化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2776-2785.DOI: 10.16085/j.issn.1000-6613.2024-0341
• 二氧化碳捕集与资源化利用 • 上一篇
周秋明(), 牛丛丛(), 吕帅帅, 李红伟, 文富利, 徐润, 李明丰()
收稿日期:
2024-03-01
修回日期:
2024-04-26
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
李明丰
作者简介:
周秋明(1993—),女,博士,研究方向为C1化学。E-mail:zhouqiuming.ripp@sinopec.com基金资助:
ZHOU Qiuming(), NIU Congcong(), LYU Shuaishuai, LI Hongwei, WEN Fuli, XU Run, LI Mingfeng()
Received:
2024-03-01
Revised:
2024-04-26
Online:
2024-05-15
Published:
2024-06-15
Contact:
LI Mingfeng
摘要:
将过量排放的CO2加氢合成高附加值甲醇的过程因受热力学限制使其原料转化利用率较低,通过产物转化分离的方式能够打破热力学平衡,从而推动反应正向进行,提高CO2转化率。本文以将甲醇作为中间体耦合其他反应继续转化成低碳烯烃、芳烃等化工原料,以及利用膜反应器将副产水原位脱除等两种典型的产物转化分离方式为中心,分别展开论述其在促进CO2加氢反应过程中,耦合反应条件优化、催化剂筛选制备以及分子筛膜反应器设计与改性等方面的研究现状。重点讨论了耦合反应的双功能型催化剂中分子筛载体的酸性与孔道结构对反应性能的影响,并分析了膜反应器未来的研发重点与难点在于进一步提高其制备可重复性。
中图分类号:
周秋明, 牛丛丛, 吕帅帅, 李红伟, 文富利, 徐润, 李明丰. 通过产物转化分离推动CO2加氢制甲醇过程的研究进展[J]. 化工进展, 2024, 43(5): 2776-2785.
ZHOU Qiuming, NIU Congcong, LYU Shuaishuai, LI Hongwei, WEN Fuli, XU Run, LI Mingfeng. Promoting CO2 hydrogenation to methanol through product transformation and separation[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2776-2785.
催化剂 | 温度/℃ | 压力/MPa | CO2转化率/% | 低碳烯烃选择性/% | 参考文献 |
---|---|---|---|---|---|
In2O3-ZrO2/SAPO-34 | 400 | 3.0 | 35.0 | 80.0 | [ |
ZnO-ZrO2/SAPO-34 | 380 | 2.0 | 12.6 | 80.0 | [ |
ZnGa2O4/SAPO-34 | 370 | 3.0 | 13.0 | 86.0 | [ |
ZnAl2O4/SAPO-34 | 370 | 3.0 | 15.0 | 87.0 | [ |
In2O3/SAPO-34 | 360 | 2.5 | 34.6 | 70.0 | [ |
CZZ@SAPO-34 | 400 | 2.0 | 19.6 | 60.5 | [ |
CuO-ZnO/SAPO-34 | 400 | 3.0 | 43.5 | 63.9 | [ |
ZnZrO x /bio-SAPO-34 | 380 | 3.0 | 13.8 | 83.0 | [ |
ZZ/4%MnSAPO-34 | 380 | 2.0 | 17.3 | 83.2 | [ |
表1 不同催化剂上CO2加氢制低碳烯烃的反应性能
催化剂 | 温度/℃ | 压力/MPa | CO2转化率/% | 低碳烯烃选择性/% | 参考文献 |
---|---|---|---|---|---|
In2O3-ZrO2/SAPO-34 | 400 | 3.0 | 35.0 | 80.0 | [ |
ZnO-ZrO2/SAPO-34 | 380 | 2.0 | 12.6 | 80.0 | [ |
ZnGa2O4/SAPO-34 | 370 | 3.0 | 13.0 | 86.0 | [ |
ZnAl2O4/SAPO-34 | 370 | 3.0 | 15.0 | 87.0 | [ |
In2O3/SAPO-34 | 360 | 2.5 | 34.6 | 70.0 | [ |
CZZ@SAPO-34 | 400 | 2.0 | 19.6 | 60.5 | [ |
CuO-ZnO/SAPO-34 | 400 | 3.0 | 43.5 | 63.9 | [ |
ZnZrO x /bio-SAPO-34 | 380 | 3.0 | 13.8 | 83.0 | [ |
ZZ/4%MnSAPO-34 | 380 | 2.0 | 17.3 | 83.2 | [ |
催化剂 | 温度/℃ | 压力/MPa | CO2转化率/% | C5+中芳烃选择性/% | 参考文献 |
---|---|---|---|---|---|
ZnZrO/ZSM-5 | 320 | 4.0 | 14.1 | 73.0 | [ |
ZnZrO x /HZSM-5 | 315 | 3.0 | 17.5 | 60.3 | [ |
ZnO-ZrO2/ZSM-5 | 340 | 4.0 | 14.0 | 74.0 | [ |
ZnO/ZrO2-Z5-300 | 340 | 3.0 | 9.0 | 70.0 | [ |
ZnCrO x -ZnZSM-5 | 320 | 5.0 | 19.9 | 81.1 | [ |
ZnCr2O4-ZSM-5 | 350 | 4.0 | 23.4 | 66.1 | [ |
ZnAlO x /HZSM-5 | 320 | 3.0 | 5.8 | 73.9 | [ |
Cr2O3/H-ZSM-5 | 350 | 3.0 | 34.5 | 76.0 | [ |
Cr2O3/Zn-ZSM-5@SiO2 | 350 | 3.0 | 22.1 | 58.4 | [ |
In2O3/HZSM-5 | 320 | 3.0 | 23.2 | 34.1 | [ |
ZnFeO x -4.25Na/S-HZSM-5 | 320 | 3.0 | 41.2 | 75.6 | [ |
表2 不同催化剂上CO2加氢制芳烃的反应性能
催化剂 | 温度/℃ | 压力/MPa | CO2转化率/% | C5+中芳烃选择性/% | 参考文献 |
---|---|---|---|---|---|
ZnZrO/ZSM-5 | 320 | 4.0 | 14.1 | 73.0 | [ |
ZnZrO x /HZSM-5 | 315 | 3.0 | 17.5 | 60.3 | [ |
ZnO-ZrO2/ZSM-5 | 340 | 4.0 | 14.0 | 74.0 | [ |
ZnO/ZrO2-Z5-300 | 340 | 3.0 | 9.0 | 70.0 | [ |
ZnCrO x -ZnZSM-5 | 320 | 5.0 | 19.9 | 81.1 | [ |
ZnCr2O4-ZSM-5 | 350 | 4.0 | 23.4 | 66.1 | [ |
ZnAlO x /HZSM-5 | 320 | 3.0 | 5.8 | 73.9 | [ |
Cr2O3/H-ZSM-5 | 350 | 3.0 | 34.5 | 76.0 | [ |
Cr2O3/Zn-ZSM-5@SiO2 | 350 | 3.0 | 22.1 | 58.4 | [ |
In2O3/HZSM-5 | 320 | 3.0 | 23.2 | 34.1 | [ |
ZnFeO x -4.25Na/S-HZSM-5 | 320 | 3.0 | 41.2 | 75.6 | [ |
1 | 祝贺, 汪丹峰, 陈倩倩, 等. 二氧化碳加氢制甲醇过程热力学分析[J]. 天然气化工(C1化学与化工), 2015, 40(3): 21-25. |
ZHU He, WANG Danfeng, CHEN Qianqian, et al. Thermodynamic analysis of CO2 hydrogenation to methanol[J]. Natural Gas Chemical Industry, 2015, 40(3): 21-25. | |
2 | GAO Peng, DANG Shanshan, LI Shenggang, et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catalysis, 2018, 8(1): 571-578. |
3 | ZHONG Jiawei, YANG Xiaofeng, WU Zhilian, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chemical Society Reviews, 2020, 49(5): 1385-1413. |
4 | Maria RONDA-LLORET, ROTHENBERG Gadi, Raveendran SHIJU N. A critical look at direct catalytic hydrogenation of carbon dioxide to olefins[J]. ChemSusChem, 2019, 12(17): 3896-3914. |
5 | LI Zelong, WANG Jijie, QU Yuanzhi, et al. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12): 8544-8548. |
6 | LIU Xiaoliang, WANG Mengheng, YIN Haoren, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis, 2020, 10(15): 8303-8314. |
7 | LIU Zhongmin, LIANG Juan. Methanol to olefin conversion catalysts[J]. Current Opinion in Solid State and Materials Science, 1999, 4(1): 80-84. |
8 | NUMPILAI Thanapa, WATTANAKIT Chularat, CHAREONPANICH Metta, et al. Optimization of synthesis condition for CO2 hydrogenation to light olefins over In2O3 admixed with SAPO-34[J]. Energy Conversion and Management, 2019, 180: 511-523. |
9 | CHEN Jingyu, WANG Xu, WU Dakai, et al. Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-) SAPO-34 catalysts: Strategy for product distribution[J]. Fuel, 2019, 239: 44-52. |
10 | 王鹏飞, 查飞, 常玥. CuO-ZnO/(SAPO-34)-高岭土催化CO2加氢合成低碳烯烃[J]. 精细化工, 2017, 34(6): 662-668. |
WANG Pengfei, ZHA Fei, CHANG Yue. Hydrogenation of carbon dioxide to light olefins over CuO-ZnO/(SAPO-34)-Kaolin catalyst[J]. Fine Chemicals, 2017, 34(6): 662-668. | |
11 | TIAN Pan, ZHAN Guowu, TIAN Jian, et al. Direct CO2 hydrogenation to light olefins over ZnZrO x mixed with hierarchically hollow SAPO-34 with rice husk as green silicon source and template[J]. Applied Catalysis B: Environmental, 2022, 315: 121572. |
12 | CHANG Xiaoning, HONDO E., HU Qianwen, et al. Effect of acidity and oxygen vacancy in Mn loaded SAPO-34 on CO2 hydrogenation to light olefin[J]. Fuel, 2023, 353: 129160. |
13 | GUISNET Michel, COSTA Luís, RIBEIRO Fernando Ramôa. Prevention of zeolite deactivation by coking[J]. Journal of Molecular Catalysis A: Chemical, 2009, 305(1/2): 69-83. |
14 | SCHMIDT Franz, PAASCH Silvia, BRUNNER Eike, et al. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction[J]. Microporous and Mesoporous Materials, 2012, 164: 214-221. |
15 | SOLTANALI Saeed, DARIAN Jafar Towfighi. Synthesis of mesoporous SAPO-34 catalysts in the presence of MWCNT, CNF, and GO as hard templates in MTO process[J]. Powder Technology, 2019, 355: 127-134. |
16 | SUN Qiming, WANG Ning, XI Dongyang, et al. Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance[J]. Chemical Communications, 2014, 50(49): 6502-6505. |
17 | WANG Chan, YANG Miao, TIAN Peng, et al. Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction[J]. Journal of Materials Chemistry A, 2015, 3(10): 5608-5616. |
18 | CHEN Huiyong, WANG Manyun, YANG Mengfei, et al. Organosilane surfactant-directed synthesis of nanosheet-assembled SAPO-34 zeolites with improved MTO catalytic performance[J]. Journal of Materials Science, 2019, 54(11): 8202-8215. |
19 | REN Shu, LIU Guojuan, WU Xian, et al. Enhanced MTO performance over acid treated hierarchical SAPO-34[J]. Chinese Journal of Catalysis, 2017, 38(1): 123-130. |
20 | JIN Wenlong, WANG Baojie, Pengfei TUO, et al. Selective desilication, mesopores formation, and MTO reaction enhancement via citric acid treatment of zeolite SAPO-34[J]. Industrial & Engineering Chemistry Research, 2018, 57(12): 4231-4236. |
21 | LIU Xiu, REN Shu, ZENG Gaofeng, et al. Coke suppression in MTO over hierarchical SAPO-34 zeolites[J]. RSC Advances, 2016, 6(34): 28787-28791. |
22 | PAN Yingying, CHEN Guangrui, YANG Guoju, et al. Efficient post-synthesis of hierarchical SAPO-34 zeolites via organic amine etching under hydrothermal conditions and their enhanced MTO performance[J]. Inorganic Chemistry Frontiers, 2019, 6(5): 1299-1303. |
23 | CHEN Xiaoxin, VICENTE Aurélie, QIN Zhengxing, et al. The preparation of hierarchical SAPO-34 crystals via post-synthesis fluoride etching[J]. Chemical Communications, 2016, 52(17): 3512-3515. |
24 | CHEN Xiaoxin, XI Dongyang, SUN Qiming, et al. A top-down approach to hierarchical SAPO-34 zeolites with improved selectivity of olefin[J]. Microporous and Mesoporous Materials, 2016, 234: 401-408. |
25 | ZHANG Shichao, CHEN Wenbin, YANG Ling, et al. Effect of morphology and acidity control of Ni-SAPO-34 zeolite on catalytic performance of dimethyl ether to olefins[J]. Journal of Solid State Chemistry, 2021, 303: 122503. |
26 | DAI Weili, CAO Ge, YANG Liu, et al. Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density[J]. Catalysis Science & Technology, 2017, 7(3): 607-618. |
27 | GAO Beibei, YANG Miao, QIAO Yuyan, et al. A low-temperature approach to synthesize low-silica SAPO-34 nanocrystals and their application in the methanol-to-olefins (MTO) reaction[J]. Catalysis Science & Technology, 2016, 6(20): 7569-7578. |
28 | MIRZA Khadijeh, GHADIRI Mohammad, HAGHIGHI Mohammad, et al. Hydrothermal synthesize of modified Fe, Ag and K-SAPO-34 nanostructured catalysts used in methanol conversion to light olefins[J]. Microporous and Mesoporous Materials, 2018, 260: 155-165. |
29 | SALIH Hassan A, MURAZA Oki, ABUSSAUD Basim, et al. Catalytic enhancement of SAPO-34 for methanol conversion to light olefins using in situ metal incorporation[J]. Industrial & Engineering Chemistry Research, 2018, 57(19): 6639-6646. |
30 | LI Zelong, QU Yuanzhi, WANG Jijie, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule, 2019, 3(2): 570-583. |
31 | WANG Ting, YANG Chengguang, GAO Peng, et al. ZnZrO x integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation[J]. Applied Catalysis B: Environmental, 2021, 286: 119929. |
32 | ZHOU Cheng, SHI Jiaqing, ZHOU Wei, et al. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catalysis, 2020, 10(1): 302-310. |
33 | ZHANG Xinbao, ZHANG Anfeng, JIANG Xiao, et al. Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst[J]. Journal of CO2 Utilization, 2019, 29: 140-145. |
34 | ZHANG Junfeng, ZHANG Meng, CHEN Shuyao, et al. Hydrogenation of CO2 into aromatics over a ZnCrO x -zeolite composite catalyst[J]. Chemical Communications, 2019, 55(7): 973-976. |
35 | GAO Weizhe, GUO Lisheng, CUI Yu, et al. Selective conversion of CO2 into para-xylene over a ZnCr2O4-ZSM-5 catalyst[J]. ChemSusChem, 2020, 13(24): 6541-6545. |
36 | NI Youming, CHEN Zhiyang, FU Yi, et al. Selective conversion of CO2 and H2 into aromatics[J]. Nature Communications, 2018, 9(1): 3457. |
37 | WANG Yang, TAN Li, TAN Minghui, et al. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catalysis, 2019, 9(2): 895-901. |
38 | WANG Yang, GAO Weizhe, KAZUMI Shun, et al. Direct and oriented conversion of CO2 into value-added aromatics[J]. Chemistry, 2019, 25(20): 5149-5153. |
39 | 焦春学, 查飞, 田海锋. 不同晶型In2O3/片状HZSM-5串联催化剂催化CO2加氢制芳烃[J]. 延安大学学报(自然科学版), 2023, 42(2): 8-15. |
JIAO Chunxue, ZHA Fei, TIAN Haifeng. Catalytic hydrogenation of CO2 to aromatics by tandem catalysts of different crystalline In2O3/sheet HZSM-5[J]. Journal of Yan’an University (Natural Science Edition), 2023, 42(2): 8-15. | |
40 | CUI Xu, GAO Peng, LI Shenggang, et al. Selective production of aromatics directly from carbon dioxide hydrogenation[J]. ACS Catalysis, 2019, 9(5): 3866-3876. |
41 | 杜康. 甲醇制芳烃催化剂性能研究[D]. 西安: 西北大学, 2021. |
DU Kang. Performance control of methanol to aromatics catalyst[D]. Xi’an: Northwest University, 2021. | |
42 | MARTÍNEZ-ESPÍN Juan S, DE WISPELAERE Kristof, JANSSENS Ton V W, et al. Hydrogen transfer versus methylation: On the genesis of aromatics formation in the methanol-to-hydrocarbons reaction over H-ZSM-5[J]. ACS Catalysis, 2017, 7(9): 5773-5780. |
43 | Sebastian MÜLLER, LIU Yue, KIRCHBERGER Felix M, et al. Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons[J]. Journal of the American Chemical Society, 2016, 138(49): 15994-16003. |
44 | Sebastian MÜLLER, LIU Yue, VISHNUVARTHAN Muthusamy, et al. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins[J]. Journal of Catalysis, 2015, 325: 48-59. |
45 | 潘红艳, 田敏, 何志艳, 等. 甲醇制烯烃用ZSM-5分子筛的研究进展[J]. 化工进展, 2014, 33(10): 2625-2633. |
PAN Hongyan, TIAN Min, HE Zhiyan, et al. Advances in research on modified ZSM-5 molecular sieves for conversion of methanol to olefins[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2625-2633. | |
46 | GAO Pan, WANG Qiang, XU Jun, et al. Brønsted/lewis acid synergy in methanol-to-aromatics conversion on Ga-modified ZSM-5 zeolites, As studied by solid-state NMR spectroscopy[J]. ACS Catalysis, 2018, 8(1): 69-74. |
47 | GROEN Johan C, MOULIJN Jacob A, Javier PÉREZ-RAMÍREZ. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication–dealumination[J]. Microporous and Mesoporous Materials, 2005, 87(2): 153-161. |
48 | LI Junjie, LIU Min, GUO Xinwen, et al. In situ aluminum migration into zeolite framework during methanol-to-propylene reaction: An innovation to design superior catalysts[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8190-8199. |
49 | SUN Liying, WANG Yaquan, CHEN Hengbao, et al. Direct synthesis of hierarchical ZnZSM-5 with addition of CTAB in a seeding method and improved catalytic performance in methanol to aromatics reaction[J]. Catalysis Today, 2018, 316: 91-98. |
50 | 刘备, 鲁思武, 刘恩周, 等. 小晶粒HZSM-5分子筛合成及甲醇制芳烃催化性能[J]. 化学工程, 2018, 46(8): 11-15. |
LIU Bei, LU Siwu, LIU Enzhou, et al. Synthesis of small crystal HZSM-5 zeolite and catalytic performance in methanol to aromatics[J]. Chemical Engineering (China), 2018, 46(8): 11-15. | |
51 | 李政杭, 刘民, 李俊杰, 等. 碱处理调控ZSM-5孔结构及其在甲醇制芳烃中的性能研究[J]. 现代化工, 2019, 39(11): 67-72. |
LI Zhenghang, LIU Min, LI Junjie, et al. Modification of ZSM-5 by alkali treatment and its performance in methanol to aromatics[J]. Modern Chemical Industry, 2019, 39(11): 67-72. | |
52 | DENG Yuzhen, LI Zhan, CHEN Tao, et al. Low-cost and facile fabrication of defect-free water permeable membrane for CO2 hydrogenation to methanol[J]. Chemical Engineering Journal, 2022, 435: 133554. |
53 | JUAREZ Ester, LASOBRAS Javier, SOLER Jaime, et al. Polymer-ceramic composite membranes for water removal in membrane reactors[J]. Membranes, 2021, 11(7): 472. |
54 | PHAM Quang Huy, GOUDELI Eirini, SCHOLES Colin A. Selective separation of water and methanol from hydrogen and carbon dioxide at elevated temperature through polyimide and polyimidazole based membranes[J]. Journal of Membrane Science, 2023, 686: 121990. |
55 | RASO R, TOVAR M, LASOBRAS J, et al. Zeolite membranes: Comparison in the separation of H2O/H2/CO2 mixtures and test of a reactor for CO2 hydrogenation to methanol[J]. Catalysis Today, 2021, 364: 270-275. |
56 | LI Huazheng, QIU Chenglong, REN Shoujie, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels[J]. Science, 2020, 367(6478): 667-671. |
57 | YUE Wenzhe, LI Yanhong, WEI Wan, et al. Highly selective CO2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor[J]. Angewandte Chemie, 2021, 133(33): 18437-18442. |
58 | GE Qinqin, SHAO Jia, WANG Zhengbao, et al. Effects of the synthesis hydrogel on the formation of zeolite LTA membranes[J]. Microporous and Mesoporous Materials, 2012, 151: 303-310. |
59 | MOHAMMADI Toraj, Afshin PAK. Making zeolite A membrane from Kaolin by electrophoresis[J]. Microporous and Mesoporous Materials, 2002, 56(1): 81-88. |
60 | OONKHANOND Bovornlak, MULLINS Michael E. The preparation and analysis of zeolite ZSM-5 membranes on porous alumina supports[J]. Journal of Membrane Science, 2001, 194(1): 3-13. |
61 | XU Xiaochun, YANG Weishen, LIU Jie, et al. Synthesis of NaA zeolite membrane on a ceramic hollow fiber[J]. Journal of Membrane Science, 2004, 229(1/2): 81-85. |
62 | YAN Yushan, DAVIS Mark E, GAVALAS George R. Preparation of zeolite ZSM-5 membranes by In-situ crystallization on porous. alpha.-Al2O3 [J]. Industrial & Engineering Chemistry Research, 1995, 34(5): 1652-1661. |
63 | Jaco ZAH, KRIEG Henning M, BREYTENBACH Jaco C. Pervaporation and related properties of time-dependent growth layers of zeolite NaA on structured ceramic supports[J]. Journal of Membrane Science, 2006, 284(1/2): 276-290. |
64 | ZHANG Yanfeng, XU Zhongqiang, CHEN Qingling. Synthesis of small crystal polycrystalline mordenite membrane[J]. Journal of Membrane Science, 2002, 210(2): 361-368. |
65 | CUI Ying, KITA Hidetoshi, OKAMOTO Ken-ichi. Preparation and gas separation performance of zeolite T membrane[J]. Journal of Materials Chemistry, 2004, 14(5): 924-932. |
66 | HONG Mei, FALCONER John L, NOBLE Richard D. Modification of zeolite membranes for H2Separation by catalytic cracking of methyldiethoxysilane[J]. Industrial & Engineering Chemistry Research, 2005, 44(11): 4035-4041. |
67 | MASUDA Takao, FUKUMOTO Naohiro, KITAMURA Masahiro, et al. Modification of pore size of MFI-type zeolite by catalytic cracking of silane and application to preparation of H2-separating zeolite membrane[J]. Microporous and Mesoporous Materials, 2001, 48(1/2/3): 239-245. |
68 | NOMURA Mikihiro, YAMAGUCHI Takeo, NAKAO Shin-ichi. Silicalite membranes modified by counterdiffusion CVD technique[J]. Industrial & Engineering Chemistry Research, 1997, 36(10): 4217-4223. |
69 | YAN Yushan, DAVIS Mark E, GAVALAS George R. Preparation of highly selective zeolite ZSM-5 membranes by a post-synthetic coking treatment[J]. Journal of Membrane Science, 1997, 123(1): 95-103. |
70 | 苏静, 张宗飞, 张大洲. 二氧化碳加氢制甲醇的技术进展及展望[J]. 化肥设计, 2022, 60(2): 6-9, 14. |
SU Jing, ZHANG Zongfei, ZHANG Dazhou. Technological progress and prospects of carbon dioxide hydrogenation to methanol[J]. Chemical Fertilizer Design, 2022, 60(2): 6-9, 14. |
[1] | 桂鑫, 陈汇勇, 白柏杨, 贾永梁, 马晓迅. Mo掺杂改性NiC/Al-MCM-41的芘催化加氢性能[J]. 化工进展, 2024, 43(5): 2386-2395. |
[2] | 方峣, 刘雷, 高志华, 黄伟, 左志军. 光辅助直接甲醇燃料电池阳极催化剂的研究进展[J]. 化工进展, 2024, 43(5): 2611-2628. |
[3] | 周运桃, 王洪星, 李新刚, 崔丽凤. CeO2载体在CO2加氢制甲醇中的应用和研究进展[J]. 化工进展, 2024, 43(5): 2723-2738. |
[4] | 王德斌, 林梦雨, 杨雪, 董殿权. 锌掺杂型钛系铯离子筛的制备及其吸附性能[J]. 化工进展, 2024, 43(4): 1953-1961. |
[5] | 张鹏飞, 严张艳, 任亮, 张奎, 梁家林, 赵广乐, 张璠玢, 胡志海. C |
[6] | 王雄, 杨振宁, 李越, 申威峰. 基于化工机理与工业数据孪生建模的甲醇精馏过程优化[J]. 化工进展, 2024, 43(1): 310-319. |
[7] | 王棵旭, 张香平, 王红岩, 柏䶮, 王慧. 电流响应催化剂及其强化典型反应的研究进展[J]. 化工进展, 2024, 43(1): 49-59. |
[8] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[9] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[10] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[11] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[12] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[13] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[14] | 刘柏成, 李法云, 赵琦慧, 吝美霞. 禾本科植物修复多环芳烃污染土壤研究进展[J]. 化工进展, 2023, 42(7): 3736-3748. |
[15] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |