化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3413-3430.DOI: 10.16085/j.issn.1000-6613.2021-1875
收稿日期:
2021-09-01
修回日期:
2021-12-16
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
徐幼林
作者简介:
郭长皓(1996—),男,博士研究生,研究方向为两相流及其混合。E-mail:基金资助:
GUO Changhao(), YA Mingsheng, XU Youlin(), ZHENG Jiaqiang
Received:
2021-09-01
Revised:
2021-12-16
Online:
2022-07-25
Published:
2022-07-23
Contact:
XU Youlin
摘要:
固液混合技术是广泛应用于工农业生产中固体分散、溶解和浸出、结晶和沉淀、固体催化反应以及粉剂农药混合等领域的一种重要操作技术。固液两相混合的均匀性对产品的生产或应用有着重要的影响。因此本文综述了固液两相混合技术的研究现状。首先介绍了固体颗粒在液相中的分散机理,讨论了常见的两大类固液两相混合方法,即化学分散法与物理分散法。其中化学分散法包括添加表面活性剂与偶联剂以及进行电化学改性;物理分散法包括使用搅拌釜、撞击流混合器、射流混合器、静态混合器、动态混合器进行的机械混合以及超声分散和通过静电分散进行的预分散。同时介绍了部分具有代表性的固液两相分散混合均匀性的检测方法,如探针、图像分析处理、超声衰减、动态光散射、电阻层析成像等。最后在分析现有问题的基础上对固液两相混合技术未来在多元化、智能化方向上的发展进行了展望。
中图分类号:
郭长皓, 鸦明胜, 徐幼林, 郑加强. 固液两相混合方法及其均匀性检测技术[J]. 化工进展, 2022, 41(7): 3413-3430.
GUO Changhao, YA Mingsheng, XU Youlin, ZHENG Jiaqiang. Solid-liquid two-phase mixing method and its uniformity detection technology[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3413-3430.
1 | KWON H, ZHOU X B, YOON D H. Fabrication of SiCf/Ti3SiC2 by the electrophoresis of highly dispersed Ti3SiC2 powder[J]. Ceramics International, 2020, 46(11): 18168-18174. |
2 | 黄浪欢, 王后锦, 刘应亮, 等. TiO2与碳纳米管的复合及光催化协同作用[J]. 化学进展, 2010, 22(5): 867-876. |
HUANG Langhuan, WANG Houjin, LIU Yingliang, et al. TiO2/carbon nanotube composites and their synergistic effects on enhancing the photocatalysis efficiency[J]. Progress in Chemistry, 2010, 22(5): 867-876. | |
3 | DAI Xiang, XU Youlin, ZHENG Jiaqiang, et al. Analysis of the variability of pesticide concentration downstream of inline mixers for direct nozzle injection systems[J]. Biosystems Engineering, 2019, 180: 59-69. |
4 | KOUSKOVÁ L, LEITNER J. DSC study of the system o-acetylsalicylic acid-caffeine and thermodynamic modelling of the system o-acetylsalicylic acid-caffeine-paracetamol[J]. Thermochimica Acta, 2019, 674: 63-67. |
5 | 薛一凡, 孟文卉, 汪润泽, 等. 过饱和度理论及过饱和药物递送系统[J]. 化学进展, 2020, 32(6): 698-712. |
XUE Yifan, MENG Wenhui, WANG Runze, et al. Supersaturation theory and supersaturating drug delivery system(SDDS)[J]. Progress in Chemistry, 2020, 32(6): 698-712. | |
6 | 翟文中, 何玉凤, 王斌, 等. 聚合物Janus微粒材料的制备与应用[J]. 化学进展, 2017, 29(1): 127-136. |
ZHAI Wenzhong, HE Yufeng, WANG Bin, et al. Fabrication and applications of polymeric Janus particles [J]. Progress in Chemistry, 2017, 29(1): 127-136. | |
7 | 黄凤磊, 刘淼, 李志鹏, 等. 共混用动态混合器的研究与应用进展[J]. 化工进展, 2017, 36(10): 3549-3557. |
HUANG Fenglei, LIU Miao, LI Zhipeng, et al. Research and application progress of dynamic mixers for polymer blending[J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3549-3557. | |
8 | 吕来, 胡春. 多相芬顿催化水处理技术与原理[J]. 化学进展, 2017, 29(9): 981-999. |
Lai LYU, HU Chun. Heterogeneous Fenton catalytic water treatment technology and mechanism[J]. Progress in Chemistry, 2017, 29(9): 981-999. | |
9 | 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655. |
LIU Yang, ZHANG Xinbo, ZHAO Yingcan. Two-dimensional MoS2 nanomaterials and applications in water treatment[J]. Progress in Chemistry, 2020, 32(5): 642-655. | |
10 | JIANG Di, NI Chen, TANG Wenlai, et al. Numerical simulation of elasto-inertial focusing of particles in straight microchannels[J]. Journal of Physics D: Applied Physics, 2021, 54(6): 065401. |
11 | JIANG Di, NI Chen, TANG Wenlai, et al. Inertial microfluidics in contraction-expansion microchannels: a review[J]. Biomicrofluidics, 2021, 15(4): 041501. |
12 | RETAMAL MARÍN R R, BABICK F, LINDNER G G, et al. Effects of sample preparation on particle size distributions of different types of silica in suspensions[J]. Nanomaterials (Basel, Switzerland), 2018, 8(7): 454. |
13 | CHEN Jiachen, MA Xin, MA Qiuju. Study on concentration and turbulence of solid-liquid FAE in dispersal process[J]. Defence Technology, 2018, 14(6): 657-660. |
14 | LIU Shiyuan, XU Shijie, DU Shichao, et al. Determination and correlation of solubility and thermodynamic properties of eszopiclone in pure and mixed solvents[J]. Journal of Molecular Liquids, 2016, 221: 1035-1044. |
15 | 何品晶, 张昊昊, 仇俊杰, 等. 不同浸提剂条件下生物炭溶解性有机物的浸出规律[J]. 环境科学, 2019, 40(8): 3833-3839. |
HE Pinjing, ZHANG Haohao, QIU Junjie, et al. Leaching behavior of dissolved organic matter in biochar with different extracting agents[J]. Environmental Science, 2019, 40(8): 3833-3839. | |
16 | SHEN Yanmin, LIU Zhenfeng, LI Tao, et al. Determination and correlation of solubility of tylosin tartrate in alcohol mixtures[J]. The Journal of Chemical Thermodynamics, 2015, 80: 128-134. |
17 | 刘亚迪, 刘锋, 王诚, 等. 固体聚合物电解池析氧催化剂[J]. 化学进展, 2018, 30(9): 1434-1444. |
LIU Yadi, LIU Feng, WANG Cheng, et al. Oxygen evolution catalyst of solid polymer electrolysis[J]. Progress in Chemistry, 2018, 30(9): 1434-1444. | |
18 | 代祥, 徐幼林, 郑加强, 等. 基于3D图像重构的水分散粒剂在线混合分析方法研究[J]. 农业机械学报, 2020, 51(5): 98-107. |
DAI Xiang, XU Youlin, ZHENG Jiaqiang, et al. Analysis method and experiments of inline mixing water dispersible granules pesticides based on 3D image reconstruction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 98-107. | |
19 | MENG Xiangkun, YU Junjie, YU Mina, et al. Dry flowable formulations of antagonistic Bacillus subtilis strain T429 by spray drying to control rice blast disease[J]. Biological Control, 2015, 85: 46-51. |
20 | 曾新娟, 王丽, 皮丕辉, 等. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1): 73-86. |
ZENG Xinjuan, WANG Li, PI Pihui, et al. Development and research of special wettability materials for oil/water separation[J]. Progress in Chemistry, 2018, 30(1): 73-86. | |
21 | 蒋华义, 张亦翔, 梁爱国, 等. 材料表面润湿性的影响因素及预测模型[J]. 表面技术, 2018, 47(1): 60-65. |
JIANG Huayi, ZHANG Yixiang, LIANG Aiguo, et al. Influencing factors and prediction model of material surface wettability[J]. Surface Technology, 2018, 47(1): 60-65. | |
22 | 李继山, 姚同玉, 刘卫东. 采油中的润湿热、粘附功和吸附焓变[J]. 石油大学学报(自然科学版), 2005, 29(5): 71-75. |
LI Jishan, YAO Tongyu, LIU Weidong. Wetting heat, adhesion work and adsorption enthalpy increment in oil recovery[J]. Journal of the University of Petroleum, China, 2005, 29(5): 71-75. | |
23 | 张宇, 刘家祥. 颗粒分散[J]. 材料导报, 2003, 17(S1): 158-161. |
ZHANG Yu, LIU Jiaxiang. Dispersion of particles[J]. Materials Review, 2003, 17(S1): 158-161. | |
24 | 张志军, 刘炯天, 冯莉, 等. 基于DLVO理论的煤泥水体系的临界硬度计算[J]. 中国矿业大学学报, 2014, 43(1): 120-125. |
ZHANG Zhijun, LIU Jiongtian, FENG Li, et al. Calculation ofcritical hardness of coal slime water system based on DLVO theory[J]. Journal of China University of Mining & Technology, 2014, 43(1): 120-125. | |
25 | 任俊, 卢寿慈. 固体颗粒的分散[J]. 粉体技术, 1998, 4(1): 25-33. |
REN Jun, LU Shouci. Dispersion of solid particles[J]. China Powder Science and Technology, 1998, 4(1): 25-33. | |
26 | 魏丽丽, 徐盛明, 徐刚, 等. 表面活性剂对超细银粉分散性能的影响[J]. 中国有色金属学报, 2009, 19(3): 595-600. |
WEI Lili, XU Shengming, XU Gang, et al. Effects of surfactants on dispersive performance of ultrafine silver powder[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(3): 595-600. | |
27 | YANG Wenlong, LI Ming, ZHANG Yu, et al. Mechanochemical surface modification of nano-Sb2O3 particles with a cationic surfactant[J]. Inorganic and Nano-Metal Chemistry, 2020, 50(7): 515-520. |
28 | 李继东, 蔡亚岐, 史亚利, 等. 离子型表面活性剂自组装体系在化学中的应用[J]. 化学进展, 2007, 19(10): 1606-1611. |
LI Jidong, CAI Yaqi, SHI Yali, et al. Application of self-assembled system based on ionic surfactants adsorbed onto oxide surface in chemistry[J]. Progress in Chemistry, 2007, 19(10): 1606-1611. | |
29 | KIM S, TSERENGOMBO B, CHOI S H, et al. Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial[J]. International Communications in Heat and Mass Transfer, 2018, 91: 95-102. |
30 | YUE S X, SU Y C, LUO Z B, et al. Influence of surfactant interaction on ultrafine copper powder electrodeposition[J]. Materialwissenschaft Und Werkstofftechnik, 2019, 50(7): 856-863. |
31 | SOURAKI Y, HOSSEINI E, YAGHODOUS A. Wettability alteration of carbonate reservoir rock using amphoteric and cationic surfactants: experimental investigation[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(3): 349-359. |
32 | NAKAYAMA N, HAYASHI T. Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: dispersibility and stabilization in organic solvents[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1/2/3): 543-550. |
