化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2354-2369.DOI: 10.16085/j.issn.1000-6613.2023-1990
• 化石能源的清洁高效转化利用 • 上一篇
江安迪1(), 丁雪兴1(), 王世鹏1, 丁俊华1, 力宁2
收稿日期:
2023-11-15
修回日期:
2023-12-08
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
丁雪兴
作者简介:
江安迪(2000—),男,硕士研究生,研究方向为流体动密封技术。E-mail:13919208706@163.com。
基金资助:
JIANG Andi1(), DING Xuexing1(), WANG Shipeng1, DING Junhua1, LI Ning2
Received:
2023-11-15
Revised:
2023-12-08
Online:
2024-05-15
Published:
2024-06-15
Contact:
DING Xuexing
摘要:
干气密封技术在超临界二氧化碳(supercritical carbon dioxide,S-CO2)布雷顿循环涡轮机械中的应用,以其卓越的密封性能和稳定性,为旋转机械的安全运行提供了保障,并显著改善了轴端密封效果。鉴于密封介质的特殊物性以及高参数化工作环境的要求,在S-CO2干气密封热动力学性能研究过程中涉及复杂的流体润滑理论。本文重点阐述了多重流体效应以及相变特性对S-CO2干气密封性能和流动传热特性的作用机理和影响规律,详细列出了理论研究中常采取的分析模型和求解算法,并综合评述了国内外在理论和试验方面对S-CO2干气密封热动力学性能的研究。在此基础上,结合领域需求和现有先进技术,进一步提出了今后的发展方向,以期为深入开展相关研究提供理论参考,促进干气密封技术在未来能源领域中的广泛应用。
中图分类号:
江安迪, 丁雪兴, 王世鹏, 丁俊华, 力宁. 超临界CO2干气密封热动力学性能研究进展[J]. 化工进展, 2024, 43(5): 2354-2369.
JIANG Andi, DING Xuexing, WANG Shipeng, DING Junhua, LI Ning. Research progress on thermodynamic performance of supercritical CO2 dry gas seal[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2354-2369.
研究单位 | 涡轮机械方案 | 设计功率等级 /kW | 设计转速 /r·min-1 | 进气压力 /MPa | 进口温度 /K |
---|---|---|---|---|---|
美国桑迪亚国家实验室[ | TA(12级离心压缩机,4级轴流透平) | 100 | 75000 | 9.8 | 320 |
美国西南研究院/GE公司[ | TA(12级离心压缩机,4级轴流透平) | 10000 | 27000 | 25.1 | 350 |
TA(2级主压缩/4级再压缩离心压缩机,6级轴流透平/4级高压+3级低压双分流轴流透平) | 50000 | 9500 | 25.1 | 973 | |
450000 | 3600 | ||||
中国西安热工研究院[ | TA(4级离心压缩机,4级轴流透平) | 5000 | 9000 | 20.0 | 873 |
韩国能源技术研究所[ | TA(2级主压缩/4级再压缩离心压缩机,6级轴流透平) | 10 | 70000 | 7.91 | 773 |
表1 国内外S-CO2涡轮机械干气密封应用机构和设计参数
研究单位 | 涡轮机械方案 | 设计功率等级 /kW | 设计转速 /r·min-1 | 进气压力 /MPa | 进口温度 /K |
---|---|---|---|---|---|
美国桑迪亚国家实验室[ | TA(12级离心压缩机,4级轴流透平) | 100 | 75000 | 9.8 | 320 |
美国西南研究院/GE公司[ | TA(12级离心压缩机,4级轴流透平) | 10000 | 27000 | 25.1 | 350 |
TA(2级主压缩/4级再压缩离心压缩机,6级轴流透平/4级高压+3级低压双分流轴流透平) | 50000 | 9500 | 25.1 | 973 | |
450000 | 3600 | ||||
中国西安热工研究院[ | TA(4级离心压缩机,4级轴流透平) | 5000 | 9000 | 20.0 | 873 |
韩国能源技术研究所[ | TA(2级主压缩/4级再压缩离心压缩机,6级轴流透平) | 10 | 70000 | 7.91 | 773 |
方程 | 独立变量 | 压缩因子表达式 | 具体适用范围 |
---|---|---|---|
R-K方程 (Redlich-Kwong equation)[ | p、T | 适用于中低压(0.1~10MPa)和中高温(rt~Tc)条件下的气体状态描述,特别是液气界面附近的状态 | |
二项截断型维里方程 (second term Virial equation)[ | p、T | 适用于中等压力和温度(<Pc和Tc)下的气体状态描述,尤其在接近临界点和较低压力时,具有较高的精度 | |
三项截断型维里方程 (third term Virial equation)[ | p、T | 适用范围与二项截断型维里方程相同,但由于增加了第三维里系数提高了描述的准精确度 | |
Span-Wagner方程 (Span-Wagner equation)[ | ρ、T | 具有更高精度且适用范围广泛,特别适用于超临界流体和高压气体等复杂热力学系统 | |
S-R-K方程 (Soave-Redlich-Kwong equation)[ | p、T | 适用于描述临界压力附近的气体状态,尤其是高温(>473K)情况 | |
P-R方程 (Peng-Robinson equation) [ | p、T | 适用于多组分混合物的气体行为描述,在宽范围的温度(173~773K)和压力(0~100MPa)下表现良好,包括处理超临界流体 |
表2 实际气体状态方程描述
方程 | 独立变量 | 压缩因子表达式 | 具体适用范围 |
---|---|---|---|
R-K方程 (Redlich-Kwong equation)[ | p、T | 适用于中低压(0.1~10MPa)和中高温(rt~Tc)条件下的气体状态描述,特别是液气界面附近的状态 | |
二项截断型维里方程 (second term Virial equation)[ | p、T | 适用于中等压力和温度(<Pc和Tc)下的气体状态描述,尤其在接近临界点和较低压力时,具有较高的精度 | |
三项截断型维里方程 (third term Virial equation)[ | p、T | 适用范围与二项截断型维里方程相同,但由于增加了第三维里系数提高了描述的准精确度 | |
Span-Wagner方程 (Span-Wagner equation)[ | ρ、T | 具有更高精度且适用范围广泛,特别适用于超临界流体和高压气体等复杂热力学系统 | |
S-R-K方程 (Soave-Redlich-Kwong equation)[ | p、T | 适用于描述临界压力附近的气体状态,尤其是高温(>473K)情况 | |
P-R方程 (Peng-Robinson equation) [ | p、T | 适用于多组分混合物的气体行为描述,在宽范围的温度(173~773K)和压力(0~100MPa)下表现良好,包括处理超临界流体 |
湍流理论 | 理论基础 | 湍流应力处理方法 | 适用领域 |
---|---|---|---|
Constantinescu湍流理论[ | Prandtl混合长度理论 | 以平均速度梯度进行表示 | 以速度流动为主的动压轴承计算 |
Ng-Pan-Elord湍流理论[ | Reichardt经验“壁面定律” | 以平均速度梯度和涡黏系数表示 | 非平面流问题求解及不可压缩湍流润滑轴承 |
Hirs湍流理论[ | “Bulk flow”整体流理论 | 以雷诺数的幂次关系表示 | 雷诺数较小的湍流润滑和低运动黏度的流体润滑 |
表3 湍流理论描述
湍流理论 | 理论基础 | 湍流应力处理方法 | 适用领域 |
---|---|---|---|
Constantinescu湍流理论[ | Prandtl混合长度理论 | 以平均速度梯度进行表示 | 以速度流动为主的动压轴承计算 |
Ng-Pan-Elord湍流理论[ | Reichardt经验“壁面定律” | 以平均速度梯度和涡黏系数表示 | 非平面流问题求解及不可压缩湍流润滑轴承 |
Hirs湍流理论[ | “Bulk flow”整体流理论 | 以雷诺数的幂次关系表示 | 雷诺数较小的湍流润滑和低运动黏度的流体润滑 |
黏度方程 | 独立变量 | 具体表达式 | 适用性 |
---|---|---|---|
Lucas黏度方程[ | p、T | 适用于常规条件下气体混合物的黏度预测,但描述超临界流体黏度时精度较低 | |
F-W-V黏度方程[ | ρ、T | 对靠近CO2临界状态和高压下的黏度描述表现出较高的精度 |
表4 S-CO2黏度方程描述
黏度方程 | 独立变量 | 具体表达式 | 适用性 |
---|---|---|---|
Lucas黏度方程[ | p、T | 适用于常规条件下气体混合物的黏度预测,但描述超临界流体黏度时精度较低 | |
F-W-V黏度方程[ | ρ、T | 对靠近CO2临界状态和高压下的黏度描述表现出较高的精度 |
传热模型 | 原理 | 涉及方程 | 计算复杂度 | 适用性 |
---|---|---|---|---|
等温模型 | 假定密封环与流体热交换充分 | 流体流动方程、能量守恒方程 | 忽略了固体部分的一些热传递,在边界上施加恒定温度或零热通量条件即可,计算相对简单,复杂度低 | 适用于膜厚较薄且密封间隙内流体流速较慢的情况 |
绝热模型 | 假设固体边界热对流是绝缘的,即无热量通过固体边界 | 流体流动方程、能量守恒方程 | 适用于气膜较厚及流速较高的情况 | |
共轭传热模型 | 考虑密封环的导热以及密封环与密封腔流体之间的对流换热 | 流体流动方程、能量守恒方程、热传导方程 | 需同时求解流体和固体的热传递方程,并应用适当的耦合边界条件,计算复杂度高 | 适用范围广,接近于实际传热过程 |
表5 干气密封热特性研究中的传热模型[62]
传热模型 | 原理 | 涉及方程 | 计算复杂度 | 适用性 |
---|---|---|---|---|
等温模型 | 假定密封环与流体热交换充分 | 流体流动方程、能量守恒方程 | 忽略了固体部分的一些热传递,在边界上施加恒定温度或零热通量条件即可,计算相对简单,复杂度低 | 适用于膜厚较薄且密封间隙内流体流速较慢的情况 |
绝热模型 | 假设固体边界热对流是绝缘的,即无热量通过固体边界 | 流体流动方程、能量守恒方程 | 适用于气膜较厚及流速较高的情况 | |
共轭传热模型 | 考虑密封环的导热以及密封环与密封腔流体之间的对流换热 | 流体流动方程、能量守恒方程、热传导方程 | 需同时求解流体和固体的热传递方程,并应用适当的耦合边界条件,计算复杂度高 | 适用范围广,接近于实际传热过程 |
计算方法 | 基本思想 | 特点 |
---|---|---|
PH线性法 (P-H linear method)[ | 定义PH函数关联独立变量,再引入泛函数,并对研究点的微分线性化代替,获得近似线性方程 | 构造形式简洁,求解工作量大大降低 |
等步长有限差分法 (equal step fin difference method,E-FDM)[ | 用节值或节点差商代替微分方程中的变量或导数,并转换为差分代数方程 | 差分表达式简单、收敛速度快 |
变步长有限差分法 (variable step fin difference method,V-FDM)[ | 考虑非均匀网格的差分格式,根据问题的具体需求,步长可灵活调整 | 灵活性、实用性好:根据计算精度,选择适合的网格密度和差分格式,提高了计算效率 |
有限体积法 (finite volume method,FVM)[ | 在划分控制体积的基础上,利用网格节点对应控制,再对多个控制体积分,得到离散方程 | (1)构造形式多样化; (2)离散求解复杂域和灵活网格划分 |
有限元法 (finite element method,FEM)[ | 找到求解域中所划分单元内连续函数对应的形函数,组装成线性表达式,求解相应的刚度矩阵 | (1)具有出色的有效性和可操作性,能够精确地逼近复杂形状表面; (2)计算阶次得到提高 |
等几何分析法 (isogeometric analysis,IGA)[ | 使用插值函数作为形函数,通过网格节点构建待解物理场的分布 | 无须求解域的离散过程,且表达压力所需的自由度少,求解效率高 |
多重网格法 (multigrid method,MG)[ | 利用粗网格消除细网格上的低频误差,更快收敛 | 兼顾运算效率的同时,提高运算精度、简化计算过程 |
表6 干气密封数值计算方法
计算方法 | 基本思想 | 特点 |
---|---|---|
PH线性法 (P-H linear method)[ | 定义PH函数关联独立变量,再引入泛函数,并对研究点的微分线性化代替,获得近似线性方程 | 构造形式简洁,求解工作量大大降低 |
等步长有限差分法 (equal step fin difference method,E-FDM)[ | 用节值或节点差商代替微分方程中的变量或导数,并转换为差分代数方程 | 差分表达式简单、收敛速度快 |
变步长有限差分法 (variable step fin difference method,V-FDM)[ | 考虑非均匀网格的差分格式,根据问题的具体需求,步长可灵活调整 | 灵活性、实用性好:根据计算精度,选择适合的网格密度和差分格式,提高了计算效率 |
有限体积法 (finite volume method,FVM)[ | 在划分控制体积的基础上,利用网格节点对应控制,再对多个控制体积分,得到离散方程 | (1)构造形式多样化; (2)离散求解复杂域和灵活网格划分 |
有限元法 (finite element method,FEM)[ | 找到求解域中所划分单元内连续函数对应的形函数,组装成线性表达式,求解相应的刚度矩阵 | (1)具有出色的有效性和可操作性,能够精确地逼近复杂形状表面; (2)计算阶次得到提高 |
等几何分析法 (isogeometric analysis,IGA)[ | 使用插值函数作为形函数,通过网格节点构建待解物理场的分布 | 无须求解域的离散过程,且表达压力所需的自由度少,求解效率高 |
多重网格法 (multigrid method,MG)[ | 利用粗网格消除细网格上的低频误差,更快收敛 | 兼顾运算效率的同时,提高运算精度、简化计算过程 |
仿真方法 | 特点 | 优缺点 | 适用性 |
---|---|---|---|
计算流体动力学 (computational fluid dynamics,CFD)[ | 使用有限元软件来计算和分析流体流动问题 | 可提供详细的流体流动和传热特性分析,但对计算资源要求较大 | 适用于广泛的流体流动和热传递问题 |
分子动力学 (molecular dynamics,MD)[ | 基于物理原理模拟流体分子或原子的性质和行为 | 微观尺度下计算精确,但依赖于所用力场的精确性 | 适用于微观尺度的流体特性分析 |
数据驱动模型 (data driven model,DDM)[ | 应用机器学习算法和人工智能技术分析数据,预测流体行为 | 处理并集成大量复杂数据,预测迅速,但需大量高质训练数据 | 适用于复杂系统分析和优化设计 |
表7 现有仿真计算方法
仿真方法 | 特点 | 优缺点 | 适用性 |
---|---|---|---|
计算流体动力学 (computational fluid dynamics,CFD)[ | 使用有限元软件来计算和分析流体流动问题 | 可提供详细的流体流动和传热特性分析,但对计算资源要求较大 | 适用于广泛的流体流动和热传递问题 |
分子动力学 (molecular dynamics,MD)[ | 基于物理原理模拟流体分子或原子的性质和行为 | 微观尺度下计算精确,但依赖于所用力场的精确性 | 适用于微观尺度的流体特性分析 |
数据驱动模型 (data driven model,DDM)[ | 应用机器学习算法和人工智能技术分析数据,预测流体行为 | 处理并集成大量复杂数据,预测迅速,但需大量高质训练数据 | 适用于复杂系统分析和优化设计 |
测试类型 | 试验方法 | 测量技术 |
---|---|---|
泄漏量测试 | 流量计测量:保证腔内压力恒定,进气补充量为泄漏量 | (1)扫描电镜:观察密封副接触表面的微观结构,检测磨损和损伤; (2)声发射技术:监测干气密封状态,捕获并分析声波信号,评估密封性能和可能出现的故障; (3)实时监测和数据采集:使用实时监测系统和数据采集设备,记录干气密封性能参数 |
温度和压力测试 | 温度测量:普遍使用温度传感器,如热电偶或热电阻传感器; 压力测量:可采用压力或压差传感器对密封环境压力测量,也可通过进出口压力和膜压峰值,间接测量气膜开启力 | |
气膜厚度测试 | 气膜厚度测量实质是位移和振幅的测量,常见测量方法为电涡流法 | |
摩擦扭矩和磨损测试 | 摩擦扭矩测量:使用测力传感器并利用数据采集系统记录; 磨损测试:观察和分析密封副端面的微观结构和磨损情况,评估磨损程度和机制 |
表8 干气密封常用试验方法及测量技术[83-86]
测试类型 | 试验方法 | 测量技术 |
---|---|---|
泄漏量测试 | 流量计测量:保证腔内压力恒定,进气补充量为泄漏量 | (1)扫描电镜:观察密封副接触表面的微观结构,检测磨损和损伤; (2)声发射技术:监测干气密封状态,捕获并分析声波信号,评估密封性能和可能出现的故障; (3)实时监测和数据采集:使用实时监测系统和数据采集设备,记录干气密封性能参数 |
温度和压力测试 | 温度测量:普遍使用温度传感器,如热电偶或热电阻传感器; 压力测量:可采用压力或压差传感器对密封环境压力测量,也可通过进出口压力和膜压峰值,间接测量气膜开启力 | |
气膜厚度测试 | 气膜厚度测量实质是位移和振幅的测量,常见测量方法为电涡流法 | |
摩擦扭矩和磨损测试 | 摩擦扭矩测量:使用测力传感器并利用数据采集系统记录; 磨损测试:观察和分析密封副端面的微观结构和磨损情况,评估磨损程度和机制 |
1 | GIL Laura, OTÍN Santos F, EMBID Jose Muñoz, et al. Experimental setup to measure critical properties of pure and binary mixtures and their densities at different pressures and temperatures[J]. The Journal of Supercritical Fluids, 2008, 44(2): 123-138. |
2 | CRESPI Francesco, GAVAGNIN Giacomo, David SÁNCHEZ, et al. Supercritical carbon dioxide cycles for power generation: A review[J]. Applied Energy, 2017, 195: 152-183. |
3 | BRAHIMI Faiza, MADANI Baya, GHEMMADI Messaouda. Comparative thermodynamic environmental and economic analyses of combined cycles using air and supercritical CO2 in the bottoming cycles for power generation by gas turbine waste heat recovery[J]. Energies, 2022, 15(23): 9066. |
4 | SHARMA O P, KAUSHIK S C, MANJUNATH K. Thermodynamic analysis and optimization of a supercritical CO2 regenerative recompression Brayton cycle coupled with a marine gas turbine for shipboard waste heat recovery[J]. Thermal Science and Engineering Progress, 2017, 3: 62-74. |
5 | YU Aofang, SU Wen, LIN Xinxing, et al. Thermodynamic analysis on the combination of supercritical carbon dioxide power cycle and transcritical carbon dioxide refrigeration cycle for the waste heat recovery of shipboard[J]. Energy Conversion and Management, 2020, 221: 113214. |
6 | TURCHI Craig S, MA Zhiwen, NEISES Ty W, et al. Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems[J]. Journal of Solar Energy Engineering, 2013, 135(4): 041007. |
7 | SLEITI Ahmad K, AL-AMMARI Wahib A. Combined direct oxy-combustion and concentrated solar supercritical carbon dioxide power system—Thermo, exergoeconomic, and quadruple optimization analyses[J]. International Journal of Energy Research, 2022, 46(7): 9560-9585. |
8 | THATTE Azam, DHEERADHADA Voramon. Coupled physics performance predictions and risk assessment for dry gas seal operating in MW-scale supercritical CO2 turbine[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Seoul, South Korea: American Society of Mechanical Engineers, 2016: 1-13. |
9 | RUAN Bo. Finite element analysis of the spiral groove gas face seal at the slow speed and the low pressure conditions—Slip flow consideration[J]. Tribology Transactions, 2000, 43(3): 411-418. |
10 | Manuel VALDÉS, ABBAS Rubén, ROVIRA Antonio, et al. Thermal efficiency of direct, inverse and sCO2 gas turbine cycles intended for small power plants[J]. Energy, 2016, 100: 66-72. |
11 | THATTE Azam, ZHENG Xiaoqing. Hydrodynamics and sonic flow transition in dry gas seals[C]//Volume 7B: Structures and Dynamics. Düsseldorf, Germany: American Society of Mechanical Engineers, 2014: 1-13. |
12 | DU Qiuwan, ZHANG Di. Research on the performance of supercritical CO2 dry gas seal with different deep spiral groove[J]. Journal of Thermal Science, 2019, 28(3): 547-558. |
13 | 王宇飞, 丁雪兴, 马高峰, 等. 衍生螺旋槽对超临界二氧化碳干气密封微气膜稳态特性影响[J]. 润滑与密封, 2022, 47(8): 90-99. |
WANG Yufei, DING Xuexing, MA Gaofeng, et al. Influence of derivative spiral groove on steady state characteristics of micro gas film in supercritical carbon dioxide dry gas seal[J]. Lubrication Engineering, 2022, 47(8): 90-99. | |
14 | FARIA Marco Tulio C, MENDES MIRANDA Wederley. Pressure dam influence on the performance of gas face seals[J]. Tribology International, 2012, 47: 134-141. |
15 | 宋鹏云, 丁志浩. 螺旋槽泵出型干气密封端面气膜压力近似解析计算[J]. 润滑与密封, 2011, 36(4): 1-3. |
SONG Pengyun, DING Zhihao. An approximate analytical method of the gas film pressure of the outward pumping spiral groove dry gas seals[J]. Lubrication Engineering, 2011, 36(4): 1-3. | |
16 | 许恒杰, 宋鹏云, 毛文元, 等. 层流状态下高压高转速二氧化碳干气密封的惯性效应分析[J]. 化工学报, 2018, 69(10): 4311-4323. |
XU Hengjie, SONG Pengyun, MAO Wenyuan, et al. Analysis on inertia effect of carbon dioxide dry gas seal at high speed and pressure under laminar condition[J]. CIESC Journal, 2018, 69(10): 4311-4323. | |
17 | 袁韬, 李志刚, 李军, 等. 超临界二氧化碳多槽型干气密封泄漏流动与动力特性研究[J]. 推进技术, 2022, 43(9): 199-207. |
YUAN Tao, LI Zhigang, LI Jun, et al. Leakage flow and dynamic characteristics of supercritical carbon dioxide dry gas seals with different types of grooves[J]. Journal of Propulsion Technology, 2022, 43(9): 199-207. | |
18 | ZHANG Cong, JIANG Jinbo, PENG Xudong, et al. An investigation on phase transitions in a supercritical CO2 dry gas seal[J]. Tribology Transactions, 2022, 65(4): 728-748. |
19 | KIM Beom-Ju. The technology development trends of supercritical CO2 power generation[J]. KEPCO Journal on Electric Power and Energy, 2016, 2(4): 531-536. |
20 | ALLSON Timothy C, MOORE Jeffrey J, HOFER Douglas, et al. Planning for successful transients and tips in a 1MWe-scale high-tempture sCO2 test loop[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(6): 061014. |
23 | LI Hongzhi, ZHANG Yifan, YAO Mingyu, et al. Design assessment of a 5MW fossil-fired supercritical CO2 power cycle pilot loop[J]. Energy, 2019, 174: 792-804. |
24 | LEE Gil Bong, BAIK Young Jin, CHO Jun Hyun, et al. Supercritical carbon dioxide power generation system: US10082049[P]. 2018-09-25. |
25 | NYEMECK Andre Parfait, BRUNETIERE Noël, TOURNERIE Bernard. A mixed thermoelastohydrodynamic lubrication analysis of mechanical face seals by a multiscale approach[J]. Tribology Transactions, 2015, 58(5): 836-848. |
26 | DENG Chengxiang, SONG Pengyun. The evaluation of the equations of state used for the joule-thomson effect analysis in the dry gas seal[J]. Applied Mechanics and Materials, 2015, 752/753: 391-395. |
27 | USHIFUSA Hiroyuki, INABA Kazuaki, SUGASAWA Konosuke, et al. Measurement and visualization of supercritical CO2 in dynamic phase transition[J]. EPJ Web of Conferences, 2015, 92: 02103. |
28 | 章聪, 江锦波, 彭旭东, 等. 近临界区CO2物性预测模型对比与修正[J]. 化工学报, 2019, 70(8): 3058-3070. |
ZHANG Cong, JIANG Jinbo, PENG Xudong, et al. Comparison and correction of CO2 properties model in critical region[J]. CIESC Journal, 2019, 70(8): 3058-3070. | |
29 | 王明选. 超临界二氧化碳布雷顿循环的工质成分对金属材料腐蚀行为特性研究[D]. 杭州: 浙江大学, 2022. |
WANG Mingxuan. Study on corrosion behavior of metal materials in working media of supercritical carbon dioxide Brayton cycle[D]. Hangzhou: Zhejiang University, 2022. | |
30 | XU Wanjun, YANG Jiangang. Accuracy analysis of narrow groove theory for spiral grooved gas seals: A comparative study with numerical solution of Reynolds equation[J]. Proceedings of the Institution of Mechanical Engineers J: Journal of Engineering Tribology, 2018, 233(6): 899-910. |
31 | QIN Kan, JAHN Ingo H, JACOBS Peter A. Effect of operating conditions on the elastohydrodynamic performance of foil thrust bearings for supercritical CO2 cycles[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(4): 042505. |
32 | HEIDARYAN Ehsan, JARRAHIAN Azad. Modified Redlich-Kwong equation of state for supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2013, 81: 92-98. |
33 | 许恒杰. 实际气体及其阻塞和惯性效应对干气密封动力学特性影响规律研究[D]. 昆明: 昆明理工大学, 2019. |
XU Hengjie. Dynamic characteristics of dry gas seal influenced by the real gas, choked flow and inertia effects[D]. Kunming: Kunming University of Science and Technology, 2019. | |
34 | FAIRUZ Z M, JAHN Ingo. The influence of real gas effects on the performance of supercritical CO2 dry gas seals[J]. Tribology International, 2016, 102: 333-347. |
35 | REDLICH O, KWONG J N S. On the thermodynamics of solutions; An equation of state; fugacities of gaseous solutions[J]. Chemical Reviews, 1949, 44(1): 233-244. |
36 | POLING Bruce E, PRAUSNITZ J M, O’CONNELL John P. The properties of gases and liquids[M]. 5th ed. New York: McGraw-Hill, 2001. |
37 | SPAN Roland, WAGNER Wolfgang. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100K at pressures up to 800MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596. |
38 | 王海柱, 沈忠厚, 李根生, 等. CO2气体物性参数精确计算方法研究[J]. 石油钻采工艺, 2011, 33(5): 65-67. |
WANG Haizhu, SHEN Zhonghou, LI Gensheng, et al. Research on the precise calculation method of physical parameters for CO2 [J]. Oil Drilling & Production Technology, 2011, 33(5): 65-67. | |
39 | SOAVE Giorgio. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972, 27(6): 1197-1203. |
40 | PENG Dingyu, ROBINSON Donald B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
41 | ZAKARIYA Mohd Fairuz, JAHN Ingo H J. Performance of supercritical CO2 dry gas seals near the critical point[C]//Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy. Seoul, South Korea: American Society of Mechanical Engineers, 2016: 1-10. |
42 | 沈伟, 彭旭东, 江锦波, 等. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659. |
SHEN Wei, PENG Xudong, JIANG Jinbo, et al. Analysis on real effect of supercritical carbon dioxide dry gas seal at high speed[J]. CIESC Journal, 2019, 70(7): 2645-2659. | |
43 | 胡航领, 林志民, 虞翔宇, 等. 高参数超临界二氧化碳干气密封性能分析研究[J]. 化工设备与管道, 2022, 59(5): 62-68. |
HU Hangling, LIN Zhimin, YU Xiangyu, et al. Simulation analysis on sealing performance of supernal parameters supercritical carbon dioxide dry gas seal[J]. Process Equipment & Piping, 2022, 59(5): 62-68. | |
44 | 严如奇, 丁雪兴, 徐洁, 等. 离心惯性力效应对超临界二氧化碳干气密封流场与密封特性影响分析[J]. 摩擦学学报, 2020, 40(6): 781-791. |
YAN Ruqi, DING Xuexing, XU Jie, et al. The influence analysis of centrifugal inertia force effect on the flow field and sealing characteristics of supercritical carbon dioxide dry gas seal[J]. Tribology, 2020, 40(6): 781-791. | |
45 | THOMAS Sébastien, Noël BRUNETIÈRE, TOURNERIE Bernard. Numerical modelling of high pressure gas face seals[J]. Journal of Tribology, 2006, 128(2): 396-405. |
46 | John ZUK, LUDWIG L P, JOHNSON Robert L. Compressible flow across shaft face seals[C]//5th International Conference on Fluid Sealing. Coventry, England: BHRA, 1971: 1-35. |
47 | John ZUK. Analysis of face deformation effects on gas film seal performance[J]. ASLE Transactions, 1973, 16(4): 267-275. |
48 | XU Hengjie, SONG Pengyun, MAO Wenyuan, et al. The performance of spiral groove dry gas seal under choked flow condition considering the real gas effect[J]. Proceedings of the Institution of Mechanical Engineers J: Journal of Engineering Tribology, 2020, 234(4): 554-566. |
49 | 马润梅, 朱鑫磊, 张楠楠, 等. 超临界二氧化碳气体端面密封阻塞效应研究[J]. 润滑与密封, 2020, 45(1): 16-22. |
MA Runmei, ZHU Xinlei, ZHANG Nannan, et al. Study on blocking effect supercritical carbon dioxide of dry gas seal[J]. Lubrication Engineering, 2020, 45(1): 16-22. | |
50 | KIM Hyo Ju, YOON Hyun Sik. Reynolds number effect on the fluid flow and heat transfer around a harbor seal vibrissa shaped cylinder[J]. International Journal of Heat and Mass Transfer, 2018, 126: 618-638. |
21 | BIDKAR Rahul A, MANN Andrew, SINGH Rajkeshar, et al. Conceptual designs of 50MWe and 450MWe supercritical CO2 turbomachinery trains for power generation from coal. Part 1: Cycle and Turbine[C]//5th International Symposium-Supercritical CO2 Power Cycles. San Antonio, Texas: Southwest Research Institute, 2016: 1-18. |
22 | BIDKAR Rahul A, MUSGROVE Grant, DAY Meera, et al. Conceptual designs of 50MWe and 450MWe supercritical CO2 turbomachinery trains for power generation from coal. Part 2: Compressors[C]//5th International Symposium-Supercritical CO2 Power Cycles. San Antonio, Texas: Southwest Research Institute, 2016: 1-17. |
51 | 徐洁.柔顺箔片气膜密封动压润滑特性分析及试验研究[D]. 兰州: 兰州理工大学, 2022. |
XU Jie. Analysis and experimental research on dynamic pressure lubrication characteristics of compliant foil gas film seal[D]. Lanzhou: Lanzhou University of Technology, 2022. | |
52 | 丁雪兴, 蒋海涛, 徐洁, 等. 湍流效应对干气密封性能影响的研究进展[J]. 润滑与密封, 2023, 48(8): 188-195. |
DING Xuexing, JIANG Haitao, XU Jie, et al. Research progress of turbulence effect on dry gas sealing performance[J]. Lubrication Engineering, 2023, 48(8): 188-195. | |
53 | CONSTANTINESCU V N. On turbulent lubrication[J]. Proceedings of the Institution of Mechanical Engineers, 1959, 173(1): 881-900.. |
54 | CONSTANTINESCU V N. Analysis of bearings operating in turbulent regime[J]. Journal of Basic Engineering, 1962, 84(1): 139-151. |
55 | Chung-Wah NG. Fluid dynamic foundation of turbulent lubrication theory[J]. A S L E Transactions, 1964, 7(4): 311-321. |
56 | Chung-Wah NG, PAN C H T. A linearized turbulent lubrication theory[J]. Journal of Basic Engineering, 1965, 87(3): 675-682. |
57 | HIRS G G. A bulk-flow theory for turbulence in lubricant films[J]. Journal of Lubrication Technology, 1973, 95(2): 137-145. |
58 | FENG Huihui, PENG Liping. Numerical analysis of water-lubricated thrust bearing with groove texture considering turbulence and cavitation[J]. Industrial Lubrication and Tribology, 2018, 70(6): 1127-1136. |
59 | 严如奇. 超临界二氧化碳干气密封流体动力润滑与密封性能研究[D]. 兰州: 兰州理工大学, 2022. |
YAN Ruqi. The research on hydrodynamic lubrication and sealing performance of supercritical carbon dioxide dry gas seal[D]. Lanzhou: Lanzhou University of Technology, 2022. | |
60 | 沈伟. 高参数干气密封的惯性与湍流效应影响分析与型槽设计[D]. 杭州: 浙江工业大学, 2019. |
SHEN Wei. Surface groove design and inertia effect and turbulent effect analysis of high parameter dry gas seal[D]. Hangzhou: Zhejiang University of Technology, 2019. | |
61 | FENGHOUR A, WAKEHAM William A, VESOVIC V. The viscosity of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 1998, 27(1): 31-44. |
62 | 江鹏, 江锦波, 彭旭东, 等. 传热模型对近临界工况CO2干气密封温压分布和稳态性能影响[J]. 化工学报, 2021, 72(8): 4239-4254, 3883. |
JIANG Peng, JIANG Jinbo, PENG Xudong, et al. Influence of heat transfer model on temperature and pressure distribution and steady state performance of CO2 dry gas seal under near critical condition[J]. CIESC Journal, 2021, 72(8): 4239-4254, 3883. | |
63 | YAN Ruqi, CHEN Hanqing, ZHANG Weizheng, et al. Calculation and verification of flow field in supercritical carbon dioxide dry gas seal based on turbulent adiabatic flow model[J]. Tribology International, 2022, 165: 107275. |
64 | GABRIEl R P. Fundamentals of spiral groove noncontacting face seals[J]. Lubrication Engineering, 1994, 50(3): 215-224. |
65 | 费建国, 罗会信, 左兵权, 等. 雷诺方程的数值计算方法概述[J]. 润滑与密封, 2020, 45(4): 130-140. |
FEI Jianguo, LUO Huixin, ZUO Bingquan,et al. An overview of numerical methods for Reynolds equation[J]. Lubrication Engineering, 2020, 45(4): 130-140. | |
66 | AMODIO Pierluigi, SETTANNI Giuseppina. Reprint of variable-step finite difference schemes for the solution of Sturm-Liouville problems[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 21(1/2/3): 12-21. |
67 | PROFITO Francisco J, GIACOPINI Matteo, ZACHARIADIS Demetrio C, et al. A general finite volume method for the solution of the Reynolds lubrication equation with a mass-conserving cavitation model[J]. Tribology Letters, 2015, 60(1): 18. |
68 | PFEIL Simon, GRAVENKAMP Hauke, DUVIGNEAU Fabian, et al. Scaled boundary finite element method for hydrodynamic bearings in rotordynamic simulations[J]. International Journal of Mechanical Sciences, 2021, 199: 106427. |
69 | YIN Shuohui, YU Tiantang, Tinh Quoc BUI, et al. Geometrically nonlinear analysis of functionally graded plates using isogeometric analysis[J]. Engineering Computations, 2015, 32(2): 519-558. |
70 | GRAF Kai. A multigrid procedure for the solution of the Reynolds-averaged Navier-Stokes equation[J]. Viscous Flow, 1994. |
71 | 车国铚, 杨启超, 魏志国, 等. 超临界二氧化碳透平机械用气体轴承的研究进展及关键技术[J]. 中国电机工程学报, 2022, 42(15): 5616-5630. |
CHE Guozhi, YANG Qichao, WEI Zhiguo, et al. Research progress and key technologies of gas bearings for supercritical carbon dioxide turbomachinery[J]. Proceedings of the CSEE, 2022, 42(15): 5616-5630. | |
72 | 刘柯炜, 李振涛, 王昕, 等. 超临界二氧化碳干气密封稳态性能研究[J]. 润滑与密封, 2020, 45(9): 71-77. |
LIU Kewei, LI Zhentao, WANG Xin, et al. Study on steady-state performance of supercritical carbon dioxide dry gas seal[J]. Lubrication Engineering, 2020, 45(9): 71-77. | |
73 | 陈维, 宋鹏云, 许恒杰, 等. 含杂质二氧化碳实际气体干气密封性能研究[J]. 化工学报, 2020, 71(5): 2215-2229. |
CHEN Wei, SONG Pengyun, XU Hengjie, et al. Effects of the real-gas characteristics of carbon dioxide with impurities on the dry gas seal performance[J]. CIESC Journal, 2020, 71(5): 2215-2229. | |
74 | ZHU Delei, BAI Shaoxian. Thermoelastohydrodynamic characteristics of supercritical CO2 spiral groove face seals[J]. Industrial Lubrication and Tribology, 2021, 73(1): 153-162. |
75 | 严如奇, 丁雪兴, 徐洁, 等. 基于湍流模型的S-CO2干气密封流场与稳态性能分析[J]. 化工学报, 2021, 72(8): 4292-4303, 4445. |
YAN Ruqi, DING Xuexing, XU Jie, et al. Flow field and steady performance of supercritical carbon dioxide dry gas seal based on turbulence model[J]. CIESC Journal, 2021, 72(8): 4292-4303, 4445. | |
76 | DOUSTI Saeid, ALLAIRE Paul. A compressible hydrodynamic analysis of Journal bearings lubricated with supercritical carbon dioxide[C]//Proceeding of Supercritical CO2 Power Cycle Symposium. San Antonio: Southwest Research Institute, 2016: 1-13. |
77 | Blazek J. Computational fluid dynamics: principles and applications[M]. Third edition. Amsterdam: Butterworth Heinemann, 2015. |
78 | MÍGUEZ J M, CONDE M M, TORRÉ J P, et al. Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line[J]. The Journal of Chemical Physics, 2015, 142(12): 124505. |
79 | WANG Jinjiang, LI Yilin, GAO Robert X, et al. Hybrid physics-based and data-driven models for smart manufacturing: Modelling, simulation, and explainability[J]. Journal of Manufacturing Systems, 2022, 63: 381-391. |
80 | 马高峰, 丁雪兴, 张伟政, 等. 超临界二氧化碳微尺度干气密封性能分析[J]. 润滑与密封, 2020, 45(8): 61-69, 77. |
MA Gaofeng, DING Xuexing, ZHANG Weizheng, et al. Performance analysis of supercritical carbon dioxide micro-scale dry gas seals[J]. Lubrication Engineering, 2020, 45(8): 61-69, 77. | |
81 | DU Qiuwan, GAO Keke, ZHANG Di, et al. Effects of grooved ring rotation and working fluid on the performance of dry gas seal[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1323-1332. |
82 | FAIRUZ Z M, JAHN Ingo, Razi ABDUL-RAHMAN. The effect of convection area on the deformation of dry gas seal operating with supercritical CO2 [J]. Tribology International, 2019, 137: 349-365. |
83 | 王衍, 孙见君, 于雪梅, 等. 干气密封稳定运行状态无损化测试及判定方法研究[J]. 液压气动与密封, 2016, 36(12): 18-23. |
WANG Yan, SUN Jianjun, YU Xuemei,et al. Research on nondestructive testing and judgement method of dry gas seal stable operation state[J]. Hydraulics Pneumatics & Seals, 2016, 36(12): 18-23. | |
84 | 俞树荣, 曹兴岩, 丁雪兴, 等. 螺旋槽干气密封性能参数的测试技术及试验研究[J]. 机械工程学报, 2012, 48(19): 116-121. |
YU Shurong, CAO Xingyan, DING Xuexing, et al. Test technology and experiment research of performance parameters for spiral groove dry gas seal[J]. Journal of Mechanical Engineering, 2012, 48(19): 116-121. | |
85 | 陆俊杰, 刘柱, 丁俊华, 等. 机械密封界面摩擦声发射信号的特征提取与分析[J]. 振动工程学报, 2013: 1-9. |
LU Junjie, LIU Zhu, DING Junhua, et al. Feature extraction and analysis of friction acoustic emission signal at mechanical seal interface[J]. Journal of Vibration Engineering, 2023: 1-9. | |
86 | 丁雪兴. 干气密封螺旋槽润滑气膜的稳、动态特性研究[D]. 兰州: 兰州理工大学, 2008. |
DING Xuexing. The research on steady-state and dynamical characterization of hubricating gaseous film in the sprial grooved gas seals[D]. Lanzhou: Lanzhou University of Technology, 2008. | |
87 | TRIVEDI Deepak, BIDKAR Rahul A, WOLFE Chris, et al. Film-stiffness characterization for supercritical CO2 film-riding seals[C]//Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Oslo, Norway: American Society of Mechanical Engineers, 2018: 1-10. |
88 | RIMPEL Aaron, SMITH Natalie, WIKES Jason, et al. Test rig design for large supercritical CO2 turbine seals[C]//6th International Supercritical CO2 Power Cycle Symposium. Pittsburgh, Pennsylvania: Southwest Research Institute, 2018: 1-14. |
89 | LAXANDER Armin, FESL Andreas, HELLMIG Benjamin. Development and testing of dry gas seals for turbomachinery in multiphase CO2 applications[C]//3rd European supercritical CO2 Conference. Paris, France: Energy, 2019: 1-12. |
90 | 李志刚, 袁韬, 方志, 等. 超临界二氧化碳旋转机械动密封技术研究进展[J]. 热力透平, 2019, 48(3): 166-174, 191. |
LI Zhigang, YUAN Tao, FANG Zhi, et al. A review on dynamic sealing technology of supercritical carbon dioxide rotating machinery[J]. Thermal Turbine, 2019, 48(3): 166-174, 191. | |
91 | 唐大全, 洪先志, 黎磊, 等. 超临界CO2干气密封流动场数值计算与试验验证[J]. 化工机械, 2021, 48(2): 209-212, 305. |
TANG Daquan, HONG Xianzhi, LI Lei, et al. Microscale calculation and experiment of the flow field of dry gas seal with supercritical carbon dioxide[J]. Chemical Engineering & Machinery, 2021, 48(2): 209-212, 305. | |
92 | 陈坤毅. 超临界二氧化碳动压密封流体膜跨临界流动和热弹变形优化分析[D]. 北京: 北京化工大学, 2021. |
CHEN Kunyi. Study of transcritical flow and thermoelastic deformation of sCO2 dynamic pressure sealing faces[D]. Beijing: Beijing University of Chemical Technology, 2021. |
[1] | 尹少武, 李纤纤, 韩嘉维, 路明, 童莉葛, 王立. 分户式低谷电蓄热供暖系统的蓄放热特性[J]. 化工进展, 2024, 43(3): 1206-1213. |
[2] | 丁丽华, 徐洪涛, 张晨宇. 基于圆台波浪形换热管的潜热储热单元性能分析[J]. 化工进展, 2024, 43(3): 1214-1223. |
[3] | 见禹, 陈宝明, 宫晗语. 基于分级结构骨架相变储热系统强化传热特性[J]. 化工进展, 2024, 43(2): 649-658. |
[4] | 朱兵国, 巩楷刚, 彭斌. 垂直管内高质量流速超临界CO2换热特性[J]. 化工进展, 2024, 43(2): 937-947. |
[5] | 孙月, 王斯佳, 吴明侠, 宋先雨, 徐首红. pH/温度响应型聚合物PMAA-b-PDMAEMA的合成、性能调控及应用[J]. 化工进展, 2024, 43(1): 480-489. |
[6] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[7] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[8] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[9] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[10] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
[11] | 刘厚励, 顾中浩, 阳康, 张莉. 3D打印槽道结构槽宽对池沸腾传热特性的影响[J]. 化工进展, 2023, 42(5): 2282-2288. |
[12] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[13] | 徐玉珍, 蒋达华, 刘景滔, 陈璞. 粉煤灰基相变储能材料的制备及性能[J]. 化工进展, 2023, 42(5): 2595-2605. |
[14] | 符乐, 杨阳, 徐文青, 耿錾卜, 朱廷钰, 郝润龙. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080. |
[15] | 桑伟, 唐建峰, 花亦怀, 陈洁, 孙培源, 许义飞. 物理溶剂及有机胺的性质对相变吸收性能的影响[J]. 化工进展, 2023, 42(4): 2151-2159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |