1 |
DIMITROV Radoslav S. The Paris agreement on climate change: Behind closed doors[J]. Global Environmental Politics, 2016, 16(3): 1-11.
|
2 |
LIU Zhu, DENG Zhu, DAVIS Steven J, et al. Monitoring global carbon emissions in 2021[J]. Nature Reviews Earth & Environment, 2022, 3(4): 217-219.
|
3 |
吴江, 任思源, 孙一景, 等. 基于“双碳”背景的CCUS技术研究与应用[J]. 华中科技大学学报(自然科学版), 2022, 50(07): 89-100.
|
|
WU Jiang, REN Siyuan, SUN Yijing, et al. Research and application of CCUS technology based on “double carbon” background[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(7): 89-100.
|
4 |
FU Lipei, REN Zhangkun, SI Wenzhe, et al. Research progress on CO2 capture and utilization technology[J]. Journal of CO2 Utilization, 2022, 66: 102260.
|
5 |
王丹. 二氧化碳捕集、利用与封存技术全链分析与集成优化研究[D]. 北京: 中国科学院大学, 2020.
|
|
WANG Dan. Full-chain analysis and integrated optimization of carbon dioxide capture, utilization and storage technology[D]. Beijing: University of Chinese Academy of Sciences, 2020.
|
6 |
LEE Wonhyeok, KIM Seonggon, XU Ronghuan, et al. Combined heat and mass transfer performance enhancement by nanoemulsion absorbents during the CO2 absorption and regeneration processes[J]. International Journal of Heat and Mass Transfer, 2019, 141: 1196-1204.
|
7 |
GATTI Manuele, MARTELLI Emanuele, MARECHAL François, et al. Review, modeling, heat integration, and improved schemes of rectisol®-based processes for CO2 capture[J]. Applied Thermal Engineering, 2014, 70(2): 1123-1140.
|
8 |
CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[J]. Asme Fed, 1995, 231(1): 99-105.
|
9 |
KRISHNAMURTHY S, BHATTACHARYA P, PHELAN P E, et al. Enhanced mass transport in nanofluids[J]. Nano Letters, 2006, 6(3): 419-423.
|
10 |
LIANG Jiaxin, HAN Huiyu, LI Wenbo, et al. Experimental study on the absorption enhancement of CO2 by MDEA-MEA based nanofluids[J]. The Canadian Journal of Chemical Engineering, 2022, 100(11): 3335-3344.
|
11 |
LEE Jae Won, TORRES PINEDA Israel, LEE Jung Hun, et al. Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents[J]. Applied Energy, 2016, 178: 164-176.
|
12 |
PINEDA Israel Torres, KIM Dongmin, KANG Yong Tae. Mass transfer analysis for CO2 bubble absorption in methanol/Al2O3 nanoabsorbents[J]. International Journal of Heat and Mass Transfer, 2017, 114: 1295-1303.
|
13 |
梁嘉欣. 纳米流体的制备及其强化醇胺吸收CO2的研究[D]. 西安: 西北大学, 2022.
|
|
LIANG Jiaxin. Preparation of nanofluids and their enhanced CO2 absorption by alcoholamines[D]. Xi’an: Northwest University, 2022.
|
14 |
DRZAZGA M, LEMANOWICZ M, DZIDO G, et al. Preparation of metal oxide-water nanofluids by the two-step method[J]. Chemical Engineering and Equipment, 2012, 51: 213-215.
|
15 |
NAGY Endre, Tivadar FECZKÓ, KOROKNAI Balázs. Enhancement of oxygen mass transfer rate in the presence of nanosized particles[J]. Chemical Engineering Science, 2007, 62(24): 7391-7398.
|
16 |
BATCHELOR G K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles[J]. Journal of Fluid Mechanics, 1977, 83(1): 97-117.
|
17 |
SEYF Hamid Reza, NIKAAEIN Behrang. Analysis of Brownian motion and particle size effects on the thermal behavior and cooling performance of microchannel heat sinks[J]. International Journal of Thermal Sciences, 2012, 58: 36-44.
|
18 |
ZHANG Yu, ZHAO Bo, JIANG Jiazong, et al. The use of TiO2 nanoparticles to enhance CO2 absorption[J]. International Journal of Greenhouse Gas Control, 2016, 50: 49-56.
|
19 |
LEE Jae Won, KIM Seonggon, TORRES PINEDA Israel, et al. Review of nanoabsorbents for capture enhancement of CO2 and its industrial applications with design criteria[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 110524.
|
20 |
PEYRAVI Arman, KESHAVARZ Peyman, MOWLA Darioush. Experimental investigation on the absorption enhancement of CO2 by various nanofluids in hollow fiber membrane contactors[J]. Energy & Fuels, 2015, 29(12): 8135-8142.
|
21 |
TORRES PINEDA Israel, LEE Jae Won, JUNG Inhwa, et al. CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber[J]. International Journal of Refrigeration, 2012, 35(5): 1402-1409.
|
22 |
DEHGHAN Peymaneh, AZARI Ahmad, AZIN Reza. Measurement and correlation for CO2 mass diffusivity in various metal oxide nanofluids[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 103598.
|
23 |
JIANG Jiazong, ZHAO Bo, ZHUO Yuqun, et al. Experimental study of CO2 absorption in aqueous MEA and MDEA solutions enhanced by nanoparticles[J]. International Journal of Greenhouse Gas Control, 2014, 29: 135-141.
|
24 |
YU Wei, WANG Tao, PARK Ah-Hyung Alissa, et al. Review of liquid nano-absorbents for enhanced CO2 capture[J]. Nanoscale, 2019, 11(37): 17137-17156.
|
25 |
GALHOTRA Pragati, NAVEA Juan G, LARSEN Sarah C, et al. Carbon dioxide (C16O2 and C18O2) adsorption in zeolite Y materials: Effect of cation, adsorbed water and particle size[J]. Energy & Environmental Science, 2009, 2(4): 401-409.
|
26 |
梁嘉欣, 冉艺璇, 武西宁, 等. 纳米流体强化吸收CO2研究进展[J]. 化工新型材料, 2022, 50(9): 60-64, 69.
|
|
LIANG Jiaxin, RAN Yixuan, WU Xining, et al. Progress on enhancement of CO2 absorption by nanofluid[J]. New Chemical Materials, 2022, 50(9): 60-64, 69.
|
27 |
RUCKENSTEIN E. A generalized penetration theory for unsteady convective mass transfer[J]. Chemical Engineering Science, 1968, 23(4): 363-371.
|
28 |
CHENG Shangyuan, LIU Youzhi, QI Guisheng. Progress in the enhancement of gas-liquid mass transfer by porous nanoparticle nanofluids[J]. Journal of Materials Science, 2019, 54(20): 13029-13044.
|
29 |
JUNG Jung-Yeul, LEE Jae Won, KANG Yong Tae. CO2 absorption characteristics of nanoparticle suspensions in methanol[J]. Journal of Mechanical Science and Technology, 2012, 26(8): 2285-2290.
|
30 |
KIM Jae Hyung, JUNG Chung Woo, KANG Yong Tae. Mass transfer enhancement during CO2 absorption process in methanol/Al2O3 nanofluids[J]. International Journal of Heat and Mass Transfer, 2014, 76: 484-491.
|
31 |
GHASEMI B, AMINOSSADATI S M. Brownian motion of nanoparticles in a triangular enclosure with natural convection[J]. International Journal of Thermal Sciences, 2010, 49(6): 931-940.
|
32 |
唐忠利, 湛波, 张树杨, 等. CO2在纳米流体解吸过程中的微对流现象[J]. 化工学报, 2012, 63(6): 1691-1696.
|
|
TANG Zhongli, ZHAN Bo, ZHANG Shuyang, et al. Microconvection phenomena accompanying CO2 desorption from nanofluids[J]. CIESC Journal, 2012, 63(6): 1691-1696.
|
33 |
KIM Eung Surk, JUNG Jung-Yeul, KANG Yong Tae. The effect of surface area on pool boiling heat transfer coefficient and CHF of Al2O3/water nanofluids[J]. Journal of Mechanical Science and Technology, 2013, 27(10): 3177-3182.
|
34 |
DARVANJOOGHI Mohammad Hossein Karimi, ESFAHANY Mohsen Nasr, ESMAEILI-FARAJ Seyyed Hamid. Investigation of the effects of nanoparticle size on CO2 absorption by silica-water nanofluid[J]. Separation and Purification Technology, 2018, 195: 208-215.
|
35 |
张帅. Cu-Al2O3纳米流体吸收解吸船舶尾气中的CO2的实验研究[D]. 重庆: 重庆交通大学, 2022.
|
|
ZHANG Shuai. Experimental study on the absorption and desorption of CO2 in the exhaust gas of ships by Cu-Al2O3 nanofluids[D]. Chongqing: Chongqing Jiaotong University, 2022.
|
36 |
于伟. 纳米颗粒强化的二氧化碳吸收剂及新型再生工艺研究[D]. 杭州: 浙江大学, 2019.
|
|
YU Wei. Post-combustion CO2 capture using liquid nano-absorbents and novel solvent regeneration process[D]. Hangzhou: Zhejiang University, 2019.
|
37 |
IQBAL Anum, MAHMOUD Mohamed S, SAYED Enas Taha, et al. Evaluation of the nanofluid-assisted desalination through solar stills in the last decade[J]. Journal of Environmental Management, 2021, 277: 111415.
|
38 |
贾萌川, 张忠孝, 江砚池, 等. 纳米颗粒强化TETA溶液富液解吸CO2的实验研究[J]. 化学工程, 2019, 47(10): 37-41, 78.
|
|
JIA Mengchuan, ZHANG Zhongxiao, JIANG Yanchi, et al. Desorption of CO2 performance enhancement by nanoparticles in TETA rich solution[J]. Chemical Engineering (China), 2019, 47(10): 37-41, 78.
|
39 |
CHOI Ik Dong, LEE Jae Won, KANG Yong Tae. CO2 capture/separation control by SiO2 nanoparticles and surfactants[J]. Separation Science and Technology, 2015, 50(5): 772-780.
|