33 | SHIN Y, LEE D, LEE K, et al. Surface properties of silica nanoparticles modified with polymers for polymer nanocomposite applications[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(4): 515-519. |
34 | WANG Y, YEH J T, YUE T J, et al. Surface modification of superfine tourmaline powder with titanate coupling agent[J]. Colloid and Polymer Science, 2006, 284(12): 1465-1470. |
35 | QUIÑONES R, RODRIGUEZ K, IULIUCCI R J. Investigation of phosphonic acid surface modifications on zinc oxide nanoparticles under ambient conditions[J]. Thin Solid Films, 2014, 565: 155-164. |
36 | WANG Chaoxia, MAO Haiyan, WANG Chunxia, et al. Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 11930-11934. |
37 | 铁生年, 李星. 硅烷偶联剂对碳化硅粉体的表面改性[J]. 硅酸盐学报, 2011, 39(3): 409-413. |
Shengnian TIE, LI Xing. Surface modification of SiC powder with silane coupling agent[J]. Journal of the Chinese Ceramic Society, 2011, 39(3): 409-413. | |
38 | YANG Wenlong, SHI Zhaoxiang, LI Ming, et al. Surface organic modification of nano-Sb2O3 particles with silane coupling agent[J]. Integrated Ferroelectrics, 2020, 208(1): 83-90. |
39 | 万隆, 时丹, 王俊沙, 等. 硅烷偶联剂对金刚石表面改性研究[J]. 湖南大学学报(自然科学版), 2013, 40(4): 71-74. |
WAN Long, SHI Dan, WANG Junsha, et al. Research on the surface modification of diamond with silane coupling agent[J]. Journal of Hunan University (Natural Sciences), 2013, 40(4): 71-74. | |
40 | 赵伟, 杨志远, 李振, 等. 电化学处理对神木煤显微组分表面结构及可浮性的影响研究[J]. 燃料化学学报, 2017, 45(4): 400-407. |
ZHAO Wei, YANG Zhiyuan, LI Zhen, et al. Influence of electrochemical treatment on surface structure and flotability of Shenmu coal macerals[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 400-407. | |
41 | ZHANG Xiaoyu, ZHANG Runxu, KANG Tianhe, et al. Experimental and mechanistic research on methane adsorption in anthracite modified by electrochemical treatment using selected electrode materials[J]. Scientific Reports, 2019, 9: 17163. |
42 | 吴波, 郑帼, 孙玉, 等. 有机电解液电化学改性PAN基碳纤维的表面性能[J]. 材料工程, 2016, 44(9): 52-57. |
WU Bo, ZHENG Guo, SUN Yu, et al. Surface properties of PAN-based carbon fibers modified by electrochemical oxidization in organic electrolyte systems[J]. Journal of Materials Engineering, 2016, 44(9): 52-57. | |
43 | KRIVENKO A G, KOMAROVA N S, RYABENKO A G, et al. The role of the medium in electrochemical functionalization and dispersion of carbon nanotubes[J]. Russian Chemical Bulletin, 2011, 60(6): 1071-1077. |
44 | KANG Guanxian, KANG Tianhe, GUO Junqing, et al. Effect of electric potential gradient on methane adsorption and desorption behaviors in lean coal by electrochemical modification: Implications for coalbed methane development of Dongqu mining, China[J]. ACS Omega, 2020, 5(37): 24073-24080. |
45 | VARENTSOV V K, VARENTSOVA V I. Electrochemical oxidative modification of nanocarbon materials in aqueous electrolyte solutions[J]. Russian Journal of Applied Chemistry, 2015, 88(10): 1643-1649. |
46 | 王星星, 刘志炎, 龙伟民, 等. 椭圆底封头十字形挡板搅拌釜内流场研究[J]. 机械工程学报, 2014, 50(6): 156-164. |
WANG Xingxing, LIU Zhiyan, LONG Weimin, et al. Research on flow field in elliptic bottom stirred tank with cruciform baffles[J]. Journal of Mechanical Engineering, 2014, 50(6): 156-164. | |
47 | 沈春银, 陈剑佩, 张家庭, 等. 机械搅拌反应器中挡板的结构设计[J]. 高校化学工程学报, 2005, 19(2): 162-168. |
SHEN Chunyin, CHEN Jianpei, ZHANG Jiating, et al. Performance and design of baffles in mechanically agitated gas-liquid reactor[J]. Journal of Chemical Engineering of Chinese Universities, 2005, 19(2): 162-168. | |
48 | MISHRA P, EIN-MOZAFFARI F. Using tomograms to assess the local solid concentrations in a slurry reactor equipped with a Maxblend impeller[J]. Powder Technology, 2016, 301: 701-712. |
49 | HOSSEINI S, PATEL D, EIN-MOZAFFARI F, et al. Study of solid-liquid mixing in agitated tanks through electrical resistance tomography[J]. Chemical Engineering Science, 2010, 65(4): 1374-1384. |
50 | ZHAN Xiaobin, YANG Yili, LIANG Jian, et al. In-line mixing states monitoring of suspensions using ultrasonic reflection technique[J]. Ultrasonics, 2016, 65: 43-50. |
51 | 周勇军, 袁名岳, 孙存旭. 改进型框式组合桨搅拌釜内流场特性[J]. 化工进展, 2019, 38(12): 5306-5313. |
ZHOU Yongjun, YUAN Mingyue, SUN Cunxu. Investigating on flow field in stirred tank equipped with improved frame type combined impellers[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5306-5313. | |
52 | HUANG Juan, DAI Gance. Synergistic and interference effects in coaxial mixers: numerical analysis of the power consumption[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 684-694. |
53 | KAZEMZADEH A, EIN-MOZAFFARI F, LOHI A. Mixing of highly concentrated slurries of large particles: applications of electrical resistance tomography (ERT) and response surface methodology (RSM)[J]. Chemical Engineering Research and Design, 2019, 143: 226-240. |
54 | TANG L, JI Y, ZHANG X Y, et al. Stirring tank design for powder-mixed EDM SiC/Al and solid-liquid suspension uniformity research[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(5/6): 2007-2021. |
55 | 赵洪亮, 殷攀, 张立峰. 高固含固液搅拌槽内颗粒悬浮与混合特性[J]. 工程科学学报, 2017, 39(1): 54-60. |
ZHAO Hongliang, YIN Pan, ZHANG Lifeng. Particle suspension and mixing characteristics in a solid-liquid stirred tank with high solid content[J]. Chinese Journal of Engineering, 2017, 39(1): 54-60. | |
56 | ZHOU Yongjun, WANG Leizhi, HE Hua, et al. Mixing process in a tank stirred with improved double intermig impellers[J]. Journal of Chemical Engineering of Japan, 2019, 52(9): 719-729. |
57 | KAMLA Y, AMEUR H, KARAS A, et al. Performance of new designed anchor impellers in stirred tanks[J]. Chemical Papers, 2020, 74(3): 779-785. |
58 | GONZÁLEZ-NERIA I, ALONZO-GARCIA A, MARTÍNEZ-DELGADILLO S A, et al. PIV and dynamic LES of the turbulent stream and mixing induced by a V-grooved blade axial agitator[J]. Chemical Engineering Journal, 2019, 374: 1138-1152. |
59 | FATOUREHCHI N, SOHRABI M, DABIR B, et al. Application of a novel type impinging streams reactor in solid-liquid enzyme reactions and modeling of residence time distribution using GDB model[J]. Enzyme and Microbial Technology, 2014, 55: 14-20. |
60 | 刘红娟, 邹春, 田智威, 等. 撞击流中单颗粒运动行为的数值模拟[J]. 华中科技大学学报(自然科学版), 2008, 36(5): 106-109. |
LIU Hongjuan, ZOU Chun, TIAN Zhiwei, et al. Motions of single particle in the impinging streams[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2008, 36(5): 106-109. | |
61 | 张建伟, 董鑫, 马红越, 等. 双喷嘴水平对置撞击流混合器内湍流流动及混沌特性[J]. 化工进展, 2015, 34(7): 1832-1840. |
ZHANG Jianwei, DONG Xin, MA Hongyue, et al. Turbulence flow and chaotic characteristic in the dual nozzle opposed impinging stream mixer[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 1832-1840. | |
62 | 杨侠, 余蓓, 郭钊, 等. 多喷嘴对置式撞击流反应器流场的数值模拟[J]. 化工进展, 2013, 32(7): 1480-1483, 1505. |
YANG Xia, YU Bei, GUO Zhao, et al. Numerical simulation of the flow field in multi-nozzle opposed imping stream reactor[J]. Chemical Industry and Engineering Progress, 2013, 32(7): 1480-1483, 1505. | |
63 | LI Youfeng, YE Hongqi, HE Xianda, et al. Study of reactive precipitation in VORTEX impinging streams reactor[J]. Advanced Materials Research, 2012, 455/456: 617-623. |
64 | HAO Y, SEO J H, HU Y Z, et al. Flow physics and mixing quality in a confined impinging jet mixer[J]. AIP Advances, 2020, 10(4): 045105. |
65 | CHEN Luming, DONG Bing, GUO Yanqing, et al. CFD modelling of the effects of local turbulence intensification on synthesis of LiFePO4 particles in an impinging jet reactor[J]. Chemical Engineering and Processing: Process Intensification, 2020, 155: 108065. |
66 | 张建伟, 沙新力, 冯颖. 撞击流技术研究进展及新型反应装置研发[J]. 工程科学与技术, 2019, 51(6): 17-27. |
ZHANG Jianwei, SHA Xinli, FENG Ying. Research progress of impinging stream technology and development of new reactors[J]. Advanced Engineering Sciences, 2019, 51(6): 17-27. | |
67 | WOJTAS K, ORCIUCH W, MAKOWSKI Ł. Large eddy simulations of reactive mixing in jet reactors of varied geometry and size[J]. Processes, 2020, 8(9): 1101. |
68 | FENG Long, LI Zengliang, DU Mingchao, et al. Computational fluid dynamics analysis and design optimization of a porous annular powder-liquid mixer[J]. Energy Science & Engineering, 2020, 8(4): 1149-1164. |
69 | 王斐斐, 王子振, 舒腾飞. 聚合物分散溶解系统数值模拟研究[J]. 石油机械, 2018, 46(10): 65-71. |
WANG Feifei, WANG Zizhen, SHU Tengfei. Numerical simulation study on polymer dispersion and dissolution system[J]. China Petroleum Machinery, 2018, 46(10): 65-71. | |
70 | 徐幼林. 植保机械混药器及其农药在线混合性能研究[D]. 南京: 南京林业大学, 2009. |
XU Youlin. Study on mixers for plant protection machinery and chemical in-line-mixing performances[D]. Nanjing: Nanjing Forestry University, 2009. | |
71 | HLAVÁČ L M, HLAVÁČOVÁ I M, JANDAČKA P, et al. Comminution of material particles by water jets—Influence of the inner shape of the mixing chamber[J]. International Journal of Mineral Processing, 2010, 95(1/2/3/4): 25-29. |
72 | 刘延鑫, 李增亮, 冯龙, 等. 新型粉液混配器结构分析与性能优化[J]. 中国石油大学学报(自然科学版), 2018, 42(1): 157-164. |
LIU Yanxin, LI Zengliang, FENG Long, et al. Structural analysis and performance optimization on new powder liquid mixer[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(1): 157-164. | |
73 | LÓPEZ-RODRÍGUEZ D, GELLA D, TO K, et al. Effect of hopper angle on granular clogging[J]. Physical Review E, 2019, 99: 032901. |
74 | SUN Dong, LU Haifeng, CAO Jiakun, et al. Flow mechanisms and solid flow rate prediction of powders discharged from hoppers with an insert[J]. Powder Technology, 2020, 367: 277-284. |
75 | WU Qing, LI Nan, LI Quanlai. The structure and two-phase flow analysis for a new SVLX static mixer[J]. Applied Mechanics and Materials, 2011, 130/131/132/133/134: 696-700. |
76 | SOMAN S S, MADHURANTHAKAM C M R. Effects of internal geometry modifications on the dispersive and distributive mixing in static mixers[J]. Chemical Engineering and Processing: Process Intensification, 2017, 122: 31-43. |
77 | HADDADI M M, HOSSEINI S H, RASHTCHIAN D, et al. CFD modeling of immiscible liquids turbulent dispersion in Kenics static mixers: focusing on droplet behavior[J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 348-361. |
78 | WU Qing, LI Quanlai, HAN Baoan. The structure and fluid flow analysis for a new SXSH static mixer[J]. Applied Mechanics and Materials, 2012, 164: 124-127. |
79 | ZHOU Minmin, BAI Dehong, ZONG Yuan, et al. Numerical investigation of turbulent reactive mixing in a novel coaxial jet static mixer[J]. Chemical Engineering and Processing: Process Intensification, 2017, 122: 190-203. |
80 | 陈辰, 皮成忠, 杨镇亮, 等. 三角形管壁叶片式静态混合器的结构与流场数值模拟[J]. 中国造纸学报, 2018, 33(3): 34-42. |
CHEN Chen, PI Chengzhong, YANG Zhenliang, et al. Structure of the triangular tube-wall-blade static mixer and numerical simulation of its internal flow field[J]. Transactions of China Pulp and Paper, 2018, 33(3): 34-42. | |
81 | HABCHI C, LEMENAND T, AZIZI F. Mixing enhancement in a novel type of “split and recombine” static mixer[C]//ASME 2018 International Mechanical Engineering Congress and Exposition, 2018. |
82 | VIKHANSKY A. CFD modelling of turbulent liquid-liquid dispersion in a static mixer[J]. Chemical Engineering and Processing Process Intensification, 2020, 149: 107840. |
83 | GÖBEL F, GOLSHAN S, NOROUZI H R, et al. Simulation of granular mixing in a static mixer by the discrete element method[J]. Powder Technology, 2019, 346: 171-179. |
84 | THERON F, SAUZE N L. Comparison between three static mixers for emulsification in turbulent flow[J]. International Journal of Multiphase Flow, 2011, 37(5): 488-500. |
85 | HUANG Fenglei, WANG Dengfei, LI Zhipeng, et al. Mixing process of two miscible fluids in a lid-driven cavity[J]. Chemical Engineering Journal, 2019, 362: 229-242. |
86 | HARVEY D H S, MOTHERSDALE T, SHCHUKIN D, et al. Plant fiber processing using the controlled deformation dynamic mixer[J]. Chemical Engineering & Technology, 2019, 42(8): 1566-1573. |
87 | 杨优生, 丁玉梅, 何立臣, 等. 随动式动态混合器固液混合的实验研究[J]. 北京化工大学学报(自然科学版), 2017, 44(4): 90-94. |
YANG Yousheng, DING Yumei, HE Lichen, et al. The solid-liquid mixing performance of a servo dynamic mixer[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2017, 44(4): 90-94. | |
88 | GROSSO G, HULSEN M A, OVEREND A, et al. Fluid flow and distributive mixing analysis in the cavity transfer mixer[J]. Macromolecular Theory and Simulations, 2018, 27(3): 1700075. |
89 | HUANG Fenglei, CHEN Peng, WANG Junhao, et al. Refractive index-matched PIV experiments and CFD simulations of mixing in a complex dynamic geometry[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7982-7992. |
90 | GROSSO G, HULSEN M A, SARHANGI FARD A, et al. Mixing processes in the cavity transfer mixer: a thorough study[J]. AIChE Journal, 2018, 64(3): 1034-1048. |
91 | 张建伟, 张志刚, 冯颖, 等. 撞击流反应器内流场特性研究进展[J]. 化工进展, 2017, 36(10): 3540-3548. |
ZHANG Jianwei, ZHANG Zhigang, FENG Ying, et al. Research progress of flow field characteristics in impinging stream reactor[J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3540-3548. | |
92 | THAKUR R K, VIAL C, NIGAM K D P, et al. Static mixers in the process industries: a review[J]. Chemical Engineering Research and Design, 2003, 81(7): 787-826. |
93 | 赵福泽, 朱绍珍, 冯小辉, 等. 高能超声分散纳米晶须的数值和物理模拟[J]. 材料工程, 2016, 44(7): 13-18. |
ZHAO Fuze, ZHU Shaozhen, FENG Xiaohui, et al. Numerical and physical simulations of nano-whiskers’ dispersion under high intensity ultrasonic[J]. Journal of Materials Engineering, 2016, 44(7): 13-18. | |
94 | 张毅铭, 马宁, 王小鹏, 等. 固液两相声共振混合数值模拟[J]. 化工进展, 2018, 37(3): 913-919. |
ZHANG Yiming, MA Ning, WANG Xiaopeng, et al. Simulation of resonant acoustic mixing of liquid-solid-phase[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 913-919. | |
95 | KWON H, PARK J, LEPAROUX M. Dispersion behavior and size analysis of thermally purified high pressure-high temperature synthesized nanodiamond particles[J]. Journal of Korean Powder Metallurgy Institute, 2017, 24(3): 216-222. |
96 | 战艳虎, 伍金奎, 闫宁, 等. 超声分散制备天然橡胶/丁苯橡胶/炭黑/碳纳米管纳米复合材料[J]. 高分子材料科学与工程, 2011, 27(1): 130-134. |
ZHAN Yanhu, WU Jinkui, YAN Ning, et al. Preparation of natural rubber/styrene-butadiene rubber/carbon black/carbon nanotubes nanocomposites through ultrasonic dispersion[J]. Polymer Materials Science & Engineering, 2011, 27(1): 130-134. | |
97 | 曹耀武, 罗黎, 郭清海, 等. 纳米级水氯铁镁石的制备及颗粒团聚控制[J]. 材料科学与工艺, 2018, 26(2): 27-33. |
CAO Yaowu, LUO Li, GUO Qinghai, et al. Synthesis and agglomeration control of nanocrystalline iowaite[J]. Materials Science and Technology, 2018, 26(2): 27-33. | |
98 | TAN Furui, LI Hongbo, GUI Hui, et al. Effects of ultrasonic dispersion on the separation of single-walled carbon nanotubes[J]. Acta Physico-Chimica Sinica, 2012, 28(7): 1790-1796. |
99 | ZHENG Xuehong, LI Yuehan, CHEN Ding, et al. Study on analysis and sedimentation of alumina nanoparticles[J]. International Journal of Environmental Research and Public Health, 2019, 16(3): 510. |
100 | KUDRYASHOVA O, VOROZHTSOV S, KHRUSTALYOV A, et al. Ultrasonic dispersion of agglomerated particles in metal melt[J]. AIP Conference Proceedings, 2016, 1772(1): 020013. |
101 | YIN Pengfei, ZHANG Rong, LI Yinbing, et al. The charging efficiency and flow dynamics of micropowder during jet milling/electrostatic dispersion[J]. Powder Technology, 2014, 256: 450-461. |
102 | XU Zheng, LU Shouci. A new electrostatic dispersion method for fine powder in air[J]. Advanced Materials Research, 2008, 58: 1-13. |
103 | YIN Pengfei, DENG Yu, ZHANG Rong, et al. Numerical simulation on the electric charge decay of micropowder prepared by jet milling/electrostatic dispersion[J]. Advanced Powder Technology, 2018, 29(6): 1518-1523. |
104 | 任俊, 卢寿慈, 沈健, 等. 超细颗粒的静电抗团聚分散[J]. 科学通报, 2000, 45(21): 2289-2292. |
REN Jun, LU Shouci, SHEN Jian, et al. Electrostatic antiagglomeration dispersion of superfine particles [J]. Chinese Science Bulletin, 2000, 45(21): 2289-2292. | |
105 | 殷鹏飞, 张蓉, 李银冰, 等. 气流粉碎/静电分散中粉体颗粒运动规律的数值模拟研究[J]. 稀有金属材料与工程, 2014, 43(12): 3052-3057. |
YIN Pengfei, ZHANG Rong, LI Yinbing, et al. Numerical simulation of the dynamic process of micropowder during jet milling/electrostatic dispersion[J]. Rare Metal Materials and Engineering, 2014, 43(12): 3052-3057. | |
106 | BOWLER A L, BAKALIS S, WATSON N J. A review of in-line and on-line measurement techniques to monitor industrial mixing processes[J]. Chemical Engineering Research and Design, 2020, 153: 463-495. |
107 | YANG Lin, LI Wenpeng, GUO Junheng, et al. Effects of rotor and Stator geometry on dissolution process and power consumption in jet-flow high shear mixers[J]. Frontiers of Chemical Science and Engineering, 2021, 15(2): 384-398. |
108 | 仇维亚, 李建青, 戴亚文, 等. 热针法沉降浓度测量系统及其应用[J]. 功能材料, 2018, 49(6): 6173-6178. |
QIU Weiya, LI Jianqing, DAI Yawen, et al. The sedimentation rate measurement system with thermal probe and its application[J]. Journal of Functional Materials, 2018, 49(6): 6173-6178. | |
109 | WANG Guanqi, LI Xiangyang, YANG Chao, et al. New vision probe based on telecentric photography and its demonstrative applications in a multiphase stirred reactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(23): 6608-6617. |
110 | ONYEMELUKWE I I, NAGY Z K, RIELLY C D. Solid-liquid axial dispersion performance of a mesoscale continuous oscillatory flow crystalliser with smooth periodic constrictions using a non-invasive dual backlit imaging technique[J]. Chemical Engineering Journal, 2020, 382: 122862. |
111 | 谈明高, 王献, 吴贤芳, 等. 双叶片泵固液两相流单颗粒运动可视化试验[J]. 哈尔滨工程大学学报, 2020, 41(5): 676-683. |
TAN Minggao, WANG Xian, WU Xianfang, et al. Single particle motion visualization test of solid-liquid two-phase flow in a double-blade pump[J]. Journal of Harbin Engineering University, 2020, 41(5): 676-683. | |
112 | SETTE E, BERDUGO VILCHES T, PALLARÈS D, et al. Measuring fuel mixing under industrial fluidized-bed conditions: a camera-probe based fuel tracking system[J]. Applied Energy, 2016, 163: 304-312. |
113 | LE COËNT A L, RIVOIRE A, BRIANÇON S, et al. An original image-processing technique for obtaining the mixing time: the box-counting with erosions method[J]. Powder Technology, 2005, 152(1/2/3): 62-71. |
114 | XIAO Qingtai, PAN Jianxin, FAN Yunying, et al. An original technique for quantifying the flow-field characteristics in an electrodeposition process of Zn-SiO2 with Fe[J]. Journal of Alloys and Compounds, 2018, 737: 448-455. |
115 | STOLOJANU V, PRAKASH A. Characterization of slurry systems by ultrasonic techniques[J]. Chemical Engineering Journal, 2001, 84(3): 215-222. |
116 | CARLSON J, MARTINSSON P E. A simple scattering model for measuring particle mass fractions in multiphase flows[J]. Ultrasonics, 2002, 39(8): 585-590. |
117 | STENER J F, CARLSON J E, SAND A, et al. Monitoring mineral slurry flow using pulse-echo ultrasound[J]. Flow Measurement and Instrumentation, 2016, 50: 135-146. |
118 | SHI Shuo, LIU Zhenggang, SUN Jianting, et al. Study of errors in ultrasonic heat meter measurements caused by impurities of water based on ultrasonic attenuation[J]. Journal of Hydrodynamics, Ser. B, 2015, 27(1): 141-149. |
119 | HUANG Y J, SUNG C C, LAI J S, et al. Measurement of solid suspension concentration and flow velocity with temperature compensation using a portable ultrasonic device[J]. Hydrological Sciences Journal, 2013, 58(3): 615-626. |
120 | ZHAN Xiaobin, YANG Yili, LIANG Jian, et al. Gas bubble effects and elimination in ultrasonic measurement of particle concentrations in solid-liquid mixing processes[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1711-1718. |
121 | STELZER T, PERTIG D, ULRICH J. Ultrasonic crystallization monitoring technique for simultaneous in-line measurement of liquid and solid phase[J]. Journal of Crystal Growth, 2013, 362: 71-76. |
122 | 刘伟, 王雅静, 申晋. 动态光散射最优拟合累积分析法[J]. 光学学报, 2013, 33(12): 319-326. |
LIU Wei, WANG Yajing, SHEN Jin. Optimal fitting cumulants method for dynamic light scattering[J]. Acta Optica Sinica, 2013, 33(12): 319-326. | |
123 | VYSOTSKII V V, URYUPINA O Y, GUSEL’NIKOVA A V, et al. On the feasibility of determining nanoparticle concentration by the dynamic light scattering method[J]. Colloid Journal, 2009, 71(6): 739-744. |
124 | MINELLI C, BARTCZAK D, PETERS R, et al. Sticky measurement problem: number concentration of agglomerated nanoparticles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2019, 35(14): 4927-4935. |
125 | AUSTIN J, MINELLI C, HAMILTON D, et al. Nanoparticle number concentration measurements by multi-angle dynamic light scattering[J]. Journal of Nanoparticle Research, 2020, 22(5): 1-15. |
126 | DAN C. Measuring very small concentrations in organic suspensions by coherent light scattering[C]//Proc SPIE 7469, ROMOPTO 2009: Ninth Conference on Optics: Micro- to Nanophotonics Ⅱ, 2010, 7469: 191-196. |
127 | TURCU I. Effective phase function for light scattered by disperse systems—The small-angle approximation[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6(6): 537-543. |
128 | 夏辉, 陈智全, 李富石, 等. 拖曳效应对低相干动态光散射测量粒径的影响[J]. 光学学报, 2010, 30(8): 2257-2261. |
XIA Hui, CHEN Zhiquan, LI Fushi, et al. Influence of wall-drag effect on particle sizing in low-coherence dynamic light scattering[J]. Acta Optica Sinica, 2010, 30(8): 2257-2261. | |
129 | 钟诚, 陈智全, 杨伟国, 等. 电解质对浓悬浮液中胶体颗粒扩散特性的影响[J]. 物理学报, 2013, 62(21): 188-192. |
ZHONG Cheng, CHEN Zhiquan, YANG Weiguo, et al. Influence of electrolytes on diffusion properties of colloidal particles in dense suspensions[J]. Acta Physica Sinica, 2013, 62(21): 188-192. | |
130 | HARRISON S T L, STEVENSON R, CILLIERS J J. Assessing solids concentration homogeneity in Rushton-agitated slurry reactors using electrical resistance tomography (ERT)[J]. Chemical Engineering Science, 2012, 71: 392-399. |
131 | 刘斌, 李术才, 李树忱, 等. 电阻率层析成像法监测系统在矿井突水模型试验中的应用[J]. 岩石力学与工程学报, 2010, 29(2): 297-307. |
LIU Bin, LI Shucai, LI Shuchen, et al. Application of electrical resistivity tomography monitoring system to mine water inrush model test[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 297-307. | |
132 | 李英, 黄志尧, 冀海峰, 等. 两相流参数测量ERT图像重建算法的研究[J]. 浙江大学学报(工学版), 2003, 37(4): 382-385. |
LI Ying, HUANG Zhiyao, JI Haifeng, et al. Study on image reconstruction algorithm of electrical re sistance tomography for two-phase flow measurement[J]. Journal of Zhejiang University (Engineering Science), 2003, 37(4): 382-385. | |
133 | 李守晓, 王化祥, 范文茹, 等. 基于三维模型的改进正则化ERT成像算法[J]. 天津大学学报, 2012, 45(3): 215-220. |
LI Shouxiao, WANG Huaxiang, FAN Wenru, et al. Improved regularization reconstruction algorithm based on 3D model for ERT system[J]. Journal of Tianjin University, 2012, 45(3): 215-220. | |
134 | 刘铁军, 王保良, 黄志尧, 等. 两相流电阻层析成像测量电路与图像重建[J]. 化工学报, 2007, 58(4): 862-868. |
LIU Tiejun, WANG Baoliang, HUANG Zhiyao, et al. Measurement circuits and image reconstruction techniques of electrical resistance tomography system for two-phase flow measurement[J]. CIESC Journal, 2007, 58(4): 862-868. | |
135 | 李秀艳, 韩倩, 汪剑鸣, 等. 基于改进共轭梯度法的ERT图像重建[J]. 仪器仪表学报, 2016, 37(7): 1673-1679. |
LI Xiuyan, HAN Qian, WANG Jianming, et al. ERT image reconstruction based on improved CG method[J]. Chinese Journal of Scientific Instrument, 2016, 37(7): 1673-1679. | |
136 | 马世文, 王化祥. 基于QR分解的对称共轭梯度法成像算法[J]. 传感技术学报, 2011, 24(8): 1168-1171. |
MA Shiwen, WANG Huaxiang. Symmetrical conjugate gradient algorithm based on QR decomposition for image reconstruction[J]. Chinese Journal of Sensors and Actuators, 2011, 24(8): 1168-1171. | |
137 | LIU L, FANG Z Y, WU Y P, et al. Experimental investigation of solid-liquid two-phase flow in cemented rock-tailings backfill using electrical resistance tomography[J]. Construction and Building Materials, 2018, 175: 267-276. |
[1] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[2] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[3] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[4] | 王保文, 刘同庆, 张港, 李炜光, 林德顺, 王梦家, 马晶晶. CuFe2O4改性脱硫渣氧载体与褐煤的反应特性[J]. 化工进展, 2023, 42(6): 2884-2894. |
[5] | 修浩然, 王云刚, 白彦渊, 邹立, 刘阳. 准东煤/市政污泥混燃燃烧特性及灰熔融行为分析[J]. 化工进展, 2023, 42(6): 3242-3252. |
[6] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[7] | 卢兴福, 戴波, 杨世亮. 转鼓内圆柱形颗粒混合的超二次曲面离散单元法模拟[J]. 化工进展, 2023, 42(5): 2252-2261. |
[8] | 常晓青, 彭东来, 李东洋, 张延武, 王景, 张亚涛. MOFs基丙烯/丙烷高效分离混合基质膜研究进展[J]. 化工进展, 2023, 42(4): 1961-1973. |
[9] | 田启凯, 郑海萍, 张少斌, 张静, 余子夷. 混合增强的微流控通道进展[J]. 化工进展, 2023, 42(4): 1677-1687. |
[10] | 高婷婷, 蒋振, 吴晓毅, 郝婷婷, 马学虎, 温荣福. 微乳液脉动热管应用于锂离子电池的散热性能[J]. 化工进展, 2023, 42(3): 1167-1177. |
[11] | 张建伟, 许蕊, 张忠闯, 董鑫, 冯颖. 基于卷积神经网络的撞击流反应器浓度场混合特性[J]. 化工进展, 2023, 42(2): 658-668. |
[12] | 李晶晶, 赵曜, 徐沣驰, 李康建. 不同径流冲刷作用下多孔炉渣沥青混合料重金属的浸出特性[J]. 化工进展, 2023, 42(10): 5520-5530. |
[13] | 李昊, 郭荣鑫, 晏永. 高模量沥青及其混合料低温性能研究进展[J]. 化工进展, 2022, 41(S1): 351-365. |
[14] | 潘艳秋, 李鹏飞, 高石磊, 俞路. 基于MIC筛选规则和BP神经网络的变换装置建模及产品预测[J]. 化工进展, 2022, 41(S1): 36-43. |
[15] | 颜子涵, 陈群云, 李卓, 付融冰, 李彦伟, 吴志根. 改进型土壤破碎混拌结构的性能数值分析与优化[J]. 化工进展, 2022, 41(S1): 72-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |