化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2279-2293.DOI: 10.16085/j.issn.1000-6613.2024-0013
• 化石能源的清洁高效转化利用 • 上一篇
姚乃瑜(), 曹景沛(), 庞新博, 赵小燕, 蔡士杰, 徐敏, 赵静平, 冯晓博, 伊凤娇
收稿日期:
2024-01-03
修回日期:
2024-03-25
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
曹景沛
作者简介:
姚乃瑜(1998—),女,博士研究生,研究方向为低阶煤和生物质的催化热解。E-mail:naiyuyao@cumt.edu.cn。
基金资助:
YAO Naiyu(), CAO Jingpei(), PANG Xinbo, ZHAO Xiaoyan, CAI Shijie, XU Min, ZHAO Jingping, FENG Xiaobo, YI Fengjiao
Received:
2024-01-03
Revised:
2024-03-25
Online:
2024-05-15
Published:
2024-06-15
Contact:
CAO Jingpei
摘要:
低阶煤清洁高效利用是我国的重大战略需求之一。在煤热转化技术中,煤热解挥发分催化重整可将复杂热解产品定向轻质化制备化学品,具有广泛应用前景。改变工艺条件是提高热解转化率和产品收率的重要手段,优化反应器设计以及开发高活性和稳定性催化剂是该技术发展的重要方向。本文首先介绍了低阶煤及其挥发分的催化重整方式,在此基础上综述了温度、气氛、停留时间等反应条件的影响以及固定床和流化床反应器应用的策略和挑战,然后对金属类、炭基和沸石类催化剂的后处理及原位控制等改性方法与作用原理进行了分析,阐述了热解挥发分的催化裂解机理。此外,指出了煤热解挥发分催化重整技术在工业化生产中的瓶颈,明确了挥发分中低碳烃类与大分子化合物的催化转化路径对煤热解过程中二次反应定向调控的关键作用,深入探究了催化剂中酸催化质子化作用对催化剂失活机制的影响。
中图分类号:
姚乃瑜, 曹景沛, 庞新博, 赵小燕, 蔡士杰, 徐敏, 赵静平, 冯晓博, 伊凤娇. 低阶煤热解挥发分热催化重整研究进展[J]. 化工进展, 2024, 43(5): 2279-2293.
YAO Naiyu, CAO Jingpei, PANG Xinbo, ZHAO Xiaoyan, CAI Shijie, XU Min, ZHAO Jingping, FENG Xiaobo, YI Fengjiao. Research progress in catalytic reforming of low rank coal pyrolysis volatiles[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2279-2293.
反应器类型 | 反应温度/℃ | 颗粒尺寸 | 产率 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|---|
两段式固定床 | 600 | 0.43~0.85mm | 焦:55% 液体:17.5% 气体:27.5% | 催化剂原料易于分离 | 结构复杂,能源浪费大 | [ |
下坠式固定床 | 600 | 0.43~1.18mm | 焦:57% 液体:18% 气体:25% | 工艺简单,升温速率高,实现了焦油的原位催化重整 | 难以长时间连续反应 | [ |
流化床 | 600 | 40~100μm | 焦:69% 液体:11% 气体:20% | 温控好,处理量大 | 流体力学复杂 | [ |
表1 各类型反应器特性及优缺点
反应器类型 | 反应温度/℃ | 颗粒尺寸 | 产率 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|---|
两段式固定床 | 600 | 0.43~0.85mm | 焦:55% 液体:17.5% 气体:27.5% | 催化剂原料易于分离 | 结构复杂,能源浪费大 | [ |
下坠式固定床 | 600 | 0.43~1.18mm | 焦:57% 液体:18% 气体:25% | 工艺简单,升温速率高,实现了焦油的原位催化重整 | 难以长时间连续反应 | [ |
流化床 | 600 | 40~100μm | 焦:69% 液体:11% 气体:20% | 温控好,处理量大 | 流体力学复杂 | [ |
催化剂 | 原料 | 反应条件 | 结果 | 参考文献 |
---|---|---|---|---|
ZnO纳米颗粒 | 土耳其低阶煤 | 催化剂/低阶煤=1,700℃,N2流量=50mL/min | 热解焦:40%,焦油:29%,气体:31% | [ |
TiO2纳米颗粒 | 热解焦:40%,焦油:37%,气体:23% | |||
NiO/MgO-Al2O3 | 内蒙古胜利褐煤 | 300g煤,进料速度5g/min,600℃,催化剂密度0.706g/mL | 轻质油的含量从6%增加到49% | [ |
赤铁矿 | 长焰煤 | 20g煤,600℃,N2流量=20mL/min | 焦油收率降低2.91%,其中沥青含量降低7.59% | [ |
褐铁矿、菱铁矿、赤铁矿和磁铁矿 | 内蒙古包日褐煤 | 1mg煤样,1mg催化剂,700℃,停留时间20s,Ar气氛 | 褐铁矿催化后BTEXN总面积提高52% | [ |
Mg-Al水滑石 | 新疆次烟煤 | 催化剂/低阶煤=0.2,600℃,N2流量=200mL/min | 苯、甲苯、乙苯、二甲苯、萘和茚的含量分别提高了1.40倍、1.54倍、0.76倍、2.56倍、0.19倍和2.14倍 | [ |
高岭土 | 新疆哈密煤 | 催化剂/煤=0.2,500℃,N2流量=200mL/min | 焦油中芳烃含量为22.11% | [ |
表2 金属基催化剂在挥发分催化重整中的性能比较
催化剂 | 原料 | 反应条件 | 结果 | 参考文献 |
---|---|---|---|---|
ZnO纳米颗粒 | 土耳其低阶煤 | 催化剂/低阶煤=1,700℃,N2流量=50mL/min | 热解焦:40%,焦油:29%,气体:31% | [ |
TiO2纳米颗粒 | 热解焦:40%,焦油:37%,气体:23% | |||
NiO/MgO-Al2O3 | 内蒙古胜利褐煤 | 300g煤,进料速度5g/min,600℃,催化剂密度0.706g/mL | 轻质油的含量从6%增加到49% | [ |
赤铁矿 | 长焰煤 | 20g煤,600℃,N2流量=20mL/min | 焦油收率降低2.91%,其中沥青含量降低7.59% | [ |
褐铁矿、菱铁矿、赤铁矿和磁铁矿 | 内蒙古包日褐煤 | 1mg煤样,1mg催化剂,700℃,停留时间20s,Ar气氛 | 褐铁矿催化后BTEXN总面积提高52% | [ |
Mg-Al水滑石 | 新疆次烟煤 | 催化剂/低阶煤=0.2,600℃,N2流量=200mL/min | 苯、甲苯、乙苯、二甲苯、萘和茚的含量分别提高了1.40倍、1.54倍、0.76倍、2.56倍、0.19倍和2.14倍 | [ |
高岭土 | 新疆哈密煤 | 催化剂/煤=0.2,500℃,N2流量=200mL/min | 焦油中芳烃含量为22.11% | [ |
1 | 谢克昌. “乌金” 产业绿色转型[J]. 中国煤炭工业, 2016(2): 6-7. |
XIE Kechang. Green transformation of “Wujin” industry[J]. China Coal Industry, 2016(2): 6-7. | |
2 | 中华人民共和国自然资源部. 中国矿产资源报告[R]. 北京: 地质出版社, 2023. |
Ministry of Natural Resources, People’s Republic of China. China mineral resources[R]. Beijing: Geological Publishing House, 2023. | |
3 | 袁亮. 我国煤炭工业高质量发展面临的挑战与对策[J]. 中国煤炭, 2020, 46(1): 6-12. |
YUAN Liang. Challenges and countermeasures for high quality development of China’s coal industry[J]. China Coal, 2020, 46(1): 6-12. | |
4 | 丁肖肖, 李洪娟, 王亚涛. 褐煤低温热解分级利用现状分析及展望[J]. 洁净煤技术, 2019, 25(5): 1-7. |
DING Xiaoxiao, LI Hongjuan, WANG Yatao. Present situation analysis and prospect of classification and utilization of lignite pyrolysis at low temperature[J]. Clean Coal Technology, 2019, 25(5): 1-7. | |
5 | LEI Zhang, HAO Shu, YANG Jia, et al. Study on solid waste pyrolysis coke catalyst for catalytic cracking of coal tar[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19280-19290. |
6 | HE Mingyuan, ZHANG Kun, GUAN Yejun, et al. Green carbon science: Fundamental aspects[J]. National Science Review, 2023, 10(9): nwad046. |
7 | HAN Zhennan, JIA Xin, SONG Xingfei, et al. Engineering thermochemistry to cope with challenges in carbon neutrality[J]. Journal of Cleaner Production, 2023, 416: 137943. |
8 | 胡浩权, 狄敏娜, 王明义, 等. 煤热解焦油催化裂解和乙烷水蒸气重整耦合提高焦油品质[J]. 煤炭学报, 2020, 45(1): 386-392. |
HU Haoquan, DI Minna, WANG Mingyi, et al. Upgrading of coal pyrolysis tar by catalytic cracking coupled with steam reforming of ethane[J]. Journal of China Coal Society, 2020, 45(1): 386-392. | |
9 | 胡浩权. 煤直接转化制高品质液体燃料和化学品[J]. 化工进展, 2016, 35(12): 4096-4098. |
HU Haoquan. Coal direct conversion to high quality liquid fuels and chemicals[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4096-4098. | |
10 | WU Zhiqiang, YANG Wangcai, TIAN Xueyu, et al. Synergistic effects from co-pyrolysis of low-rank coal and model components of microalgae biomass[J]. Energy Conversion and Management, 2017, 135: 212-225. |
11 | LV Peng, YAN Lunjing, LIU Yan, et al. Catalytic upgrading of coal pyrolysis gaseous tar over hierarchical Y-type zeolites synthesized using a microwave hydrothermal method[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21817-21826. |
12 | WANG Deliang, CHEN Zhaohui, ZHOU Zhimao, et al. Catalytic upgrading of volatiles from coal pyrolysis over sulfated carbon-based catalysts derived from waste red oil[J]. Fuel Processing Technology, 2019, 189: 98-109. |
13 | 范涛, 初茉, 畅志兵. 蒙东褐煤热解技术工业应用进展[J]. 化工进展, 2021, 40(3): 1362-1370. |
FAN Tao, CHU Mo, CHANG Zhibing. Industrial application progress of lignite pyrolysis technology in eastern area of Inner Mongolia, China[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1362-1370. | |
14 | LI Chunshan, SUZUKI Kenzi. Resources, properties and utilization of tar[J]. Resources, Conservation and Recycling, 2010, 54(11): 905-915. |
15 | MOCHIDA I, SAKANISHI K. Catalysts for coal conversions of the next generation[J]. Fuel, 2000, 79(3/4): 221-228. |
16 | Tae-In OHM, CHAE Jong-Seong, Jae-Ho LIM, et al. Evaluation of a hot oil immersion drying method for the upgrading of crushed low-rank coal[J]. Journal of Mechanical Science and Technology, 2012, 26(4): 1299-1303. |
17 | LIU Tianlong, CAO Jingpei, ZHAO Xiaoyan, et al. In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst[J]. Fuel Processing Technology, 2017, 160: 19-26. |
18 | JIN Lijun, BAI Xiaoyu, LI Yang, et al. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Processing Technology, 2016, 147: 41-46. |
19 | ZHANG Huiyan, CHENG Yuting, VISPUTE Tushar P, et al. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: The hydrogen to carbon effective ratio[J]. Energy & Environmental Science, 2011, 4(6): 2297-2307. |
20 | Suchithra THANGALAZHY-GOPAKUMAR, ADHIKARI Sushil, GUPTA Ram B. Catalytic pyrolysis of biomass over H+ZSM-5 under hydrogen pressure[J]. Energy & Fuels, 2012, 26(8): 5300-5306. |
21 | XU Guangwen, BAI Dingrong, XU Chunming, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2022, 10(9): nwac217. |
22 | GUO Z C, WANG S W, BAI D R. Engineering thermochemistry: The science critical for the paradigm shift toward carbon neutrality[J]. Resources Chemicals and Materials, 2023, 2: 331-334. |
23 | ZHANG Zhuangzhuang, CHANG Hui, GAO Ting, et al. Catalytic upgrading of coal pyrolysis volatiles over metal-loaded HZSM-5 catalysts in a fluidized bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 31-39. |
24 | REN Xueyu, CAO Jingpei, ZHAO Shixuan, et al. Insights into coke location of catalyst deactivation during in situ catalytic reforming of lignite pyrolysis volatiles over cobalt-modified zeolites[J]. Applied Catalysis A-general, 2021, 613: 118018. |
25 | 刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1439. |
LIU Zhenyu. Advancement in coal chemistry: Structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9): 1431-1439. | |
26 | LIU Shengnan, CAO Jingpei, ZHAO Xiaoyan, et al. Effect of zeolite structure on light aromatics formation during upgrading of cellulose fast pyrolysis vapor[J]. Journal of the Energy Institute, 2019, 92(5): 1567-1576. |
27 | WAN Shaolong, WANG Yong. A review on ex situ catalytic fast pyrolysis of biomass[J]. Frontiers of Chemical Science and Engineering, 2014, 8(3): 280-294. |
28 | IISA Kristiina, FRENCH Richard J, ORTON Kellene A, et al. In situ and ex situ catalytic pyrolysis of pine in a bench-scale fluidized bed reactor system[J]. Energy & Fuels, 2016, 30(3): 2144-2157. |
29 | LIU Tao, ZHAO Jingkun, ZHANG Xiaodong. Directional conversion of volatiles from low-rank coal to BTX-rich tar by combined in situ and Ex situ catalytic pyrolyses[J]. ACS Omega, 2023, 8(4): 4419-4428. |
30 | WANG Xuebin, ZHANG Jiaye, BAI Shengjie, et al. Effect of pyrolysis upgrading temperature on particulate matter emissions from lignite semi-char combustion[J]. Energy Conversion and Management, 2019, 195: 384-391. |
31 | 吴洁, 狄佐星, 罗明生, 等. N2气氛下温度和压力对煤热解的影响[J]. 化工进展, 2019, 38(S1): 116-121. |
WU Jie, DI Zuoxing, LUO Mingsheng, et al. Effects of temperature and pressure on coal pyrolysis in N2 atmosphere[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 116-121. | |
32 | XU Ying, ZHANG Yongfa, ZHANG Guojie, et al. Low temperature pyrolysates distribution and kinetics of Zhaotong lignite[J]. Energy Conversion and Management, 2016, 114: 11-19. |
33 | MIAO Zhenyong, WAN Yongjiang, HE Qiongqiong, et al. Pyrolysis behaviors and product distribution of Shengli Lignite at different heating rate and final temperature by TG-FTIR and Py-GC-MS[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 43(23): 3203-3215. |
34 | 高晋生. 煤的热解、炼焦和煤焦油加工[M]. 北京: 化学工业出版社, 2010. |
GAO Jinsheng. Pyrolysis, coking and coal tar processing of coal[M]. Beijing: Chemical Industry Press, 2010. | |
35 | TIAN Bin, QIAO Yingyun, TIAN Yuanyu, et al. Investigation on the effect of particle size and heating rate on pyrolysis characteristics of a bituminous coal by TG-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 376-386. |
36 | WU Dun, LIU Guijian, CHEN Shancheng, et al. An experimental investigation on heating rate effect in the thermal behavior of perhydrous bituminous coal during pyrolysis[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(3): 2195-2203. |
37 | HAYASHI Jun-ichiro, TAKAHASHI Hiroshi, Satoshi DOI, et al. Reactions in brown coal pyrolysis responsible for heating rate effect on tar yield[J]. Energy & Fuels, 2000, 14(2): 400-408. |
38 | XU Shipei, ZENG Xi, HAN Zhennan, et al. Quick pyrolysis of a massive coal sample via rapid infrared heating[J]. Applied Energy, 2019, 242: 732-740. |
39 | 解强, 梁鼎成, 田萌, 等. 升温速率对神木煤热解半焦结构性能的影响[J]. 燃料化学学报, 2015, 43(7): 798-805. |
XIE Qiang, LIANG Dingcheng, TIAN Meng, et al. Influence of heating rate on structure of chars derived from pyrolysis of Shenmu coal[J]. Journal of Fuel Chemistry and Technology, 2015, 43(7): 798-805. | |
40 | MIURA Kouichi. Mild conversion of coal for producing valuable chemicals[J]. Fuel Processing Technology, 2000, 62(2/3): 119-135. |
41 | 曲旋, 张荣, 孙东凯, 等. 固体热载体热解霍林河褐煤实验研究[J]. 燃料化学学报, 2011, 39(2): 85-89. |
QU Xuan, ZHANG Rong, SUN Dongkai, et al. Experiment study on pyrolysis of Huolinhe lignite with solid heat carrier[J]. Journal of Fuel Chemistry and Technology, 2011, 39(2): 85-89. | |
42 | Steven MCCOWN M, HARRISON Douglas P. Pyrolysis and hydropyrolysis of Louisiana lignite[J]. Fuel, 1982, 61(11): 1149-1154. |
43 | CANEL Muammer, Zarife MıSıRLıOĞLU, CANEL Esin, et al. Distribution and comparing of volatile products during slow pyrolysis and hydropyrolysis of Turkish lignites[J]. Fuel, 2016, 186: 504-517. |
44 | 张晓方, 金玲, 熊燃, 等. 热分解气氛对流化床煤热解制油的影响[J]. 化工学报, 2009, 60(9): 2299-2307. |
ZHANG Xiaofang, JIN Ling, XIONG Ran, et al. Effect of reaction atmosphere on tar production from coal pyrolysis in fluidized bed reactor[J]. Journal of the Chemical Industry and Engineering Society of China, 2009, 60(9): 2299-2307. | |
45 | NIU Shuaixing, ZHOU Yajie, ZHU Shenghua, et al. Investigation into the yields and characteristics of products from lignite low-temperature pyrolysis under CO2 and N2 atmospheres[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 161-169. |
46 | WANG Qinhui, LI Kaikun, GUO Zhihang, et al. Effects of CO atmosphere on the pyrolysis of a typical lignite[J]. Chemical Engineering & Technology, 2021, 44(1): 85-94. |
47 | 高超, 马凤云, 马空军, 等. 热解气氛对煤催化热解焦油品质的影响[J]. 煤炭学报, 2015, 40(8): 1956-1962. |
GAO Chao, MA Fengyun, MA Kongjun, et al. Effect of pyrolysis gas on the tar quality from coal catalytic pyrolysis[J]. Journal of China Coal Society, 2015, 40(8): 1956-1962. | |
48 | 张俊杰, 徐绍平, 王光永, 等. 停留时间对低阶煤快速热解产物分布、组成及结构的影响[J]. 化工进展, 2019, 38(3): 1346-1352. |
ZHANG Junjie, XU Shaoping, WANG Guangyong, et al. Effect of residence time on distribution, composition and structure of products derived from fast coal pyrolysis[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1346-1352. | |
49 | YU W H, HAN S, LEI Z P, et al. The reaction behavior of volatiles generated from lignite pyrolysis[J]. Fuel, 2019, 244: 22-30. |
50 | ZHANG Lei, SHANG Jin, SHU Hao, et al. Investigation on the distribution of Yimin lignite pyrolysis products and the stability of its char[J]. ACS Omega, 2021, 6(22): 13953-13961. |
51 | AMIN Muhammad Nadeem, LI Yi, RAZZAQ Rauf, et al. Pyrolysis of low rank coal by nickel based zeolite catalysts in the two-staged bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 54-62. |
52 | WANG Dechao, JIN Lijun, WEI Baoyong, et al. Oxidative catalytic cracking and reforming of coal pyrolysis volatiles over NiO[J]. Energy & Fuels, 2020, 34(6): 6928-6937. |
53 | HU Donghai, HUANG Jiejie, ZHAO Jiantao, et al. Reaction characteristics of Shenmu coal pyrolysis volatiles with an iron-based oxygen carrier in a two-stage fixed-bed reactor[J]. Fuel Processing Technology, 2022, 235: 107371. |
54 | WANG Guijin, WANG Yiming, LV Jiannan, et al. Effect of red mud-based additives on the formation characteristics of tar and gas produced during coal pyrolysis[J]. Journal of the Energy Institute, 2022, 104: 1-11. |
55 | 赵小燕, 赵静平, 曹景沛, 等. 正丁胺改性HZSM-5对褐煤热解挥发分催化重整的影响[J]. 煤炭学报, 2022, 47(3): 1338-1346. |
ZHAO Xiaoyan, ZHAO Jingping, CAO Jingpei, et al. Effect of n-butylamine modified HZSM-5 on catalytic reforming of lignite pyrolysis volatiles[J]. Journal of China Coal Society, 2022, 47(3): 1338-1346. | |
56 | CHEW Jia Wei, LAMARCHE W Casey Q, COCCO Ray A. 100 years of scaling up fluidized bed and circulating fluidized bed reactors[J]. Powder Technology, 2022, 409: 117813. |
57 | HU Erfeng, ZHU Chuanqiang, ROGERS Kyle, et al. Coal pyrolysis and its mechanism in indirectly heated fixed-bed with metallic heating plate enhancement[J]. Fuel, 2016, 185: 656-662. |
58 | LAI Dengguo, CHEN Zhaohui, SHI Yong, et al. Pyrolysis of oil shale by solid heat carrier in an innovative moving bed with internals[J]. Fuel, 2015, 159: 943-951. |
59 | CHEN Zhaohui, WANG Demin, LI Changming, et al. A tandem pyrolysis-upgrading strategy in an integrated reactor to improve the quality of coal tar[J]. Energy Conversion and Management, 2020, 220: 113065. |
60 | BILGE Selva, DONAR Yusuf Osman, Ali SıNAĞ. Effect of metal oxide nanoparticles on the evolution of valuable gaseous products during pyrolysis of Turkish low-rank coal[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 242-247. |
61 | LI Yi, AMIN Muhammad Nadeem, LU Xingmei, et al. Pyrolysis and catalytic upgrading of low-rank coal using a NiO/MgO-Al2O3 catalyst[J]. Chemical Engineering Science, 2016, 155: 194-200. |
62 | SONG Qiang, ZHAO Hongyu, CHANG Shengqiang, et al. Study on the catalytic pyrolysis of coal volatiles over hematite for the production of light tar[J]. Journal of Analytical and Applied Pyrolysis, 2020, 151: 104927. |
63 | HE Lu, HUI Helong, LI Songgeng, et al. Production of light aromatic hydrocarbons by catalytic cracking of coal pyrolysis vapors over natural iron ores[J]. Fuel, 2018, 216: 227-232. |
64 | YANG Hang, ZHANG Jiehan, LI Changming, et al. The effect of acid-base synergistic catalysis on upgrading of volatiles from coal pyrolysis over Mg-Al composite oxides[J]. Fuel, 2022, 321: 124030. |
65 | HOU Yujie, BAI Zongqing, LU Hao, et al. In-situ catalytic upgrading of Hami coal pyrolysis volatiles over acid-modified Kaolin[J]. Fuel, 2023, 331: 125660. |
66 | WANG D C, JIN L J, LI Y, et al. Effect of reducibility of transition metal oxides on in-situ oxidative catalytic cracking of tar[J]. Energy Conversion and Management, 2019, 197: 111871. |
67 | YAN Lunjing, BAI Yonghui, KONG Xiaojun, et al. Effects of alkali and alkaline earth metals on the formation of light aromatic hydrocarbons during coal pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 169-174. |
68 | LIANG Peng, ZHANG Yaqing, WEI Aifang, et al. Cracking characteristics of simulated dust-containing coal pyrolysis volatiles over regenerated nickel-based catalysts[J]. Energy & Fuels, 2015, 29(1): 70-77. |
69 | LI Yuhuan, ZHAO Hongyu, SUI Xin, et al. Studies on individual pyrolysis and co-pyrolysis of peat-biomass blends: Thermal decomposition behavior, possible synergism, product characteristic evaluations and kinetics[J]. Fuel, 2022, 310: 122280. |
70 | SONG Qiang, ZHAO Hongyu, MA Qingxiang, et al. Catalytic upgrading of coal volatiles with Fe2O3 and hematite by TG-FTIR and Py-GC/MS[J]. Fuel, 2022, 313: 122667. |
71 | ZOU Xianwu, YAO Jianzhong, YANG Xuemin, et al. Catalytic effects of metal chlorides on the pyrolysis of lignite[J]. Energy & Fuels, 2007, 21(2): 619-624. |
72 | 杨晓霞, 汪自典, 付峰, 等. 炭基催化剂对煤热解油气品质的影响及机理[J]. 煤炭转化, 2019, 42(3): 10-17. |
YANG Xiaoxia, WANG Zidian, FU Feng, et al. Effects of carbon-based catalysts on quality of coal tar and gas and its mechanism[J]. Coal Conversion, 2019, 42(3): 10-17. | |
73 | LI Xiaohong, MA Jiangshan, LI Lili, et al. Semi-coke as solid heat carrier for low-temperature coal tar upgrading[J]. Fuel Processing Technology, 2016, 143: 79-85. |
74 | LI Xiaohong, LI Baofu, FU Daqing, et al. The interaction between the char solid heat carrier and the volatiles during low-rank coal pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 160-168. |
75 | HAN Jiangze, WANG Xingdong, YUE Junrong, et al. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Processing Technology, 2014, 122: 98-106. |
76 | 靳鑫, 王倩, 李晓荣, 等. 煤热解挥发分在活性炭上的积炭行为及其过程分析[J]. 燃料化学学报, 2021, 49(5): 609-616, 564. |
JIN Xin, WANG Qian, LI Xiaorong, et al. Coke formation on activated carbon during catalytic upgrading of coal pyrolysis volatiles[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 609-616, 564. | |
77 | WU Qinming, LUAN Huimin, XIAO Fengshou. Targeted synthesis of zeolites from calculated interaction between zeolite structure and organic template[J]. National Science Review, 2022, 9(9): nwac023. |
78 | 梁燕燕, 张军亮, 郭云鸦, 等. 晶种在分子筛合成中的作用研究进展[J]. 化工进展, 2024, 43(3): 1275-1292. |
LIANG Yanyan, ZHANG Junliang, GUO Yunya, et al. The role of seed in the synthesis of molecular sieves[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1275-1292. | |
79 | YAO Qiuxiang, LIU Yongqi, ZHANG Dan, et al. Catalytic conversion of a≥200℃ fraction separated from low-temperature coal tar into light aromatic hydrocarbons[J]. ACS Omega, 2021, 6(5): 4062-4073. |
80 | CHE Yuanjun, SHI Kunmou, CUI Zihang, et al. Conversion of low temperature coal tar into high value-added chemicals based on the coupling process of fast pyrolysis and catalytic cracking[J]. Energy, 2023, 264: 126169. |
81 | LIU Yongqi, YAO Qiuxiang, SUN Ming, et al. Catalytic fast pyrolysis of coal tar asphaltene over zeolite catalysts to produce high-grade coal tar: An analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105127. |
82 | 李勇, 闫伦靖, 李晓荣, 等. 酸/碱催化剂对低阶煤热解挥发分转化行为的作用机制研究[J]. 化工学报, 2022, 73(3): 1173-1183. |
LI Yong, YAN Lunjing, LI Xiaorong, et al. Study on the mechanism of acid/base catalyst on the release behavior of volatiles during low rank coal pyrolysis[J]. CIESC Journal, 2022, 73(3): 1173-1183. | |
83 | YAN Lunjing, KONG Xiaojun, ZHAO Ruifang, et al. Catalytic upgrading of gaseous tars over zeolite catalysts during coal pyrolysis[J]. Fuel Processing Technology, 2015, 138: 424-429. |
84 | LE Jiawei, LIU Peng, LIU Dingchao, et al. Effect of catalysts on the yields of light components and phenols derived from Shenmu coal low temperature pyrolysis[J]. Energy & Fuels, 2017, 31(7): 7033-7041. |
85 | YANG Zhen, CAO Jingpei, ZHAO Xiaoyan, et al. Enhanced light aromatic yield from lignite pyrolysis by remedying the acid sites of different hierarchical HZSM-5[J]. Energy & Fuels, 2019, 33(12): 12346-12352. |
86 | YANG Zhen, CAO Jingpei, REN Xueyu, et al. Preparation of hierarchical HZSM-5 based sulfated zirconium solid acid catalyst for catalytic upgrading of pyrolysis vapors from lignite pyrolysis[J]. Fuel, 2019, 237: 1079-1085. |
87 | REN Xueyu, CAO Jingpei, ZHAO Xiaoyan, et al. Enhancement of aromatic products from catalytic fast pyrolysis of lignite over hierarchical HZSM-5 by piperidine-assisted desilication[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1792-1802. |
88 | ZHAO J P, CAO J P, WEI F, et al. Catalytic reforming of lignite pyrolysis volatiles over sulfated HZSM-5: Significance of the introduced extra-framework Al species[J]. Fuel, 2020, 273: 117789. |
89 | ZHAO Jingping, CAO Jingpei, WEI Fu, et al. Catalytic upgrading of lignite pyrolysis volatiles over AlF3-modified HZSM-5 to light aromatics: Synergistic effects of one-step dealumination and realumination[J]. Energy & Fuels, 2021, 35(15): 12056-12064. |
90 | ZHAO J P, CAO J P, WEI F, et al. Sulfation-acidified HZSM-5 catalyst for in-situ catalytic conversion of lignite pyrolysis volatiles to light aromatics[J]. Fuel, 2019, 255: 115784. |
91 | LIU Yujie, YAN Lunjing, BAI Yonghui, et al. Catalytic upgrading of volatile from coal pyrolysis over faujasite zeolites[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 184-189. |
92 | WEI Baoyong, JIN Lijun, WANG Dechao, et al. Catalytic upgrading of lignite pyrolysis volatiles over modified HY zeolites[J]. Fuel, 2020, 259: 116234. |
93 | Peng LYU, YAN Lunjing, LIU Yan, et al. Catalytic conversion of coal pyrolysis vapors to light aromatics over hierarchical Y-type zeolites[J]. Journal of the Energy Institute, 2020, 93(4): 1354-1363. |
94 | WEI Baoyong, JIN Lijun, WANG Dechao, et al. Effect of different acid-leached USY zeolites on in situ catalytic upgrading of lignite tar[J]. Fuel, 2020, 266: 117089. |
95 | 吴卓卓, 杨志远, 鞠晓茜, 等. 酸洗改性对USY分子筛结构及煤催化热解性能的影响[J]. 洁净煤技术, 2023, 29(5): 21-27. |
WU Zhuozhuo, YANG Zhiyuan, JU Xiaoqian, et al. Effect of acid-leached modification on the structure of USY zeolite and catalytic pyrolysis performance of coal[J]. Clean Coal Technology, 2023, 29(5): 21-27. | |
96 | REN Xueyu, CAO Jingpei, ZHAO Xiaoyan, et al. Increasing light aromatic products during upgrading of lignite pyrolysis vapor over Co-modified HZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 190-197. |
97 | LI Guanlong, YAN Lunjing, ZHAO Ruifang, et al. Improving aromatic hydrocarbons yield from coal pyrolysis volatile products over HZSM-5 and Mo-modified HZSM-5[J]. Fuel, 2014, 130: 154-159. |
98 | REN X Y, CAO J P, ZHAO X Y, et al. Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5[J]. Fuel, 2018, 218: 33-40. |
99 | AMIN Muhammad Nadeem, AHMED Ashfaq, LI Yi, et al. Ex-situ catalytic fast pyrolysis of low-rank coal over HZSM-5 and modified Mg/HZSM-5 catalysts[J]. International Journal of Energy Research, 2022, 46(2): 891-899. |
100 | WEI Baoyong, YANG He, HU Haoquan, et al. Enhanced production of light tar from integrated process of in situ catalytic upgrading lignite tar and methane dry reforming over Ni/mesoporous Y[J]. Fuel, 2020, 279: 118533. |
101 | HE Yuanyuan, YAN Lunjing, LIU Yujie, et al. Effect of SiO2/Al2O3 ratios of HZSM-5 zeolites on the formation of light aromatics during lignite pyrolysis[J]. Fuel Processing Technology, 2019, 188: 70-78. |
102 | REN X Y, CAO J P, ZHAO X Y, et al. Catalytic conversion of lignite pyrolysis volatiles to light aromatics over ZSM-5: SiO2/Al2O3 ratio effects and mechanism insights[J]. Journal of Analytical & Applied Pyrolysis, 2019, 139: 22-30. |
103 | 王德亮, 陈兆辉, 余剑, 等. 不同硅铝比HZSM-5分子筛对煤热解挥发物催化提质的影响[J]. 燃料化学学报, 2021, 49(5): 634-640. |
WANG Deliang, CHEN Zhaohui, YU Jian, et al. Effect of Si/Al ratio of HZSM-5 zeolites on catalytic upgrading of coal pyrolysis volatiles[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 634-640. | |
104 | 杨珍, 曹景沛, 朱陈, 等. B-ZSM-5酸调控及催化褐煤热解挥发分制轻质芳烃研究[J]. 化工学报, 2021, 72(11): 5633-5642. |
YANG Zhen, CAO Jingpei, ZHU Chen, et al. Catalytic conversion of lignite pyrolysis volatiles for enriching light aromatics over B-ZSM-5[J]. CIESC Journal, 2021, 72(11): 5633-5642. | |
105 | 任雪宇, 曹景沛, 姚乃瑜, 等. 模板法调控多级孔ZSM-5催化褐煤挥发分制备轻质芳烃的研究[J]. 化工学报, 2021, 72(11): 5620-5632. |
REN Xueyu, CAO Jingpei, YAO Naiyu, et al. Turning hierarchical ZSM-5 by template methods and its application in catalyzing lignite-derived volatiles to light aromatics[J]. CIESC Journal, 2021, 72(11): 5620-5632. | |
106 | FENG Xiaobo, CAO Jingpei, YAO Naiyu, et al. Simultaneous enhancement of aromatic products and catalytic lifetime for catalytic re-forming of lignite pyrolysis volatiles over a self-assembled hierarchical core-shell ZSM-5@Silicalite-1 zeolite[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(38): 12960-12969. |
107 | YANG Zhen, CAO Jingpei, LIU Tianlong, et al. Controllable hollow HZSM-5 for high shape-selectivity to light aromatics from catalytic reforming of lignite pyrolysis volatiles[J]. Fuel, 2021, 294: 120427. |
108 | BI Chenyao, WANG Xu, YOU Qing, et al. Catalytic upgrading of coal pyrolysis volatiles by Ga-substituted mesoporous ZSM-5[J]. Fuel, 2020, 267: 117217. |
109 | BI Chenyao, ZHANG Zhuangzhuang, HAN Daizong, et al. Effective regulation of Ga active species in mesoporous ZSM-5 for catalytic upgrading of coal pyrolysis volatiles[J]. Fuel, 2022, 321: 124105. |
110 | YANG Zhen, CAO Jingpei, ZHU Chen, et al. In situ reforming of lignite pyrolysis volatiles for enriching light aromatics over Ga substituted HZSM-5[J]. Chemical Engineering Science, 2022, 248: 117235. |
111 | YANG Z, CAO J P, LIU T L, et al. Boosted production of aromatics by catalyzing upgrade pyrolysis vapors from lignite over Sn-Ga/HZSM‑5 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105064. |
112 | 陈永安, 周安宁, 李云龙, 等. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037. |
CHEN Yongan, ZHOU Anning, LI Yunlong, et al. Preparation and coal pyrolysis performance of magnetic MgFe2O4 and its core-shell catalysts[J]. CIESC Journal, 2022, 73(7): 3026-3037. | |
113 | YANG Hang, ZHANG Jiehan, CHEN Zhaohui, et al. Base-acid relay catalytic upgrading of coal pyrolysis volatiles over CaO and HZSM-5 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2023, 170: 105926. |
114 | ZHAO X Y, REN X Y, WANG Y J, et al. Conversion of lignite-derived volatiles into aromatics over Zn@MCM-41 and ZSM-5 tandem catalysts with a high stability[J]. Fuel, 2023, 339: 127430. |
115 | ZHOU Guofeng, JENSEN Peter A, LE Duy M, et al. Direct upgrading of fast pyrolysis lignin vapor over the HZSM-5 catalyst[J]. Green Chemistry, 2016, 18(7): 1965-1975. |
116 | SHI Yanchun, XING Enhui, WU Kejing, et al. Recent progress on upgrading of bio-oil to hydrocarbons over metal/zeolite bifunctional catalysts[J]. Catalysis Science & Technology, 2017, 7(12): 2385-2415. |
[1] | 海岩, 周鑫, 李艳. 单级固定床生物膜反应器主流厌氧氨氧化快速启动性能[J]. 化工进展, 2024, 43(4): 2201-2209. |
[2] | 赵瑞强, 周鑫, 牛冰心. 废水处理硝酸盐异化还原与厌氧氨氧化/反硝化耦合工艺构建[J]. 化工进展, 2024, 43(3): 1593-1605. |
[3] | 姚福春, 毕莹莹, 唐晨, 杜明辉, 李泽莹, 张耀宗, 孙晓明. 中空纤维膜臭氧接触式反应器传质机理分析[J]. 化工进展, 2024, 43(2): 1089-1097. |
[4] | 侯立凯, 范旭, 包福兵. 微小液体流量校准技术[J]. 化工进展, 2024, 43(2): 579-585. |
[5] | 张家昊, 李盈盈, 徐彦琳, 尹佳滨, 张吉松. 微反应器中连续还原胺化反应的研究进展[J]. 化工进展, 2024, 43(1): 186-197. |
[6] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[7] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[8] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[9] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[10] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[11] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[12] | 邓建, 王凯, 骆广生. 面向硝基化学品安全生产的绝热连续微反应技术发展及思考[J]. 化工进展, 2023, 42(8): 3923-3925. |
[13] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[14] | 鲁少杰, 刘佳, 冀芊竹, 李萍, 韩月阳, 陶敏, 梁文俊. 硅藻土基复合填料制备及滴滤塔去除二甲苯的性能[J]. 化工进展, 2023, 42(7): 3884-3892. |
[15] | 王松松, 刘培乔, 陶长元, 王运东, 陈恩之, 苗迎彬, 赵风轩, 刘作华. 工业物联网技术在搅拌反应器领域的应用[J]. 化工进展, 2023, 42(7): 3331-3339. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |