化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2294-2310.DOI: 10.16085/j.issn.1000-6613.2023-2256
• 化石能源的清洁高效转化利用 • 上一篇
周安宁1,2(), 江雨寒1, 刘墨宣1,2, 赵伟1,2, 李振1,2
收稿日期:
2023-12-25
修回日期:
2024-02-28
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
周安宁
作者简介:
周安宁(1962—),教授,博士生导师,研究方向为能源化工、功能纳米材料、二氧化碳捕集与转化、电解煤浆制氢等。 E-mail:psu564@139.com。
基金资助:
ZHOU Anning1,2(), JIANG Yuhan1, LIU Moxuan1,2, ZHAO Wei1,2, LI Zhen1,2
Received:
2023-12-25
Revised:
2024-02-28
Online:
2024-05-15
Published:
2024-06-15
Contact:
ZHOU Anning
摘要:
电解煤浆制氢(CSE)是一种在温和条件下实现电化学制氢与煤炭低碳清洁利用的新技术。电解煤浆制氢的理论分解电压仅为0.21V,实际消耗的能量约为电解水制氢的1/3~1/2,具有能耗低、污染小,可与煤基精细化学品制备、煤岩显微组分分离等过程集成的优点,但煤转化率低、煤浆电解机理不清晰等问题仍具有极大挑战性。本文讨论了CSE机理研究现状,概述了煤阶及矿物质对CSE的电氧化活性的影响,总结了CSE过程中煤表面元素、官能团结构、煤碳骨架结构在阳极区电化学氧化的变化规律,讨论了阴极区电化学还原对煤表面润湿性、Zeta电位等煤表面性质的影响,以及阴极区添加煤浆的电还原制氢及其耦合技术,以期为CSE制氢与煤低碳清洁利用提供理论支撑。此外,本文还展望了CSE的发展方向,提出了高性能CSE电极催化材料开发及煤氧化-还原反应调控机理研究是该技术获得突破的关键。
中图分类号:
周安宁, 江雨寒, 刘墨宣, 赵伟, 李振. 电解煤浆制氢过程中煤阶及矿物的影响与煤结构演化研究进展[J]. 化工进展, 2024, 43(5): 2294-2310.
ZHOU Anning, JIANG Yuhan, LIU Moxuan, ZHAO Wei, LI Zhen. Research progress in hydrogen production from electrolytic coal slurry: Effects of coal rank and minerals, and the evolution of coal structure[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2294-2310.
1 | BUTTLER Alexander, SPLIETHOFF Hartmut. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
2 | SILVA VERAS Tatiane DA, Thiago Simonato Mozer, DA COSTA RUBIM MESSEDER DOS SANTOS Danielle, et al. Hydrogen: Trends, production and characterization of the main process worldwide[J]. International Journal of Hydrogen Energy, 2017, 42: 2018-2033. |
3 | URSUA Alfredo, GANDIA Luis M, SANCHIS Pablo. Hydrogen production from water electrolysis: Current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2): 410-426. |
4 | 王雅文, 陈延伟, 赵惠平, 等. 基于CFD的液氢泄漏扩散防护方式特性研究[J]. 兵器装备工程学报, 2021, 42(6): 140-146. |
WANG Yawen, CHEN Yanwei, ZHAO Huiping, et al. Research on characteristics of liquid hydrogen leakage diffusion and protection methods based on CFD[J]. Journal of Ordnance Equipment Engineering, 2021, 42(6): 140-146. | |
5 | MOSTAFAEIPOUR Ali, KHAYYAMI Mohammad, SEDAGHAT Ahmad, et al. Evaluating the wind energy potential for hydrogen production: A case study[J]. International Journal of Hydrogen Energy, 2016, 41(15): 6200-6210. |
6 | MOHSIN M, RASHEED A K, SAIDUR R. Economic viability and production capacity of wind generated renewable hydrogen[J]. International Journal of Hydrogen Energy, 2018, 43(5): 2621-2630. |
7 | SHANER Matthew R, ATWATER Harry A, LEWIS Nathan S, et al. A comparative technoeconomic analysis of renewable hydrogen production using solar energy[J]. Energy & Environmental Science, 2016, 9(7): 2354-2371. |
8 | WANG Mingyong, WANG Zhi, GONG Xuzhong, et al. The intensification technologies to water electrolysis for hydrogen production—A review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 573-588. |
9 | HUANG Yuming, ZHOU Wei, XIE Liang, et al. Edge and defect sites in porous activated coke enable highly efficient carbon-assisted water electrolysis for energy-saving hydrogen production[J]. Renewable Energy, 2022, 195: 283-292. |
10 | YU Ping, ZHENG Ruheng, MA Hongze, et al. Novel Pt-Ni electrocatalyst for coal electrolysis for hydrogen production[J]. Journal of the Electrochemical Society, 2022, 169(4): 044514. |
11 | Xiang LYU, HU Junyi. Assessment of lignite upgrade and hydrogen evolution via electrolysis[J]. Energy Conversion and Management, 2022, 253: 115181. |
12 | YING Zhi, GENG Zhen, ZHENG Xiaoyuan, et al. Optimization of anode performance in the ethanol electrochemical reforming for clean hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(1): 119-133. |
13 | JU Hyung Kuk, GIDDEY Sarbjit, BADWAL Sukhvinder P S, et al. Methanol-water co-electrolysis for sustainable hydrogen production with PtRu/C-SnO2 electro-catalyst[J]. Ionics, 2018, 24(8): 2367-2378. |
14 | JU HyungKuk, GIDDEY Sarbjit, BADWAL Sukhvinder P S, et al. Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation [J]. Electrochimica Acta, 2016, 212: 744-757. |
15 | YING Zhi, GENG Zhen, ZHENG Xiaoyuan, et al. Enhancing biochar oxidation reaction with the mediator of Fe2+/Fe3+ or NO2 -/NO3 - for efficient hydrogen production through biochar-assisted water electrolysis[J]. Energy Conversion and Management, 2021, 244(7): 114523. |
16 | PAGLIARO Maria Vincenza, BELLINI Marco, BEVILACQUA Manuela, et al. Carbon supported Rh nanoparticles for the production of hydrogen and chemicals by the electroreforming of biomass-derived alcohols[J]. RSC Advances, 2017, 7(23): 13971-13978. |
17 | XING Zhou, JIN Huilong, MA Zichuan, et al. Biochar sacrificial anode assisted water electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(86): 36482-36492. |
18 | MECH K, ŻABIŃSKI P, KOWALIK R, et al. Electrodeposition of Co-Pd alloys from ammonia solutions and their catalytic activity for hydrogen evolution reaction[J]. Journal of Applied Electrochemistry, 2014, 44(1): 97-103. |
19 | GOSHOME Kiyotaka, YAMADA Takahiro, MIYAOKA Hiroki, et al. High compressed hydrogen production via direct electrolysis of liquid ammonia[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14529-14534. |
20 | COUGHLIN Robert W, FAROOQUE M. Hydrogen production from coal, water and electrons[J]. Nature, 1979, 279: 301-303 |
21 | 戴衡, 赵永丰. 固体燃料-水电解制氢的研究[J]. 燃料化学学报, 1984, 12(4): 289-296. |
DAI Heng, ZHAO Yongfeng. Preparation of hydrogen by electrolysis of solid fuel-water system[J]. Journal of Fuel Chemistry and Technology, 1984, 12(4): 289-296. | |
22 | 蔡海涌, 戴衡, 赵永丰. 油页岩电化学氧化的研究[J]. 燃料化学学报,1988, 16(1): 1-9. |
CAI Haiyong, DAI Heng, ZHAO Yongfeng. Study on electrochemical oxidation of oil shales[J]. Journal of Fuel Chemistry and Technology, 1988, 16(1): 1-9. | |
23 | 蔡海涌, 戴衡, 赵永丰. 电化学氧化油页岩反应机理的研究[J]. 燃料化学学报,1989, 17(2): 112-117. |
CAI Haiyong, DAI Heng, ZHAO Yongfeng. Study of electrochemical oxidation mechanism of oil shale[J]. Journal of Fuel Chemistry and Technology, 1989, 17(2): 112-117. | |
24 | JU HyungKuk, GIDDEY Sarbjit, BADWAL Sukhvinder P S. Role of iron species as mediator in a PEM based carbon-water co-electrolysis for cost-effective hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9144-9152. |
25 | JU HyungKuk, BADWAL Sukhvinder, GIDDEY Sarbjit. A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production[J]. Applied Energy, 2018, 231: 502-533. |
26 | GONG Xuzhong, WAGN Minyong, WANG Zhi, et al. Roles of inherent mineral matters for lignite water slurry electrolysis in H2SO4 system[J]. Energy Conversion and Management, 2013, 75: 431-437. |
27 | JIN Xin, BOTTE Gerardine G. Understanding the kinetics of coal electrolysis at intermediate temperatures[J]. Journal of Power Sources, 2010, 195(15): 4935-4942. |
28 | JIN Xin, BOTTE Gerardine G. Feasibility of hydrogen production from coal electrolysis at intermediate temperatures[J]. Journal of Power Sources, 2007, 171(2): 826-834. |
29 | CHEN Cong, BAI Qingcheng, LIU Jianzhong, et al. Characteristics and anode reaction of organic wastewater-assisted coal electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(41): 20894-20903. |
30 | Soonho AHN, TATARCHUK Bruce J, KERBY Mike C, et al. Selective electrochemical oxidation of coal in aqueous alkaline electrolyte[J]. Journal of the Electrochemical Society, 1995, 142(3): 782-787. |
31 | LALVANI Shashi, MILAN Pata, COUGHLIN ROBERT W. Electrochemical oxidation of lignite in basic media[J]. Fuel, 1986, 65(1): 122-128. |
32 | POMFRET A, GIBSON C, BARTLE K D, et al. On a possible role for electrochemical oxidation in coal liquefaction[J]. Fuel Processing Technology, 1985, 10(3): 239-247. |
33 | YU Ping, MA Junchao, ZHANG Rong, et al. Novel Pd-Co electrocatalyst supported on carbon fibers with enhanced electrocatalytic activity for coal electrolysis to produce hydrogen[J]. ACS Applied Energy Materials, 2018, 1(2): 267-272. |
34 | YIN Renhe, ZHAO Yonggang, LU Shiyin, et al. Electrocatalytic oxidation of coal on Ti-supported metal oxides coupled with liquid catalysts for H2 production[J]. Electrochimica Acta, 2009, 55(1): 46-51. |
35 | YU Ping, PENG Ren, JIANG Hao, et al. Carbon fiber supported Pt-Co electrocatalyst for coal electrolysis for hydrogen production[J]. Journal of the Electrochemical Society, 2019, 166(13): 395-400. |
36 | 贾杰. 煤浆氧化电解制氢的研究[D]. 上海: 上海交通大学, 2013. |
JIA Jie. Research of coal slurry electrolysis for hydrogen production[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
37 | LIU Jianzhong, CHEN Cong, WU Hongli, et al. Kinetics and oxidation pathways of Fe3+-catalyzed carbon-assisted water electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(62): 20432-20447. |
38 | YU Ping, JIANG Hao, PENG Ren, et al. Novel Pd-Cr electrocatalyst with low Pd content for coal electrolysis for hydrogen production[J]. Journal of Power Sources, 2021, 483: 229175. |
39 | 向康. Fe3+辅助煤浆氧化制氢工艺研究[D]. 上海: 上海交通大学, 2017. |
XIANG Kang. Hydrogen production from oxidation of coal slurries assisted by ferric ions[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
40 | GONG Xuzhong, WU Ying, WANG Zhi, et al. Changes of total organic carbon and kinetics of ultrasonic-assisted coal water slurry electrolysis in NaOH system[J]. Fuel Processing Technology, 2014, 119: 166-172. |
41 | KUZNETSOV P N, KUZNETSOVA L I, OBUKHOV Y V, et al. Studies on the effect of irradiation by accelerated electrons on the hydrogenation reactivity of brown coal[J]. Fuel, 2001, 80(15): 2203-2206. |
42 | ABOUSHABANA Moustafa, DE TACCONI Norma R, RAJESHWAR Krishnan. Chemical pre-treatment of coal and carbon black: Implications for electrolytic hydrogen generation and electrochemical/thermal reactivity[J]. Journal of the Electrochemical Society, 2012, 159(6): B695-B701. |
43 | 朱凌岳, 王宝辉, 吴红军. 电解水煤浆制氢技术研究进展[J]. 化工进展, 2016, 35(10): 3129-3135. |
ZHU Lingyue, WANG Baohui, WU Hongjun. Review on electrochemical splitting of coal water slurry for hydrogen[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3129-3135. | |
44 | PATIL Prashanth, DE ABREU Yolanda, BOTTE Gerardine G. Electrooxidation of coal slurries on different electrode materials[J]. Journal of Power Sources, 2006, 158(1): 368-377. |
45 | WANG Chao, ZHAO Yonggang, ZHOU Wei, et al. Electro-oxidation of coal on NiO and/or Co3O4 modified TiO2/Pt electrodes[J]. Electrochimica Acta, 2011, 56(18): 6299-6304. |
46 | CHEN Li, NAKAMOTO Rei, KUDO Shinji, et al. Biochar-assisted water electrolysis[J]. Energy & Fuels, 2019, 33(11): 11246-11252. |
47 | GIDDEY S, KULKARNI A, BADWAL S P S. Low emission hydrogen generation through carbon assisted electrolysis[J]. International Journal of Hydrogen Energy, 2015, 40(1): 70-74. |
48 | COUGHLIN R W, FAROOQUE M. Consideration of electrodes and electrolytes for electrochemical gasification of coal by anodic oxidation[J]. Journal of Applied Electrochemistry, 1980, 10(6): 729-740. |
49 | COUGHLIN Robert W, FAROOQUE Mohammad. Electrochemical gasification of coal-simultaneous production of hydrogen and carbon dioxide by a single reaction involving coal, water, and electrons[J]. Industrial & Engineering Chemistry Process Design and Development, 1980, 19(2): 211-219. |
50 | COUGHLIN Robert W, FAROOQUE Mohammed. Thermodynamic, kinetic, and mass balance aspects of coal-depolarized water electrolysis[J]. Industrial & Engineering Chemistry Process Design and Development, 1982, 21(4): 559-564. |
51 | DE ABREU Yolanda, PATIL Prashanth, MARQUEZ Andres I, et al. Characterization of electrooxidized Pittsburgh No. 8 coal[J]. Fuel, 2007, 86(4): 573-584. |
52 | CLARKE R L, FOLLER P C, WASSON A R. The electrochemical production of hydrogen using a carbonaceous fuel as an anode depolarizer[J]. Journal of Applied Electrochemistry, 1988, 18(4): 546-554. |
53 | TOMAT Renato, SALMASO Romeo, ZECCHIN Sandro. Electrochemistry of carbonaceous materials[J]. Fuel, 1992, 71(4): 459-462. |
54 | DHOOGE Patrick M, STILWELL David E, PARK Su-Moon. Electrochemical studies of coal slurry oxidation mechanisms[J]. Journal of the Electrochemical Society, 1982, 129(8): 1719. |
55 | DHOOGE Patrick M, PARK Su-Moon. Electrochemistry of coal slurries Ⅲ. FTIR studies of electrolysis of coal[J]. Journal of the Electrochemical Society, 1983, 130(7): 1539-1542. |
56 | PARK Su-Moon. Electrochemistry of carbonaceous materials and coal[J]. Journal of the Electrochemical Society, 1984, 131(9): 363C-373C. |
57 | ANTHONY K E, LINGE H G. Oxidation of coal slurries in acidified ferric sulfate[J]. Journal of the Electrochemical Society, 1983, 130(11): 2217-2219. |
58 | THOMAS G, CHETTIAR M, BIRSS V I. Electrochemical oxidation of acidic Alberta coal slurries[J]. Journal of Applied Electrochemistry, 1990, 20(6): 941-950. |
59 | HESENOV Arif, Hatice KıNıK, Gökçen PULI, et al. Electrolysis of coal slurries to produce hydrogen gas: Relationship between CO2 and H2 formation[J]. International Journal of Hydrogen Energy, 2011, 36(9): 5361-5368. |
60 | YU Tao, Shiyin LYU, ZHOU Wei, et al. Catalytic effect of K3Fe(CN)6 on hydrogen production from coal electro-oxidation[J]. Electrochimica Acta, 2012, 83: 485-489. |
61 | LIU Huaiyou, Jingkang LYU, ZHAO Yonggang, et al. Study on effect and catalytic mechanism of the catalysts for coal oxidation in alkaline medium[J]. Chinese Journal of Chemistry, 2011, 29(10): 2014-2018. |
62 | DHOOGE Patrick M, PARK Su-Moon, JEONG K M. Electrocatalytic oxidation of demineralized oil shale[J]. Journal of the Electrochemical Society, 1985, 132(5): 1158-1160. |
63 | GONG Xuzhong, WANG Mingyong, LIU Yang, et al. Variation with time of cell voltage for coal slurry electrolysis in sulfuric acid[J]. Energy, 2014, 65: 233-239. |
64 | GE Lan, GONG Xuzhong, WANG Zhi, et al. Insight of anode reaction for CWS (coal water slurry) electrolysis for hydrogen production[J]. Energy, 2016, 96: 372-382. |
65 | 袁润. 碱性介质中大庆油页岩电化学氧化研究[D]. 大连: 大连理工大学, 2015. |
YUAN Run. Electrochemical oxidation of Daqing oil shale in alkaline medium[D]. Dalian: Dalian University of Technology, 2015. | |
66 | 白汝展, 李娜, 范剑明, 等. 低阶煤电化学氧化制腐植酸的研究进展[J]. 南方能源建设, 2022, 9(3): 140-147. |
BAI Ruzhan, LI Na, FAN Jianming, et al. Research progress on electro-chemical oxidation of low-rank coal to humic acid[J]. Southern Energy Construction, 2022, 9(3): 140-147. | |
67 | 张轩轩. 碱性介质中神木烟煤电化学氧化的研究[D]. 大连: 大连理工大学, 2022. |
ZHANG Xuanxuan. Electrochemical oxidation of Shenmu bituminous coal in alkaline medium[D]. Dalian: Dalian University of Technology, 2022. | |
68 | 印仁和, 张磊, 姬学彬, 等. 电解煤浆制取氢气的工艺研究[J]. 现代化工, 2007, 27(6): 27-30, 32. |
YIN Renhe, ZHANG Lei, JI Xuebin, et al. Study of producing hydrogen by electrolysis of coal slurries[J]. Modern Chemical Industry, 2007, 27(6): 27-30, 32. | |
69 | MURPHY O, BOCKRIS J, LATER D. Products found in the anodic oxidation of coal[J]. International Journal of Hydrogen Energy, 1985, 10(7/8): 453-474. |
70 | 苏天雄. 浅谈我国低阶煤资源分布及其利用途径[J]. 广东化工, 2012, 39(6): 133-134. |
SU Tianxiong. Briefly on the distribution and utilization of low-rank coals resources in China[J]. Guangdong Chemical Industry, 2012, 39(6): 133-134. | |
71 | CHEN Shuai, ZHOU Wei, DING Yani, et al. Coal-assisted water electrolysis for hydrogen production: Evolution of carbon structure in different-rank coal[J]. Energy & Fuels, 2021, 35(4): 3512-3520. |
72 | HESENOV Arif, Bahar MERYEMOĞLU, Okan IÇTEN. Electrolysis of coal slurries to produce hydrogen gas: Effects of different factors on hydrogen yield[J]. International Journal of Hydrogen Energy, 2011, 36(19): 12249-12258. |
73 | IGLESIAS M J, DE LA PUENTE G, FUENTE E, et al. Compositional and structural changes during aerial oxidation of coal and their relations with technological properties[J]. Vibrational Spectroscopy, 1998, 17(1): 41-52. |
74 | AHMED M A, VANDENBERGHE R E, DE GRAVE E, et al. Characterisation of Spanish coal by means of Mössbauer spectroscopy[J]. Fuel, 1999, 78(4): 453-457. |
75 | FAN Yuqiang, GUAN Jun, HE Demin, et al. The influence of inherent minerals on the constant-current electrolysis process of coal-water slurry[J]. Energy, 2023, 285(3): 128766. |
76 | WANG Lijie, SUN Fei, GAO Jihui, et al. Adjusting the porosity of coal-based activated carbons based on a catalytic physical activation process for gas and liquid adsorption[J]. Energy & Fuels, 2018, 32(2): 1255-1264. |
77 | BAI Yonghui, WANG Yulong, ZHU Shenghua, et al. Synergistic effect between CO2 and H2O on reactivity during coal chars gasification[J]. Fuel, 2014, 126: 1-7. |
78 | TAYLOR Norman, GIBSON Christopher, BARTLE Keith D, et al. Electrochemical oxidation of coals: Voltammetry and mass spectrometry[J]. Fuel, 1985, 64(3): 415-419. |
79 | OKADA G, GURUSWAMY V, O’M BOCKRIS J. On the electrolysis of coal slurries[J]. Journal of the Electrochemical Society, 1981, 128(10): 2097. |
80 | KOU Kaikai, ZHOU Wei, CHEN Shuai, et al. Investigate the role of different inherent minerals in PEM based coal assisted water electrolysis cell[J]. Journal of the Electrochemical Society, 2019, 166(13): F949. |
81 | Martti J AHO, PIRKONEN Pentti M. Effects of pressure, gas temperature and CO2 and O2 partial pressures on the conversion of coal-nitrogen to NO, N2O and NO2 [J]. Fuel, 1995, 74(11): 1677-1681. |
82 | YU Liya E, HILDEMANN Lynn M, NIKSA Stephen. Characteristics of nitrogen-containing aromatic compounds in coal tars during secondary pyrolysis[J]. Fuel, 1999, 78(3): 377-385 |
83 | ZHAO Wei, YAO Liping, LIN Juan, et al. Electrolytic reduction of Nantong coal and model compounds with oxygenic functional groups in an aqueous NaCl solution[J]. Journal of China University of Mining and Technology, 2008, 18(1): 112-115. |
84 | CHEN Yanyan, MASTALERZ Maria, SCHIMMELMANN Arndt. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J]. International Journal of Coal Geology, 2012, 104: 22-33. |
85 | CHEN Cong, LIU Jianzhong, CHENG Jun, et al. Oxidation mechanism for coal-assisted water electrolysis for hydrogen production: Evolution of different structures in coal molecules with reaction depth[J]. Fuel, 2022, 321: 123910. |
86 | CHEN Shuai, ZHOU Wei, DING Yani, et al. Fe3+-mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygen-containing functional groups in coal[J]. Energy, 2021, 220: 119677. |
87 | 易平贵, 刘俊峰, 赵红钢, 等. 煤及其模型化合物电解氧化脱硫的热力学分析[J]. 煤炭转化, 1997, (4): 27-33. |
YI Pinggui, LIU Junfeng, ZHAO Honggang, et al. Thermodynamic analysis for desulfurization of coal and its model compounds by electrolytic oxidation[J]. Coal Conversion, 1997, (4): 27-33. | |
88 | KATSUKI Kusakabe, HIROSHI Nishida, SHIGEHARU Morooka, et al. Kinetic investigations for hybrid process of water electrolysis and chemical coal desulphurization[J]. Fuel, 1987, 66(2): 271-275. |
89 | FAROOQUE Mohammad, COUGHLIN Robert W. Electrochemical gasification of coal (investigation of operating conditions and variables)[J]. Fuel, 1979, 58(10): 705-712. |
90 | 寇凯凯. 煤辅助电解水制氢中矿物质及羧基官能团的影响机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
KOU Kaikai. Mechanism study of minerals and carboxyl functional groups effects on coal assisted water electrolysis[D]. Harbin: Harbin Institute of Technology, 2019. | |
91 | 赵伟, 杨志远, 李振, 等. 电化学处理对神木煤显微组分表面结构及可浮性的影响研究[J]. 燃料化学学报, 2017, 45(4): 400-407. |
ZHAO Wei, YANG Zhiyuan, LI Zhen, et al. Influence of electrochemical treatment on surface structure and flotability of Shenmu coal macerals[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 400-407. | |
92 | 赵伟, 李振, 杨志远, 等. 煤岩显微组分的电浮选分离及其电化学凝聚特征研究[J]. 中国矿业大学学报, 2018, 47(5): 1104-1112. |
ZHAO Wei, LI Zhen, YANG Zhiyuan, et al. Electroflotation separation of coal macerals and its electro-coagulation characteristics[J]. Journal of China University of Mining & Technology, 2018, 47(5): 1104-1112. | |
93 | 朱红, 王淀佐, 李虎林, 等. 电化学法对细粒煤表面改性机理的研究[J]. 煤炭学报, 2000, 25(3): 307-311. |
ZHU Hong, WANG Dianzuo, LI Hulin, et al. Study on the mechanism of fine coal by electrochemical surface modification[J]. Journal of China Coal Society, 2000, 25(3): 307-311. | |
94 | 杨玉芬, 朱红, 陈清如. 电化学法强化高硫煤浮选脱硫试验研究[J]. 煤炭转化, 2003, 26(2): 60-63. |
YANG Yufen, ZHU Hong, CHEN Qingru. Experimental research on enhancing desulfurization of high sulfur coal in flotation by electrochemical methods[J]. Coal Conversion, 2003, 26(2): 60-63. | |
95 | GUO Bingfeng, ZHOU Wei, LIU Shuai, et al. Effect of γ-ray irradiation on the structure and electrochemical liquefaction of Shenhua coal[J]. Fuel, 2015, 143: 236-243. |
96 | WANG Chao, ZHOU Wei, YIN Renhe. Electro hydrogenation of coal in a Pb/DMF-EtOH system: Structure change of coal observed by organic solvent extraction[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 262-269. |
97 | 赵伟, 李振, 周安宁, 等. 铝电极电浮选阴极的气泡特征及其影响因素研究[J]. 矿产保护与利用, 2018(3): 87-92. |
ZHAO Wei, LI Zhen, ZHOU Anning, et al. Bubble characteristics and its influence factors in electroflotation with aluminum cathode[J]. Conservation and Utilization of Mineral Resources, 2018(3): 87-92. | |
98 | 周安宁, 张怀青, 李振, 等. 低阶烟煤煤岩显微组分分选及其分质利用研究进展[J]. 洁净煤技术, 2022, 28(7): 1-22. |
ZHOU Anning, ZHANG Huaiqing, LI Zhen, et al. Advances in coal macerals separation and quality-based utilization of low-rank bituminous coal[J]. Clean Coal Technology, 2022, 28(7): 1-22. | |
99 | 张洲朋, 赵伟, 周安宁, 等. 多孔电极的制备及其在煤岩显微组分电浮选分离中的应用[J]. 中国矿业大学学报, 2023, 52(1): 188-198. |
ZHANG Zhoupeng, ZHAO Wei, ZHOU Anning, et al. Preparation of porous electrode and its application in electroflotation separation of coal macerals[J]. Journal of China University of Mining & Technology, 2023, 52(1): 188-198. | |
100 | LIU Shuai, ZHOU Wei, YU Tao, et al. Preparation of layered nanoporous Ti/TiO2/Ni-W-B electrode for electrocatalytic reduction of coal[J]. Fuel, 2014, 134: 151-158. |
101 | GUO Bingfeng, LIU Yanlan, CHAI Ruijie, et al. Combination of electron beam irradiation and electro-reduction—A novel method for direct coal liquefaction[J]. Journal of Fuel Chemistry and Technology, 2014, 42(5): 513-518. |
102 | 汤芳, 周尉, 曹为民, 等. 二元溶剂[Bmim]Cl+NMP对褐煤的溶胀及电解液化的影响[J]. 复旦学报(自然科学版), 2016, 55(6): 725-731. |
TANG Fang, ZHOU Wei, CAO Weimin, et al. Swelling of brown coal in binary solvent[Bmim]Cl+NMP and its effect on coal electrolysis liquefaction[J]. Journal of Fudan University (Natural Science), 2016, 55(6): 725-731. |
[1] | 丁嘉, 吴文琦, 李鹏程. 两电子水氧化反应抑制掺硼金刚石电极氧化有机物过程中氯酸盐和高氯酸盐的生成[J]. 化工进展, 2024, 43(4): 2183-2190. |
[2] | 郭萌, 郭美欣, 魏思佳, 赵玉娇, 贾璇. 初始pH调控对MEC脱硫性能的影响及其微生物作用机制[J]. 化工进展, 2024, 43(4): 2219-2225. |
[3] | 陈家一, 高帷韬, 阴亚楠, 王诚, 欧阳鸿武, 毛宗强. 电化学沉积法制备质子交换膜燃料电池催化剂[J]. 化工进展, 2024, 43(4): 1796-1809. |
[4] | 吴晨赫, 刘彧旻, 杨昕旻, 崔记伟, 姜韶堃, 叶金花, 刘乐全. 粉体光催化全水分解技术研究进展[J]. 化工进展, 2024, 43(4): 1810-1822. |
[5] | 王凯, 叶丁丁, 朱恂, 杨扬, 陈蓉, 廖强. 超亲气泡沫铜纳米线电极电化学还原CO2性能[J]. 化工进展, 2024, 43(3): 1232-1240. |
[6] | 吴剑扬, 申兰耀, 于永利, 王汝娜, 蒋宁, 杨新河, 邱景义, 周恒辉. 锂离子电池高镍正极材料的制备及性能优化[J]. 化工进展, 2024, 43(3): 1387-1394. |
[7] | 娄瑞, 牛涛嫄, 曹启航, 张依依, 雷雯祺, 卢聪敏, 王志伟. δ-MnO2原位负载纳米木质素基分级多孔炭的制备及其电化学性能[J]. 化工进展, 2024, 43(2): 1013-1021. |
[8] | 胡志豪, 张皓景, 周叶, 吴睿. 高效镍基有序多孔电极气泡行为可视化观测及性能影响[J]. 化工进展, 2024, 43(2): 680-687. |
[9] | 刘昊东, 张鹏飞, 黄钰期. 三元锂电池热失控射流可视化及速度场测试[J]. 化工进展, 2024, 43(2): 703-712. |
[10] | 陈国徽, 王君雷, 李世龙, 李金宇, 徐运飞, 罗俊潇, 王昆. 火焰喷雾热解制备锂离子电池三元正极材料研究进展[J]. 化工进展, 2024, 43(2): 971-983. |
[11] | 罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163. |
[12] | 于松民, 金洪波, 杨明虎, 余海峰, 江浩. 氟掺杂改性LiMn0.5Fe0.5PO4正极材料及其电化学性能[J]. 化工进展, 2024, 43(1): 302-309. |
[13] | 夏银萍, 李洲鹏, 汪倩倩. 高载量锂硫电池正极设计优化[J]. 化工进展, 2024, 43(1): 364-375. |
[14] | 汪尚, 姚瑶, 王佳, 董迪迪, 常刚刚. CoZn-MOF衍生多级孔取向碳载CoP及其析氢性能[J]. 化工进展, 2024, 43(1): 447-454. |
[15] | 杨成功, 黄蓉, 王冬娥, 田志坚. 氮掺杂二硫化钼纳米催化剂的电催化析氢性能[J]. 化工进展, 2024, 43(1): 465-472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |