金属的高带宽柔性NFC标签天线设计及特性测试[J]. 仪器仪表学报, 2021, 42(7): 216-225.
|
|
SUN Ying, LIU Naiyuan, WENG Ling, et al. Design and characteristic test of high bandwidth flexible NFC tag antenna based on gallium-based liquid metal[J]. Chinese Journal of Scientific Instrument, 2021, 42(7): 216-225.
|
11 |
白冰鹤, 陆规, 闵琪, 等. 电毛细驱动液态金属液滴可寻址运动特性研究[J]. 工程热物理学报, 2020, 41(8): 1845-1850.
|
|
BAI Binghe, LU Gui, MIN Qi, et al. Research on addressable motion of liquid capillary driven liquid metal droplets[J]. Journal of Engineering Thermophysics, 2020, 41(8): 1845-1850.
|
12 |
SHU Jian, GE Duan, WANG Erlong, et al. A liquid metal artificial muscle[J]. Advanced Materials, 2021, 33(43): 2103062.
|
13 |
汪璐阳, 曾梦琪, 付磊. 液态金属上“赏”石墨烯舞动[J]. 科学通报, 2021, 66(33): 4205-4206.
|
|
WANG Luyang, ZENG Mengqi, FU Lei. Observing graphene dancing on liquid metal[J]. Chinese Science Bulletin, 2021, 66(33): 4205-4206.
|
14 |
WANG Qian, YU Yang, PAN Keqin, et al. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy[J]. IEEE Transactions on Bio medical Engineering, 2014, 61(7): 2161-2166.
|
15 |
FU Junheng, GAO Jianye, QIN Peng, et al. Liquid metal hydraulics paradigm: Transmission medium and actuation of bimodal signals[J]. Science China Technological Sciences, 2022, 65(1): 77-86.
|
16 |
李德才. 磁性液体理论及应用[M]. 北京: 科学出版社, 2003.
|
|
LI Decai. Theory and application of magnetic liquid[M]. Beijing: Science Press, 2003.
|
17 |
GUO Cuixia, WU Zhangyong, WANG Xing, et al. Comparison in performance by emulsion and SiC nanofluids HS-WEDM multi-cutting process[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(9/10): 3315-3324.
|
18 |
ALI A R, SALAM B. A review on nanofluid: Preparation, stability, thermophysical properties, heat transfer characteristics and application[J]. SN Applied Sciences, 2020, 2(10): 1636.
|
19 |
宋铮铮, 吴张永, 莫子勇, 等. 纳米碳化硼在水基础液中的分散稳定性[J]. 化工进展, 2015, 34(4): 1055-1058.
|
|
SONG Zhengzheng, WU Zhangyong, MO Ziyong, et al. Dispersing stability of nano boron carbide in water-based fluid[J]. Chemical Industry and Engineering Progress, 2015, 34(4): 1055-1058.
|
20 |
MOHAMMADFAM Y, ZEINALI H S, KHAZINI L. Experimental Investigation of Fe3O4/hydraulic oil magnetic nanofluids rheological properties and performance in the presence of magnetic field[J]. Tribology International, 2020, 142: 105995.
|
21 |
陈文, 吴张永, 张莲芝, 等. 环烷基NiFe2O4磁流体的制备及有磁场沉降稳定性[J]. 化工进展, 2019, 38(6): 2665-2673.
|
|
CHEN Wen, WU Zhangyong, ZHANG Lianzhi, et al. Preparation of oil-based NiFe2O4 magnetic fluid and stability of magnetic field settlement[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2665-2673.
|
22 |
朱启晨, 吴张永, 王志强, 等. 低温下硅油基纳米磁流体沉降稳定性与黏度特性研究[J]. 化工进展, 2022, 42(10): 5101-5110.
|
|
ZHU Qichen, WU Zhangyong, WANG Zhiqiang, et al. Study on sedimentation stability and viscosity properties of silicone oil-based magnetic nanofluid at low temperature[J]. Chemical Industry and Engineering Progress, 2022, 42(10): 5101-5110.
|
23 |
MA Kunquan, LIU Jing. Nano liquid-metal fluid as ultimate coolant[J]. Physics Letters A, 2007, 361(3): 252-256.
|
24 |
LI Xing, QI Penghao, LIU Qi, et al. Improving tribological behaviors of gallium-based liquid metal by h-BN nano-additive[J]. Wear, 2021, 484/485: 203852.
|
25 |
马明琰, 翟玉玲, 轩梓灏, 等. 三元混合纳米流体稳定性及热性能[J]. 化工进展, 2021, 40(8): 4179-4186.
|
|
MA Mingyan, ZHAI Yuling, XUAN Zihao, et al. Stability and thermal performance of ternary hybrid nanofluids[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4179-4186.
|
26 |
SEPEHRNIA M, MALEKI H, FOROUZANDEH B M. Tribological and rheological properties of novel MoO3-GO-MWCNTs/5W30 ternary hybrid nanolubricant: Experimental measurement, development of practical correlation, and artificial intelligence modeling[J]. Powder Technology, 2023, 421: 118389.
|
27 |
YOSHIMURA Masashi, KOMURA Osamu, YAMAKAWA Akira. Microstructure and tribological properties of nano-sized Si3N4 [J]. Scripta Materialia, 2001, 44(8/9): 1517-1521.
|
28 |
GODFREY D J, MAY E R. The resistance of silicon nitride ceramics to thermal shock and other hostile environments[C]//Kriegel WW, Palmour H. Ceramics in Severe Environments. Boston, MA: Spring, 1971: 149-162.
|
29 |
秦建, 刘天霞, 王建, 等. 油酸改性石墨烯/二硫化钼复合材料润滑添加剂的制备及摩擦学特性[J]. 化工进展, 2022, 41(9): 4973-4985.
|
|
QIN Jian, LIU Tianxia, WANG Jian, et al. Preparation and tribological properties of oleic acid modified graphene/molybdenum disulfide composite lubricating additives[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4973-4985.
|
30 |
王玉书. 液态金属与碳基材料界面作用机制及应用研究[D]. 北京: 中国科学院大学, 2020.
|
|
WANG Yushu. Study on interface mechanism and application of liquid metal and carbon-based materials[D]. Beijing: University of Chinese Academy of Sciences, 2020.
|
31 |
WANG Dawei, WANG Xiaohong, RAO Wei. Precise regulation of Ga-based liquid metal oxidation[J]. Accounts of Materials Research, 2021, 2(11): 1093-1103.
|
32 |
CHEN Yuan, ZHANG Junhui, XU Bing, et al. Multi-objective optimization of micron-scale surface textures for the cylinder/valve plate interface in axial piston pumps[J]. Tribology International, 2019, 138: 316-329.
|
33 |
ALLIOUX F M, GHASEMIAN M B, XIE W J, et al. Applications of liquid metals in nanotechnology[J]. Nanoscale Horizons, 2022, 7(2): 141-167.
|
34 |
DATTA R S, SYED N, ZAVABETI A, et al. Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique[J]. Nature Electronics, 2020, 3(1): 51-58.
|
35 |
GHASEMIAN M B, ZAVABETI A, MOUSAVI M, et al. Doping process of 2D materials based on the selective migration of dopants to the interface of liquid metals[J]. Advanced Materials, 2021, 33(43): e2104793.
|
36 |
WANG C, GONG Y, CUNNING B V, et al. A general approach to composites containing nonmetallic fillers and liquid gallium[J]. Science Advances, 2021, 7(1): eabe3767.
|
37 |
KHADEM M, PENKOV O V, PUKHA V E, et al. Ultra-thin carbon-based nanocomposite coatings for superior wear resistance under lubrication with nano-diamond additives[J]. RSC Advances, 2016, 6(62): 56918-56929.
|
38 |
陈国庆, 谭雅文, 黄卿, 等. 一种油溶性季铵盐离子液体作为PAO基础油添加剂的摩擦学研究[J]. 摩擦学学报, 2021, 41(6): 802-812.
|
|
CHEN Guoqing, TAN Yawen, HUANG Qing, et al. Tribological properties of an oil-soluble quaternary ammonium salt ionic liquids as PAO base oil additives[J]. Tribology, 2021, 41(6): 802-812.
|
39 |
ELTON E S, REEVE T C, THORNLEY L E, et al. Dramatic effect of oxide on measured liquid metal rheology[J]. Journal of Rheology, 2020, 64(1): 119-128.
|
40 |
BOCK Wolfgang. Lubricants and Lubrication: Hydraulic oils[M]. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017: 345-420.
|
41 |
国家质量监督检验检疫总局. 润滑剂、工业用油和相关产品(L类)的分类 第2部分:H组: [S]. 北京: 中国标准出版社, 2003.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Lubricants, industrial oils and related products (class L)—Classification—Part 2: Family H(Hydraulic systems): [S]. Beijing: Standards Press of China, 2003.
|
42 |
XU Qin, OUDALOV Nikolai, GUO Qiti, et al. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium[J]. Physics of Fluids, 2012, 24(6): 063101.
|
43 |
RITWIK Ritwik. Measuring the viscous flow behaviour of molten metals under shear[D]. London: Brunel University, 2012.
|
44 |
LUO Ting, WEI Xiaowei, ZHAO Haiyan, et al. Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives[J]. Ceramics International, 2014, 40(7): 10103-10109.
|