1 |
WANG Jiajun, LI Xiaopeng, CUI Bingfeng, et al. A review of non-noble metal-based electrocatalysts for CO2 electroreduction[J]. Rare Metals, 2021, 40(11): 3019-3037.
|
2 |
MARTINA Peters, Köhler BURKHARD, WILHELM Kuckshinrichs, et al. Chemical technologies for exploiting and recycling carbon dioxide into the value chain[J]. ChemSusChem, 2011, 4(9): 1216-1240.
|
3 |
CORONADO Juan M, ALICIA Bayón. Catalytic enhancement of production of solar thermochemical fuels: Opportunities and limitations[J]. Physical Chemistry Chemical Physics: PCCP, 2023, 25(26): 17092-17106.
|
4 |
ROMERO Manuel, STEINFELD Aldo. Concentrating solar thermal power and thermochemical fuels[J]. Energy & Environmental Science, 2012, 5(11): 9234-9245.
|
5 |
SONG Chunfeng, LIU Qingling, QI Yun, et al. Absorption-microalgae hybrid CO2 capture and biotransformation strategy—A review[J]. International Journal of Greenhouse Gas Control, 2019, 88: 109-117.
|
6 |
王玉杰, 张艳梅, 栾金义, 等. 酶催化固碳过程及其强化技术研究进展[J]. 化工进展, 2024, 43(1): 232-245.
|
|
WANG Yujie, ZHANG Yanmei, LUAN Jinyi, et al. Enzyme-catalyzed carbon sequestration processes and enhancement technologies[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 232-245.
|
7 |
LI Jian, ZHU Lei, TUNG Chen-Ho, et al. Engineering graphdiyne for solar photocatalysis[J]. Angewandte Chemie (International Ed in English), 2023, 62(22): e202301384.
|
8 |
WANG Fangmu, LU Zhehong, GUO Hu, et al. Plasmonic photocatalysis for CO2 reduction: Advances, understanding and possibilities[J]. Chemistry, 2023, 29(25): e202202716.
|
9 |
PAN Fuping, YANG Yang. Designing CO2 reduction electrode materials by morphology and interface engineering[J]. Energy & Environmental Science, 2020, 13(8): 2275-2309.
|
10 |
SAHA Paramita, AMANULLAH Sk, Abhishek DEY. Selectivity in electrochemical CO2 reduction[J]. Accounts of Chemical Research, 2022, 55(2): 134-144.
|
11 |
ZHANG Fang, LIU Jia, YANG Wulin, et al. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power[J]. Energy & Environmental Science, 2015, 8(1): 343-349.
|
12 |
LU Zhiqiang, SHI Yu, ZHANG Liang, et al. Ammonia crossover in thermally regenerative ammonia-based batteries for low-grade waste heat recovery[J]. Journal of Power Sources, 2022, 548: 232085.
|
13 |
SHI Yu, ZHANG Liang, ZHANG Yongsheng, et al. Construction of a hierarchical porous surface composite electrode by dynamic hydrogen bubble template electrodeposition for ultrahigh-performance thermally regenerative ammonia-based batteries[J]. Chemical Engineering Journal, 2021, 423: 130339.
|
14 |
SHI Yu, ZHANG Liang, LI Jun, et al. Cu/Ni composite electrodes for increased anodic coulombic efficiency and electrode operation time in a thermally regenerative ammonia-based battery for converting low-grade waste heat into electricity[J]. Renewable Energy, 2020, 159: 162-171.
|
15 |
LI Dong, ZHANG Yongsheng, SHI Yu, et al. Performance of a thermally regenerative ammonia-based flow battery with 3D electrodes composed of copper rod arrays[J]. Industrial & Engineering Chemistry Research, 2023, 62(33): 12855-12863.
|
16 |
SHI Yu, LI Dong, AN Yichao, et al. Power generation enhancement of a membrane-free thermally regenerative battery induced by the density difference of electrolytes[J]. Applied Energy, 2023, 344: 121302.
|
17 |
ZHANG Liang, LI Yanxiang, ZHU Xun, et al. Copper foam electrodes for increased power generation in thermally regenerative ammonia-based batteries for low-grade waste heat recovery[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7408-7415.
|
18 |
CHEN Pengyu, ZHANG Liang, SHI Yu, et al. Biomass waste-derived hierarchical porous composite electrodes for high-performance thermally regenerative ammonia-based batteries[J]. Journal of Power Sources, 2022, 517: 230719.
|
19 |
CHEN Pengyu, SHI Yu, ZHANG Liang, et al. Performance of a thermally regenerative battery with 3D-printed Cu/C composite electrodes: Effect of electrode pore size[J]. Industrial & Engineering Chemistry Research, 2020, 59(49): 21286-21293.
|
20 |
ZHANG Yongsheng, SHI Yu, ZHANG Liang, et al. Graphene oxide modified membrane for alleviated ammonia crossover and improved electricity generation in thermally regenerative batteries[J]. Chinese Chemical Letters, 2023, 34(2): 107704.
|
21 |
AN Yichao, ZHANG Yongsheng, SHI Yu, et al. Alleviated ammonia crossover in thermally regenerative ammonia-based batteries by optimizing the introduced intermediate-chamber[J]. Applied Energy, 2023, 349: 121657.
|
22 |
MAYE Sunny, GIRAULT Hubert H, PELJO Pekka. Thermally regenerative copper nanoslurry flow batteries for heat-to-power conversion with low-grade thermal energy[J]. Energy & Environmental Science, 2020, 13(7): 2191-2199.
|
23 |
李洞, 石雨, 张亮, 等. 采用有机溶剂的热再生电池性能[J]. 化工进展, 2022, 41(12): 6302-6309.
|
|
LI Dong, SHI Yu, ZHANG Liang, et al. Performance of thermal regenerative batteries with organic solvents[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6302-6309.
|
24 |
李洞, 王倩倩, 张亮, 等. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246.
|
|
LI Dong, WANG Qianqian, ZHANG Liang, et al. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246.
|
25 |
XIAO Zhenchong, SHI Yu, ZHANG Liang, et al. Performance of a non-aqueous nanofluid thermally regenerative flow battery for electrical energy recovery from low-grade waste heat[J]. Applied Thermal Engineering, 2024, 236: 121696.
|
26 |
ZHANG Liang, LU Zhiqiang, CHEN Pengyu, et al. An environmentally friendly gradient treatment system of copper-containing wastewater by coupling thermally regenerative battery and electrodeposition cell[J]. Separation and Purification Technology, 2022, 295: 121243.
|
27 |
WANG Weiguang, SHU Gequn, TIAN Hua, et al. Removals of Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ) and Ag(Ⅰ) from wastewater and electricity generation by bimetallic thermally regenerative electro-deposition batteries[J]. Separation and Purification Technology, 2020, 235: 116230.
|
28 |
ZHANG Liang, CHEN Pengyu, LI Dong, et al. The coupled removal of heavy metals from electroplating wastewater induced stable electricity generation during long-time discharging in a three-chamber thermally regenerative battery[J]. Journal of Power Sources, 2023, 557: 232524.
|
29 |
唐志强, 张亮, 朱恂, 等. 不同Cu2+浓度下热再生氨电池产电及Cu2+去除特性[J]. 化工学报, 2019, 70(12): 4804-4810.
|
|
TANG Zhiqiang, ZHANG Liang, ZHU Xun, et al. Effect of Cu2+ concentration in cathode on power generation and copper removal of thermally regenerative ammonia-based battery[J]. CIESC Journal, 2019, 70(12): 4804-4810.
|
31 |
WANG Weiguang, TIAN Hua, HUO Dongxing, et al. Review of thermally regenerative batteries based on redox reaction and distillation for harvesting low-grade heat as electricity[J]. Chemical Engineering Journal, 2023, 474: 145503.
|
32 |
ZHANG Zhongshuo, XIE Yi, WANG Ying. What matters in the emerging application of CO2 electrolysis[J]. Current Opinion in Electrochemistry, 2022, 34: 101012.
|
33 |
Chulwan LIM, LEE Woong Hee, WON Jong Ho, et al. Enhancement of catalytic activity and selectivity for the gaseous electroreduction of CO2 to CO: Guidelines for the selection of carbon supports[J]. Advanced Sustainable Systems, 2022, 6(3): 2100216.
|
34 |
FAN Shuai, FAN Zihao, CHENG Huiyuan, et al. Integrated Sn/CNT@N-C hierarchical porous gas diffusion electrode by phase inversion for electrocatalytic reduction of CO2 [J]. Electrochimica Acta, 2022, 403: 139584.
|
35 |
于丰收, 张鲁华. Cu基纳米材料电催化还原CO2的结构-性能关系[J]. 化工学报, 2021, 72(4): 1815-1824.
|
|
YU Fengshou, ZHANG Luhua. Structure-performance relationship of Cu-based nanocatalyst for electrochemical CO2 reduction[J]. CIESC Journal, 2021, 72(4): 1815-1824.
|
36 |
PU Ying, WU Gaoying, WANG Yue, et al. Surface coating combined with in situ cyclic voltammetry to enhance the stability of gas diffusion electrodes for electrochemical CO2 reduction[J]. The Science of the Total Environment, 2024, 918: 170758.
|
37 |
MAHYOUB Samah A, QARAAH Fahim A, CHEN Chengzhen, et al. An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO2 to CO[J]. Sustainable Energy & Fuels, 2020, 4(1): 50-67.
|
38 |
ZHANG Shun, MO Zhenzhen, WANG Jie, et al. Ultra-stable oxygen species in Ag nanoparticles anchored on g-C3N4 for enhanced electrochemical reduction of CO2 [J]. Electrochimica Acta, 2021, 390: 138831.
|
39 |
车钰灿, 程鹏玮, 周毅, 等. 室温快速合成Ag基金属有机骨架材料用于电催化还原CO2 [J]. 无机化学学报, 2023, 39(6): 1005-1013.
|
|
CHE Yucan, CHENG Pengwei, ZHOU Yi, et al. Rapid synthesis of Ag-based metal-organic framework at room temperature for efficient electrocatalytic CO2 reduction[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(6): 1005-1013.
|
40 |
阳平坚, 彭栓, 王静, 等. 碳捕集、利用和封存(CCUS)技术发展现状及应用展望[J]. 中国环境科学, 2024, 44(1): 404-416.
|
|
YANG Pingjian, PENG Shuan, WANG Jing, et al. Carbon Capture, Utilization and Storage(CCUS) technology development status and application prospects[J]. China Environmental Science, 2024, 44(1): 404-416.
|