化工进展 ›› 2024, Vol. 43 ›› Issue (2): 1054-1062.DOI: 10.16085/j.issn.1000-6613.2023-1971
• 材料科学与技术 • 上一篇
刘泽鹏(), 曾纪珺, 廖袁淏, 唐晓博, 赵波, 韩升, 张伟()
收稿日期:
2023-11-13
修回日期:
2024-01-08
出版日期:
2024-02-25
发布日期:
2024-03-07
通讯作者:
张伟
作者简介:
刘泽鹏(1999—),男,硕士研究生,研究方向为催化反应工程。E-mail:2456708892@qq.com。
基金资助:
LIU Zepeng(), ZENG Jijun, LIAO Yuanhao, TANG Xiaobo, ZHAO Bo, HAN Sheng, ZHANG Wei()
Received:
2023-11-13
Revised:
2024-01-08
Online:
2024-02-25
Published:
2024-03-07
Contact:
ZHANG Wei
摘要:
合成了1-乙基-3-甲基咪唑亚磷酸甲酯盐([Emim][OMP])和1-乙基-3-甲基咪唑亚磷酸乙酯盐([Emim][OEP])两种烷基咪唑亚磷酸酯离子液体,并使用核磁共振波谱仪和元素分析仪对产物进行了表征,在常压下测定了其热稳定性、相行为、密度和黏度(293.15~353.15K)、电导率和表面张力(293.15~343.15K)。采用自然对数方程关联离子液体的密度,根据实验值计算得到离子液体体积性质,包括热膨胀系数、分子体积、标准熵和晶格能。采用VFT方程关联离子液体黏度和电导率。采用线性方程关联表面张力,并根据实验值计算得到离子液体的表面熵和表面焓。实验结果表明,两种离子液体的分解温度(Tonset)分别为271.0℃和259.2℃,玻璃化温度(Tg)分别为 -84.87℃和 -85.00℃,离子液体的密度、黏度和表面张力随温度的升高而减小,而电导率随温度的升高而增大。Walden规则分析表明,两种烷基咪唑亚磷酸酯离子液体均符合Walden规则,且均被归类为“good ionic liquids”。
中图分类号:
刘泽鹏, 曾纪珺, 廖袁淏, 唐晓博, 赵波, 韩升, 张伟. 离子液体1-乙基-3-甲基咪唑亚磷酸甲酯盐与1-乙基-3-甲基咪唑亚磷酸乙酯盐的热物性[J]. 化工进展, 2024, 43(2): 1054-1062.
LIU Zepeng, ZENG Jijun, LIAO Yuanhao, TANG Xiaobo, ZHAO Bo, HAN Sheng, ZHANG Wei. Thermodynamic properties of 1-ethyl-3-methylimidazolium methyl phosphonate and 1-ethyl-3-methylimidazolium ethyl phosphonate[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1054-1062.
离子液体 | Tstart /℃ | Tonset /℃ |
---|---|---|
[Emim][OMP] | 172.5 | 271.0 |
[Emim][OEP] | 167.8 | 259.2 |
表1 [Emim][OMP]与[Emim][OEP]的Tstart和Tonset
离子液体 | Tstart /℃ | Tonset /℃ |
---|---|---|
[Emim][OMP] | 172.5 | 271.0 |
[Emim][OEP] | 167.8 | 259.2 |
T/K | ρ /g | ||
---|---|---|---|
[Emim][OMP] | [Emim][OMP](ref) [ | [Emim][OEP] | |
293.15 | 1.1967 | 1.1983 | 1.1578 |
298.15 | 1.1936 | — | 1.1547 |
303.15 | 1.1904 | 1.1917 | 1.1515 |
313.15 | 1.1840 | 1.1853 | 1.1451 |
323.15 | 1.1775 | 1.1788 | 1.1388 |
333.15 | 1.1709 | 1.1725 | 1.1323 |
343.15 | 1.1644 | 1.1661 | 1.1259 |
353.15 | 1.1580 | 1.1599 | 1.1194 |
表2 [Emim][OMP]与[Emim][OEP]在293.15~353.15K范围内的密度实验值及[Emim][OMP]密度的文献值
T/K | ρ /g | ||
---|---|---|---|
[Emim][OMP] | [Emim][OMP](ref) [ | [Emim][OEP] | |
293.15 | 1.1967 | 1.1983 | 1.1578 |
298.15 | 1.1936 | — | 1.1547 |
303.15 | 1.1904 | 1.1917 | 1.1515 |
313.15 | 1.1840 | 1.1853 | 1.1451 |
323.15 | 1.1775 | 1.1788 | 1.1388 |
333.15 | 1.1709 | 1.1725 | 1.1323 |
343.15 | 1.1644 | 1.1661 | 1.1259 |
353.15 | 1.1580 | 1.1599 | 1.1194 |
离子液体 | α/10-4K-1 | ρ0/g·cm-3 | R2 | Δ |
---|---|---|---|---|
[Emim][OMP] | 5.49543 | 0.34085 | 0.99991 | 0.0068% |
[Emim][OEP] | 5.61784 | 0.31135 | 0.99992 | 0.0070% |
表3 [Emim][OMP]与[Emim][OEP]的lnρ对T的线性方程拟合参数
离子液体 | α/10-4K-1 | ρ0/g·cm-3 | R2 | Δ |
---|---|---|---|---|
[Emim][OMP] | 5.49543 | 0.34085 | 0.99991 | 0.0068% |
[Emim][OEP] | 5.61784 | 0.31135 | 0.99992 | 0.0070% |
离子液体 | M/g∙mol-3 | Vm/nm3 | S⊖/J∙mol-1∙K-1 | UPOT/kJ∙mol-1 | |
---|---|---|---|---|---|
[Emim][OMP] | 206.179 | 0.2868 | 387.00 | 459.54 | |
[Emim][OEP] | 220.212 | 0.3167 | 424.27 | 447.97 |
表4 [Emim][OMP]与[Emim][OEP]在298.15K下的分子体积、标准熵及晶格能
离子液体 | M/g∙mol-3 | Vm/nm3 | S⊖/J∙mol-1∙K-1 | UPOT/kJ∙mol-1 | |
---|---|---|---|---|---|
[Emim][OMP] | 206.179 | 0.2868 | 387.00 | 459.54 | |
[Emim][OEP] | 220.212 | 0.3167 | 424.27 | 447.97 |
T/K | η/Pa·s | |
---|---|---|
[Emim][OMP] | [Emim][OEP] | |
293.15 | 0.147010 | 0.200193 |
298.15 | 0.110750 | 0.147847 |
303.15 | 0.085334 | 0.111877 |
313.15 | 0.053695 | 0.068143 |
323.15 | 0.035999 | 0.044478 |
333.15 | 0.025411 | 0.030706 |
343.15 | 0.018716 | 0.022174 |
353.15 | 0.014278 | 0.016649 |
表5 [Emim][OMP]与[Emim][OEP]在293.15~353.15K范围内的黏度
T/K | η/Pa·s | |
---|---|---|
[Emim][OMP] | [Emim][OEP] | |
293.15 | 0.147010 | 0.200193 |
298.15 | 0.110750 | 0.147847 |
303.15 | 0.085334 | 0.111877 |
313.15 | 0.053695 | 0.068143 |
323.15 | 0.035999 | 0.044478 |
333.15 | 0.025411 | 0.030706 |
343.15 | 0.018716 | 0.022174 |
353.15 | 0.014278 | 0.016649 |
离子液体 | R2 | Δ | |||
---|---|---|---|---|---|
[Emim][OMP] | 1.6190 | 784.91 | 177.91 | >0.99999 | 0.01% |
[Emim][OEP] | 1.4700 | 822.49 | 179.18 | >0.99999 | 0.04% |
表6 [Emim][OMP]与[Emim][OEP]黏度的VFT方程拟合参数、相关系数及平均相对误差
离子液体 | R2 | Δ | |||
---|---|---|---|---|---|
[Emim][OMP] | 1.6190 | 784.91 | 177.91 | >0.99999 | 0.01% |
[Emim][OEP] | 1.4700 | 822.49 | 179.18 | >0.99999 | 0.04% |
T/K | σ/mS·cm-1 | |
---|---|---|
[Emim][OMP] | [Emim][OEP] | |
293.15 | 2.582 | 1.639 |
298.15 | 3.376 | 2.156 |
303.15 | 4.305 | 2.791 |
313.15 | 6.619 | 4.445 |
323.15 | 9.616 | 6.604 |
333.15 | 13.270 | 9.321 |
343.15 | 17.660 | 12.570 |
表7 [Emim][OMP]与[Emim][OEP]在293.15~343.15K范围内的电导率
T/K | σ/mS·cm-1 | |
---|---|---|
[Emim][OMP] | [Emim][OEP] | |
293.15 | 2.582 | 1.639 |
298.15 | 3.376 | 2.156 |
303.15 | 4.305 | 2.791 |
313.15 | 6.619 | 4.445 |
323.15 | 9.616 | 6.604 |
333.15 | 13.270 | 9.321 |
343.15 | 17.660 | 12.570 |
离子液体 | B | R2 | Δ | ||
---|---|---|---|---|---|
[Emim][OMP] | 1439.9 | 724.7 | 178.50 | >0.99999 | 0.35% |
[Emim][OEP] | 1158.2 | 726.0 | 182.63 | >0.99999 | 0.73% |
表8 [Emim][OMP]与[Emim][OEP]电导率的VFT方程拟合参数、相关系数及平均相对误差
离子液体 | B | R2 | Δ | ||
---|---|---|---|---|---|
[Emim][OMP] | 1439.9 | 724.7 | 178.50 | >0.99999 | 0.35% |
[Emim][OEP] | 1158.2 | 726.0 | 182.63 | >0.99999 | 0.73% |
T/K | γ/mN·m-1 | |
---|---|---|
[Emim][OMP] | [Emim][OEP] | |
293.15 | 49.85 | 44.55 |
298.15 | 49.19 | 44.08 |
303.15 | 48.45 | 43.45 |
313.15 | 47.22 | 42.78 |
323.15 | 46.28 | 41.81 |
333.15 | 45.07 | 41.12 |
343.15 | 44.34 | 40.37 |
298.15(ref) [ | 49.0 | — |
343.15(ref) [ | 46.3 | — |
表9 [Emim][OMP]和[Emim][OEP]在293.15~343.15K范围内的表面张力
T/K | γ/mN·m-1 | |
---|---|---|
[Emim][OMP] | [Emim][OEP] | |
293.15 | 49.85 | 44.55 |
298.15 | 49.19 | 44.08 |
303.15 | 48.45 | 43.45 |
313.15 | 47.22 | 42.78 |
323.15 | 46.28 | 41.81 |
333.15 | 45.07 | 41.12 |
343.15 | 44.34 | 40.37 |
298.15(ref) [ | 49.0 | — |
343.15(ref) [ | 46.3 | — |
离子液体 | Hγ /mJ·m-2 | Sγ / mJ·m-2·K-1 | R2 | Δ |
---|---|---|---|---|
[Emim][OMP] | 172.5 | 271.0 | 0.99175 | 0.31% |
[Emim][OEP] | 167.8 | 259.2 | 0.99453 | 0.19% |
表10 [Emim][OMP]和[Emim][OEP]表面张力的线性拟合结果
离子液体 | Hγ /mJ·m-2 | Sγ / mJ·m-2·K-1 | R2 | Δ |
---|---|---|---|---|
[Emim][OMP] | 172.5 | 271.0 | 0.99175 | 0.31% |
[Emim][OEP] | 167.8 | 259.2 | 0.99453 | 0.19% |
1 | WILKES John S. A short history of ionic liquids—From molten salts to neoteric solvents[J]. Green Chemistry, 2002, 4(2): 73-80. |
2 | OHNO, HIROYUKI. Importance and possibility of ionic liquids [M]. New York: John Wiley & Sons, Inc. 2005. |
3 | MACFARLANE Douglas R, PRINGLE Jennifer M, JOHANSSON Katarina M, et al. Lewis base ionic liquids[J]. Chemical Communications, 2006(18): 1905-1917. |
4 | KAZUHIDE Ueno, HIROYUKI Tokuda, MASAYOSHI Watanabe. Ionicity in ionic liquids: Correlation with ionic structure and physicochemical properties[J]. Physical Chemistry Chemical Physics: PCCP, 2010, 12(8): 1649-1658. |
5 | ZHOU Zhibin, HAJIME Matsumoto, KUNIAKI Tatsumi. Structure and properties of new ionic liquids based on alkyl- and alkenyltrifluoroborates[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2005, 6(7): 1324-1332. |
6 | ANDERSON Jared L, DING Rongfang, ELLERN Arkady, et al. Structure and properties of high stability geminal dicationic ionic liquids[J]. Journal of the American Chemical Society, 2005, 127(2): 593-604. |
7 | APPETECCHI Giovanni B, MONTANINO Maria, ZANE Daniela, et al. Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids[J]. Electrochimica Acta, 2009, 54(4): 1325-1332. |
8 | DZYUBA Sergei V, BARTSCH Richard A. Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethylsulfonyl)imides on physical properties of the ionic liquids[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2002, 3(2): 161-166. |
9 | KUNZE Miriam, JEONG Sangsik, PAILLARD Elie, et al. Melting behavior of pyrrolidinium-based ionic liquids and their binary mixtures[J]. The Journal of Physical Chemistry C, 2010, 114(28): 12364-12369. |
10 | SEKI Shiro, KOBAYASHI Takeshi, KOBAYASHI Yo, et al. Effects of cation and anion on physical properties of room-temperature ionic liquids[J]. Journal of Molecular Liquids, 2010, 152(1/2/3): 9-13. |
11 | HIROYUKI Tokuda, KUNIKAZU Ishii, Abu Bin Hasan Susan Md, et al. Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures[J]. The Journal of Physical Chemistry B, 2006, 110(6): 2833-2839. |
12 | RAMAJO B, BLANCO D, RIVERA N, et al. Long-term thermal stability of fatty acid anion-based ionic liquids[J]. Journal of Molecular Liquids, 2021, 328: 115492. |
13 | LIU Kexin, WANG Zhuyi, SHI Liyi, et al. Ionic liquids for high performance lithium metal batteries[J]. Journal of Energy Chemistry, 2021, 59: 320-333. |
14 | REN Tianlin, MA Xiwen, WU Xiaoqiong, et al. Degradation of imidazolium ionic liquids in a thermally activated persulfate system[J]. Chemical Engineering Journal, 2021, 412: 128624. |
15 | HIROSAWA Kazu, FUJII Kenta, HASHIMOTO Kei, et al. Solvated structure of cellulose in a phosphonate-based ionic liquid[J]. Macromolecules, 2017, 50(17): 6509-6517. |
16 | HAN Yunyan, QIAO Dan, GUO Yuexia, et al. Influence of competitive adsorption on lubricating property of phosphonate ionic liquid additives in PEG[J]. Tribology Letters, 2016, 64(2): 22. |
17 | HAN Yunyan, QIAO Dan, ZHANG Lin, et al. Study of tribological performance and mechanism of phosphonate ionic liquids for steel/aluminum contact[J]. Tribology International, 2015, 84: 71-80. |
18 | HIRAGA Yuya, KATO Aya, SATO Yoshiyuki, et al. Densities at pressures up to 200 MPa and atmospheric pressure viscosities of ionic liquids 1-ethyl-3-methylimidazolium methylphosphate, 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium acetate, and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[J]. Journal of Chemical & Engineering Data, 2015, 60(3): 876-885. |
19 | HASSE Benjamin, LEHMANN Julia, ASSENBAUM Daniel, et al. Viscosity, interfacial tension, density, and refractive index of ionic liquids[EMIM][MeSO3], [EMIM][MeOHPO2], [EMIM][OcSO4], and[BBIM][NTf2]in dependence on temperature at atmospheric pressure[J]. Journal of Chemical & Engineering Data, 2009, 54(9): 2576-2583. |
20 | ALMEIDA Hugo F D, PASSOS Helena, LOPES-DA-SILVA José A, et al. Thermophysical properties of five acetate-based ionic liquids[J]. Journal of Chemical & Engineering Data, 2012, 57(11): 3005-3013. |
21 | CAO Yuanyuan, MU Tiancheng. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis[J]. Industrial & Engineering Chemistry Research, 2014, 53(20): 8651-8664. |
22 | Pierre BONHÔTE, DIAS Ana Paula, PAPAGEORGIOU Nicholas, et al. Hydrophobic, highly conductive ambient-temperature molten salts[J]. Inorganic Chemistry, 1996, 35(5): 1168-1178. |
23 | ALMEIDA Hugo F D, TELES Ana Rita R, LOPES-DA-SILVA José A, et al. Influence of the anion on the surface tension of 1-ethyl-3-methylimidazolium-based ionic liquids[J]. The Journal of Chemical Thermodynamics, 2012, 54: 49-54. |
24 | 王义闹, 吴利丰. 基于平均相对误差绝对值最小的GM(1, 1)建模[J]. 华中科技大学学报(自然科学版), 2009, 37(10): 29-31. |
WANG Yinao, WU Lifeng. Modeling GM(1, 1) based on the minimum of mean absolute percentage error[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2009, 37(10): 29-31. | |
25 | NEVES Catarina M S S, KIKI Adi Kurnia, COUTINHO João A P, et al. Systematic study of the thermophysical properties of imidazolium-based ionic liquids with cyano-functionalized anions[J]. The Journal of Physical Chemistry B, 2013, 117(35): 10271-10283. |
26 | 王晓玲, 王建英, 李小云, 等. 离子液体[C2mim]NO3与[C2mim][MetSO4]的热力学性能研究[J]. 河北科技大学学报, 2011, 32(2): 103-106. |
WANG Xiaoling, WANG Jianying, LI Xiaoyun, et al. Study on thermophysical properties of ionic liquids of 1-ethyl-3-methylimid azolium nitrate and 1-ethyl-3-methylimidazolium methylsulfate[J]. Journal of Hebei University of Science and Technology, 2011, 32(2): 103-106. | |
27 | MACFARLANE Douglas R, KAR Mega, PRINGLE Jennifer M. Fundamentals of ionic liquids: From chemistry to applications [M/OB]. New York:John Wiley & Sons, 2017. DOI: 10.1002/9783527340033 . |
28 | ZHOU Zhibin, HAJIME Matsumoto, KUNIAKI Tatsumi. Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: Synthesis, characterization, and properties[J]. Chemistry, 2006, 12(8): 2196-2212. |
29 | TAO Duanjian, HU Wenjing, CHEN Fengfeng, et al. Low-viscosity tetramethylguanidinum-based ionic liquids with different phenolate anions: Synthesis, characterization, and physical properties[J]. Journal of Chemical & Engineering Data, 2014, 59(12): 4031-4038. |
30 | BITTNER Bożena, WROBEL Rafal J, MILCHERT Eugeniusz. Physical properties of pyridinium ionic liquids[J]. The Journal of Chemical Thermodynamics, 2012, 55: 159-165. |
31 | BRAUER Ulises G, DE LA HOZ Andreah T, MILLER Kevin M. The effect of counteranion on the physicochemical and thermal properties of 4-methyl-1-propyl-1,2,4-triazolium ionic liquids[J]. Journal of Molecular Liquids, 2015, 210: 286-292. |
32 | PLECHKOVA Natalia V, SEDDON Kenneth R. Applications of ionic liquids in the chemical industry[J]. Chemical Society Reviews, 2008, 37(1): 123-150. |
33 | Anouti MÉRIÈM, MAGALY Caillon-Caravanier, YOSRA Dridi, et al. Synthesis and characterization of new pyrrolidinium based protic ionic liquids. Good and superionic liquids[J]. The Journal of Physical Chemistry B, 2008, 112(42): 13335-13343. |
34 | MANN Sarah K, BROWN Steven P, MACFARLANE Douglas R. Structure effects on the ionicity of protic ionic liquids[J]. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry, 2020, 21(13): 1444-1454. |
35 | MOHAMMAD Tariq, FREIRE Mara G, Saramago Benilde, et al. Surface tension of ionic liquids and ionic liquid solutions[J]. Chemical Society Reviews, 2012, 41(2): 829-868. |
36 | KOLBECK C, LEHMANN J, LOVELOCK K R J, et al. Density and surface tension of ionic liquids[J]. The Journal of Physical Chemistry B, 2010, 114(51): 17025-17036. |
[1] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[2] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
[3] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[4] | 孙征楠, 李洪晶, 荆国林, 张福宁, 颜飚, 刘晓燕. EVA及其改性聚合物在原油降凝剂领域的应用[J]. 化工进展, 2023, 42(6): 2987-2998. |
[5] | 赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
[6] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[7] | 李光文, 华渠成, 黄作鑫, 达志坚. 聚甲基丙烯酸酯类黏度指数改进剂的研究进展[J]. 化工进展, 2023, 42(3): 1562-1571. |
[8] | 崔腾达, 文华, 赵颖. 改性液滴撞击荷叶表面沉积特性对比[J]. 化工进展, 2023, 42(11): 5882-5890. |
[9] | 米泽豪, 花儿. 多元胺-TFSA型质子化离子液体吸收CO2的理论分析[J]. 化工进展, 2023, 42(11): 6015-6030. |
[10] | 朱启晨, 吴张永, 王志强, 蒋佳骏, 李翔. 低温下硅油基纳米磁流体沉降稳定性与黏度特性[J]. 化工进展, 2023, 42(10): 5101-5110. |
[11] | 孙培琴, 陈延青, 孔祥北, 金满平, 刘付芳. 醋酸酐与水在化学反应量热方法确认中的应用[J]. 化工进展, 2022, 41(S1): 91-96. |
[12] | 张洪铭, 卢炯元, 王三反. 燃料电池用阴离子交换膜分子结构研究进展[J]. 化工进展, 2022, 41(S1): 318-330. |
[13] | 李鲁, 鲍穗, 张李明, 汪然, 陶正红, 杨兴祥. 卡拉胶-魔芋胶复合凝胶基香精微胶囊的制备与表征[J]. 化工进展, 2022, 41(S1): 376-381. |
[14] | 王震, 闫霆, 霍英杰. 氯化锰/氨热化学吸附储热的特性[J]. 化工进展, 2022, 41(8): 4425-4431. |
[15] | 孙德贇, 胡艳宏, 刘鹏, 唐茂, 胡泽, 柳召刚, 吴锦绣. 不同铈盐体系(硝酸盐、硫酸盐、氯化盐)中CTAB与Ce3+的相互作用机理[J]. 化工进展, 2022, 41(6): 3212-3220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |