化工进展 ›› 2024, Vol. 43 ›› Issue (2): 713-721.DOI: 10.16085/j.issn.1000-6613.2023-1367
收稿日期:
2023-08-10
修回日期:
2023-10-19
出版日期:
2024-02-25
发布日期:
2024-03-07
通讯作者:
闫子涵
作者简介:
闫子涵(1989—),男,副教授,硕士生导师,研究方向为多相流理论与过程强化。E-mail:yzh@cup.edu.cn。
基金资助:
YAN Zihan(), WANG Dongdong, YIN Huimin, LIU Wenrui, LU Chunxi
Received:
2023-08-10
Revised:
2023-10-19
Online:
2024-02-25
Published:
2024-03-07
Contact:
YAN Zihan
摘要:
湍流射流是气固快速反应过程中气相原料与固体颗粒的理想混合形式,采取有效的测试技术与分析方法获得射流与气固两相流的混合行为对研究反应过程具有重要意义。本文采用光纤探针技术获得了颗粒浓度动态数据,以提升管内颗粒聚团的传统分析方法为基础,结合小波分析,提出了射流与气固两相流混合过程中颗粒聚团的确定方法,并将射流影响区内气固间的瞬时接触状态分为颗粒聚团相、散式颗粒相以及未与颗粒充分混合的射流相。结合附壁射流理论,利用气体示踪技术获得的射流特征浓度分布结果,对理想条件下的射流中心线方程进行了修正,所得结果可预测气固两相流中射流的发展趋势。利用臭氧分解示踪技术,获得了原料射流与气固两相流混合过程中的局部反应结果,将其与气固动态混合特征及射流轨迹模型相结合,可分析流动参数对反应的影响。
中图分类号:
闫子涵, 王栋栋, 阴慧敏, 刘文瑞, 卢春喜. 射流与气固两相流混合过程的测试与分析方法[J]. 化工进展, 2024, 43(2): 713-721.
YAN Zihan, WANG Dongdong, YIN Huimin, LIU Wenrui, LU Chunxi. Measuring and analysis methods for the mixing process of jet and gas-solid two-phase flow[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 713-721.
参数 | 值 |
---|---|
平均粒径/μm | 65 |
粒径范围/μm | 30~90 |
颗粒密度/kg·m-3 | 1200 |
堆积密度/kg·m-3 | 929 |
表1 催化裂化(FCC)催化剂物性参数
参数 | 值 |
---|---|
平均粒径/μm | 65 |
粒径范围/μm | 30~90 |
颗粒密度/kg·m-3 | 1200 |
堆积密度/kg·m-3 | 929 |
J | AJ(t)/Hz | DJ(t)/Hz |
---|---|---|
1 | 0~12500 | 12500~25000 |
2 | 0~6250 | 6250~12500 |
3 | 0~3125 | 3125~6250 |
4 | 0~1562.5 | 1562.5~3125 |
5 | 0~781.3 | 781.3~1562.5 |
6 | 0~390.6 | 390.6~781.3 |
表2 近似信号和细节信号的频率范围
J | AJ(t)/Hz | DJ(t)/Hz |
---|---|---|
1 | 0~12500 | 12500~25000 |
2 | 0~6250 | 6250~12500 |
3 | 0~3125 | 3125~6250 |
4 | 0~1562.5 | 1562.5~3125 |
5 | 0~781.3 | 781.3~1562.5 |
6 | 0~390.6 | 390.6~781.3 |
操作条件 | (H-H0) /m | 射流与提升 管轴向夹角α/(°) | 实测位置xD/m | 理论值x/m | KD |
---|---|---|---|---|---|
预提升气速2.4m/s,喷嘴出口气速78.5m/s | 0.375 | 30 | 0.060 | 0.210 | 3.50 |
-0.185 | 135 | 0.063 | 0.208 | 3.31 | |
-0.185 | 150 | 0.033 | 0.111 | 3.36 | |
预提升气速3.5m/s,喷嘴出口气速64.2m/s | 0.375 | 30 | 0.051 | 0.170 | 3.33 |
-0.185 | 135 | 0.067 | 0.207 | 3.09 | |
-0.185 | 150 | 0.039 | 0.129 | 3.32 |
表3 射流中心位置实测值与理论计算值对应关系
操作条件 | (H-H0) /m | 射流与提升 管轴向夹角α/(°) | 实测位置xD/m | 理论值x/m | KD |
---|---|---|---|---|---|
预提升气速2.4m/s,喷嘴出口气速78.5m/s | 0.375 | 30 | 0.060 | 0.210 | 3.50 |
-0.185 | 135 | 0.063 | 0.208 | 3.31 | |
-0.185 | 150 | 0.033 | 0.111 | 3.36 | |
预提升气速3.5m/s,喷嘴出口气速64.2m/s | 0.375 | 30 | 0.051 | 0.170 | 3.33 |
-0.185 | 135 | 0.067 | 0.207 | 3.09 | |
-0.185 | 150 | 0.039 | 0.129 | 3.32 |
1 | CHEN Guoqiang, LUO Zhenghong, LAN Xingying, et al. Evaluating the role of intraparticle mass and heat transfers in a commercial FCC riser: A meso-scale study[J]. Chemical Engineering Journal, 2013, 228(7): 352-365. |
2 | SABOUNI Rana, LEACH Aidan, BRIENS Cedric, et al. Enhancement of the liquid feed distribution in gas-solid fluidized beds by nozzle pulsations (induced by solenoid valve)[J]. AIChE Journal, 2011, 57(12): 3344-3350. |
3 | KHADILKAR Aditi B, ROZELLE Peter L, PISUPATI Sarma V. A study on initiation of ash agglomeration in fluidized bed gasification systems[J]. Fuel, 2015, 152: 48-57. |
4 | TAYEBI Davoud, SVENDSEN Hallvard F, Arne GRISLINGÅS, et al. Dynamics of fluidized-bed reactors. Development and application of a new multi-fiber optical probe[J]. Chemical Engineering Science, 1999, 54(13/14): 2113-2122. |
5 | LIN Qian, WEI Fei, JIN Yong. Transient density signal analysis and two-phase micro-structure flow in gas-solids fluidization[J]. Chemical Engineering Science, 2001, 56(6): 2179-2189. |
6 | MALCUS S, CHAPLIN G, PUGSLEY T. The hydrodynamics of the high-density bottom zone in a CFB riser analyzed by means of electrical capacitance tomography (ECT)[J]. Chemical Engineering Science, 2000, 55(19): 4129-4138. |
7 | GRASSLER T, K-E WIRTH. X-ray computer tomography—Potential and limitation for the measurement of local solids distribution in circulating fluidized beds[J]. Chemical Engineering Journal, 2000, 77(1/2): 65-72. |
8 | PÄRSSINEN J H, ZHU J-X. Particle velocity and flow development in a long and high-flux circulating fluidized bed riser[J]. Chemical Engineering Science, 2001, 56(18): 5295-5303. |
9 | 鄂承林, 蔡丹枫, 范怡平, 等. 喷嘴油气在提升管进料段的浓度径向分布及混合行为[J]. 化工学报, 2010, 61(9): 2208-2216. |
Chenglin E, CAI Danfeng, FAN Yiping, et al. Concentration distribution and mixing process of jet gas in feed injection zone of FCC riser[J]. CIESC Journal, 2010, 61(9): 2208-2216. | |
10 | XU Jing, ZHU J-X. Visualization of particle aggregation and effects of particle properties on cluster characteristics in a CFB riser[J]. Chemical Engineering Journal, 2011, 168(1): 376-389. |
11 | SOONG C H, TUZLA K, CHEN J C. Experimental determination of cluster size and velocity in circulating fluidized bed[C]. Fluidization Ⅷ, 1995. New York. |
12 | WEI Fei, YANG Guoqiang, JIN Yong, et al. The characteristics of cluster in a high density circulating fluidized bed[J]. The Canadian Journal of Chemical Engineering, 1995, 73(5): 650-655. |
13 | SOONG C H, TUZLA K, CHEN J C. Identification of particle clusters in circulating fluidized bed[C]// Circulating Fluidized Bed Technology Ⅳ, 1994. New York. |
14 | 白丁荣, 易江林, 施国强, 等. 循环流化床气体返混及停留时间的分布[J]. 高校化学工程学报, 1992, 6(3): 258-263. |
BAI Dingrong, YI Jianglin, SHI Guoqiang, et al. Backmixing and residence time distribution of gas in circulating fluidized bed[J]. Journal of Chemical Engineering of Chinese Universities, 1992, 6(3): 258-263. | |
15 | 魏飞, 金涌, 俞芷青, 等. 磷光颗粒示踪技术在循环流态化中的应用[J]. 化工学报, 1994, 45(2): 230-235. |
WEI Fei, JIN Yong, YU Zhiqing, et al. Application of phosphor tracer technique to the measurement of solids RTD in circulating fluidized bed[J]. CIESC Journal, 1994, 45(2): 230-235. | |
16 | NAMKUNG Won, KIM Sang Done. Radial gas mixing in a circulating fluidized bed[J]. Powder Technology, 2000, 113(1/2): 23-29. |
17 | MAHMOUDI S, SEVILLE J P K, BAEYENS J. The residence time distribution and mixing of the gas phase in the riser of a circulating fluidized bed[J]. Powder Technology, 2010, 203(2): 322-330. |
18 | WANG Fenfen, MA Shihan, WEN Jiajia, et al. Gas hydrodynamics of a novel MTO high-speed loop reactor: The bypassing and backmixing along with average residence time[J]. Powder Technology, 2020, 364: 1062-1075. |
19 | FAN Chuigang, ZHANG Yong, BI Xiaotao, et al. Evaluation of downer reactor performance by catalytic ozone decomposition[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 539-554. |
20 | OLORUNTOBA Adefarati, ZHANG Yongmin, LI Shuyue. Performance evaluation of gas maldistribution mitigation via baffle installation: Computational study using ozone decomposition in low-velocity dense fluidized beds[J]. Chemical Engineering Research and Design, 2023, 195: 38-53. |
21 | BI Hsiaotao T. A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds[J]. Chemical Engineering Science, 2007, 62(13): 3473-3493. |
22 | 胡小康, 刘小成, 徐俊, 等. 循环流化床提升管内压力脉动特性[J]. 化工学报, 2010, 61(4): 825-831. |
HU Xiaokang, LIU Xiaocheng, XU Jun, et al. Characteristics of pressure fluctuations in CFB riser[J]. CIESC Journal, 2010, 61(4): 825-831. | |
23 | 谢金朋, 吴广恒, 王德武, 等. 变径组合提升管内压力脉动及其流型转变特性[J]. 石油学报(石油加工), 2019, 35(1): 83-90. |
XIE Jinpeng, WU Guangheng, WANG Dewu, et al. Characteristics of pressure fluctuation in adjustable combined riser and flow regime transition[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(1): 83-90. | |
24 | SCHAFFKA Flavia Tramontin Silveira, BEHAINNE Jhon Jairo Ramírez, PARISE Maria Regina, et al. Dynamics of the pressure fluctuation in the riser of a small scale circulating fluidized bed: Effect of the solids inventory and fluidization velocity under the absolute mean deviation analysis[C]//Balthazar J M. Vibration Engineering and Technology of Machinery. Cham: Springer, 2021: 419-430. |
25 | NIU Li, LIU Mengxi, LU Chunxi, et al. Comparison and analysis of pressure fluctuation in a fluid catalytic cracking and mixed particle fluidized bed[J]. Industrial & Engineering Chemistry Research, 2022, 61(13): 4707-4721. |
26 | YANG T-Y, L-P LEU. Multi-resolution analysis of wavelet transform on pressure fluctuations in an L-valve[J]. International Journal of Multiphase Flow, 2008, 34(6): 567-579. |
27 | 徐俊, 顾松园, 钟思青, 等. 快速流化床内气固两相流动态压力的实验研究[J]. 化学反应工程与工艺, 2014, 30(5): 391-397. |
XU Jun, GU Songyuan, ZHONG Siqing, et al. An experimental study on pressure fluctuations of gas-solid two-phase flow in a fast fluidized bed[J]. Chemical Reaction Engineering and Technology, 2014, 30(5): 391-397. | |
28 | GUENTHER Chris, BREAULT Ronald. Wavelet analysis to characterize cluster dynamics in a circulating fluidized bed[J]. Powder Technology, 2007, 173(3): 163-173. |
29 | YANG Tung-Yu, Lii-ping LEU. Multiresolution analysis on identification and dynamics of clusters in a circulating fluidized bed[J]. AIChE Journal, 2009, 55(3): 612-629. |
30 | GAO Jinsen, XU Chunming, LIN Shixiong, et al. Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors[J]. AIChE Journal, 1999, 45(5): 1095-1113. |
31 | FAN Yiping, CHENGLIN E, SHI Mingxian, et al. Diffusion of feed spray in fluid catalytic cracker riser[J]. AIChE Journal, 2010, 56(4): 858-868. |
32 | REN Congjing, YANG Yao, HUANG Zhengliang, et al. Effect of the scale-up process on the reactor performance within the riser: Simulation using ozone decomposition[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11479-11489. |
33 | WANG Chengxiu, BARGHI Shahzad, ZHU Jesse. Hydrodynamics and reactor performance evaluation of a high flux gas-solids circulating fluidized bed downer: Experimental study[J]. AIChE Journal, 2014, 60(10): 3412-3423. |
34 | YAN Zihan, CHEN Sheng, WANG Zhao, et al. Distributions of solids holdup and particle velocity in the FCC riser with downward pointed feed injection scheme[J]. Powder Technology, 2016, 304: 63-72. |
35 | 闫子涵, 王钊, 陈昇, 等. 新型催化裂化提升管进料段油、剂两相混合特性[J]. 化工学报, 2016, 67(8): 3304-3312. |
YAN Zihan, WANG Zhao, CHEN Sheng, et al. Matching between oil and catalyst in new scheme of FCC feed injection[J]. CIESC Journal, 2016, 67(8): 3304-3312. | |
36 | MANYELE S V, PARSSINEN J H, ZHU J-X. Characterizing particle aggregates in a high-density and high-flux CFB riser[J]. Chemical Engineering Journal, 2002, 88(1/2/3): 151-161. |
37 | KIANI A, SOTUDEH-GHAREBAGH R, MOSTOUFI N. Cluster size distribution in the freeboard of a gas-solid fluidized bed[J]. Powder Technology, 2013, 246: 1-6. |
38 | WANG Haifeng, CHEN Yanpei, WANG Wei. Particle-level dynamics of clusters: Experiments in a gas-fluidized bed[J]. AIChE Journal, 2022, 68(3): e17525. |
39 | 平浚. 均匀平行气流中附壁射流弯曲变形分析[J]. 太原重型机械学院学报, 1985, 6(1): 13-21. |
PING Jun. Analysis of bending deformation for the jet attachment in the parallel flows[J]. Journal of Taiyuan Heavy Machinery Institute, 1985, 6(1): 13-21. | |
40 | KUMARI Archana, KUMAR Amitesh. Heat transfer and fluid flow characteristics of a turbulent wall jet with a wavy wall[J]. International Journal of Heat and Fluid Flow, 2021, 87: 108749. |
[1] | 史雪薇, 谭超, 董峰. 基于环形电导传感器的气液两相流流型识别与过程参数测量[J]. 化工进展, 2024, 43(2): 637-648. |
[2] | 孙宏军, 李腾, 李金霞, 丁红兵. 基于Kelvin-Helmholtz不稳定性和界面剪切作用的扰动波高预测模型[J]. 化工进展, 2024, 43(2): 609-618. |
[3] | 张世玮, 李玉宇, 孟磊, 宁翔, 苏明旭. 基于超声的高浓度浆液两相流粒径在线测量[J]. 化工进展, 2024, 43(2): 593-601. |
[4] | 胡志豪, 张皓景, 周叶, 吴睿. 高效镍基有序多孔电极气泡行为可视化观测及性能影响[J]. 化工进展, 2024, 43(2): 680-687. |
[5] | 付飞飞, 李健. 基于EMD的密相气力输送两相流系统内子系统相互联系和作用[J]. 化工进展, 2024, 43(2): 696-702. |
[6] | 刘昊东, 张鹏飞, 黄钰期. 三元锂电池热失控射流可视化及速度场测试[J]. 化工进展, 2024, 43(2): 703-712. |
[7] | 谢广烁, 张斯亮, 何松, 肖娟, 王斯民. 基于最佳预后元模型的颗粒污垢特性全局敏感性分析[J]. 化工进展, 2024, 43(1): 328-337. |
[8] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[9] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[10] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[11] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[12] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[13] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[14] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[15] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |