化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 72-80.DOI: 10.16085/j.issn.1000-6613.2022-1023
颜子涵1(), 陈群云1, 李卓1, 付融冰1, 李彦伟2, 吴志根1(
)
收稿日期:
2022-05-31
修回日期:
2022-07-14
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
吴志根
作者简介:
颜子涵(1999—),女,硕士研究生,研究方向为复杂环境介质数值模拟。E-mail:yanzihan@tongji.edu.cn。
基金资助:
YAN Zihan1(), CHEN Qunyun1, LI Zhuo1, FU Rongbing1, LI Yanwei2, WU Zhigen1(
)
Received:
2022-05-31
Revised:
2022-07-14
Online:
2022-10-20
Published:
2022-11-10
Contact:
WU Zhigen
摘要:
为了改善某公司原土壤修复一体机内破碎混拌结构的颗粒混匀效果,本文利用离散颗粒混合动力学原理和离散单元法(discrete element method,DEM)对系统内部破碎刀辊装置进行改进优化和仿真模拟。通过研究混合体系中土壤-药剂离散颗粒和混合部件之间的相互作用、颗粒分布及碰撞次数、滚轴功率,运用混合均匀度、混合质量公式对混合效果进行评价,并探究了各转轴中引起功率变化的主要因素。计算模拟结果显示,第二代设备对土壤碰撞颗粒数的提升效果非常明显,爪机、上中下滚轴最佳运行转速为150r/min、300r/min、600r/min、600r/min,滚轴总功率为13.45kW,是实际滚轴额定总功率60kW的22.4%,该研究结果为改善土壤修复一体机性能提供了理论支撑和技术指导。
中图分类号:
颜子涵, 陈群云, 李卓, 付融冰, 李彦伟, 吴志根. 改进型土壤破碎混拌结构的性能数值分析与优化[J]. 化工进展, 2022, 41(S1): 72-80.
YAN Zihan, CHEN Qunyun, LI Zhuo, FU Rongbing, LI Yanwei, WU Zhigen. Numerical analysis and optimization of the performance of an improved soil crushing and mixing structure[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 72-80.
接触属性 | 土壤- 土壤 | 土壤- 药剂 | 药剂- 药剂 | 土壤- 结构钢 | 药剂- 结构钢 |
---|---|---|---|---|---|
恢复系数 | 0.55 | 0.5 | 0.55 | 0.5 | 0.5 |
静摩擦系数 | 0.8 | 0.5 | 0.2 | 0.5 | 0.5 |
滚动摩擦系数 | 0.2 | 0.01 | 0.0 | 0.01 | 0.01 |
表1 材料接触属性
接触属性 | 土壤- 土壤 | 土壤- 药剂 | 药剂- 药剂 | 土壤- 结构钢 | 药剂- 结构钢 |
---|---|---|---|---|---|
恢复系数 | 0.55 | 0.5 | 0.55 | 0.5 | 0.5 |
静摩擦系数 | 0.8 | 0.5 | 0.2 | 0.5 | 0.5 |
滚动摩擦系数 | 0.2 | 0.01 | 0.0 | 0.01 | 0.01 |
不同转速/r·min-1 | 土壤单球 粒径/cm | 药剂单球 粒径/cm | 混合 均匀度 | 混合 质量/% |
---|---|---|---|---|
150,300,600,600(一代) | 1.0 | 0.4 | 0.0526 | 79.1 |
150,300,600,600(一代) | 1.0 | 0.6 | 0.0697 | 75.3 |
150,300,600,600(二代) | 1.0 | 0.6 | 0.0828 | 81.6 |
150,300,600,900(一代) | 1.0 | 0.4 | 0.0499 | 80.2 |
150,300,600,900(二代) | 1.0 | 0.6 | 0.0881 | 80.4 |
表2 第一代与第二代土壤-药剂颗粒混合均匀度计算结果对比分析
不同转速/r·min-1 | 土壤单球 粒径/cm | 药剂单球 粒径/cm | 混合 均匀度 | 混合 质量/% |
---|---|---|---|---|
150,300,600,600(一代) | 1.0 | 0.4 | 0.0526 | 79.1 |
150,300,600,600(一代) | 1.0 | 0.6 | 0.0697 | 75.3 |
150,300,600,600(二代) | 1.0 | 0.6 | 0.0828 | 81.6 |
150,300,600,900(一代) | 1.0 | 0.4 | 0.0499 | 80.2 |
150,300,600,900(二代) | 1.0 | 0.6 | 0.0881 | 80.4 |
爪机 /r·min-1 | 破碎混合滚轴/r·min-1 | 混合 均匀度 | 混合 质量/% | ||
---|---|---|---|---|---|
上 | 中 | 下 | |||
150 | 150 | 200 | 150 | 0.135 | 69.2 |
150 | 150 | 600 | 600 | 0.126 | 69.9 |
900 | 900 | 900 | 900 | 0.165 | 65.2 |
1500 | 1500 | 1200 | 1500 | 0.166 | 64.3 |
表3 粗颗粒土壤-药剂(2.0cm/1.0cm)的混合均匀度计算结果
爪机 /r·min-1 | 破碎混合滚轴/r·min-1 | 混合 均匀度 | 混合 质量/% | ||
---|---|---|---|---|---|
上 | 中 | 下 | |||
150 | 150 | 200 | 150 | 0.135 | 69.2 |
150 | 150 | 600 | 600 | 0.126 | 69.9 |
900 | 900 | 900 | 900 | 0.165 | 65.2 |
1500 | 1500 | 1200 | 1500 | 0.166 | 64.3 |
爪机 /r·min-1 | 破碎混合滚轴/r·min-1 | 混合均匀度 | 混合 质量/% | ||
---|---|---|---|---|---|
上 | 中 | 下 | |||
150 | 150 | 100 | 150 | 0.109 | 74.9 |
150 | 300 | 600 | 600 | 0.0828 | 81.6 |
150 | 300 | 600 | 900 | 0.0881 | 80.4 |
150 | 600 | 900 | 600 | 0.0994 | 77.8 |
表4 细颗粒土壤-药剂(1.0cm/0.6cm)的混合均匀度计算结果
爪机 /r·min-1 | 破碎混合滚轴/r·min-1 | 混合均匀度 | 混合 质量/% | ||
---|---|---|---|---|---|
上 | 中 | 下 | |||
150 | 150 | 100 | 150 | 0.109 | 74.9 |
150 | 300 | 600 | 600 | 0.0828 | 81.6 |
150 | 300 | 600 | 900 | 0.0881 | 80.4 |
150 | 600 | 900 | 600 | 0.0994 | 77.8 |
不同转速/r·min-1 | 混合均匀度 | 混合质量/% | 平均功率/kW | 总功率/kW | ||
---|---|---|---|---|---|---|
上 | 中 | 下 | ||||
150,150,200,150 | 0.135 | 69.2 | 0.612 | 0.538 | 0.310 | 1.46 |
150,150,600,600 | 0.126 | 69.9 | 1.055 | 6.308 | 2.680 | 10.04 |
900,900,900,900 | 0.165 | 65.2 | 16.417 | 11.709 | 11.313 | 39.44 |
1500,1500,1200,1500 | 0.166 | 64.3 | 82.694 | 29.808 | 28.098 | 140.60 |
表5 粗颗粒模型的破碎刀辊平均功率和总功率计算结果
不同转速/r·min-1 | 混合均匀度 | 混合质量/% | 平均功率/kW | 总功率/kW | ||
---|---|---|---|---|---|---|
上 | 中 | 下 | ||||
150,150,200,150 | 0.135 | 69.2 | 0.612 | 0.538 | 0.310 | 1.46 |
150,150,600,600 | 0.126 | 69.9 | 1.055 | 6.308 | 2.680 | 10.04 |
900,900,900,900 | 0.165 | 65.2 | 16.417 | 11.709 | 11.313 | 39.44 |
1500,1500,1200,1500 | 0.166 | 64.3 | 82.694 | 29.808 | 28.098 | 140.60 |
不同转速/r·min-1 | 混合均匀度 | 混合质量/% | 平均功率/kW | 总功率/kW | ||
---|---|---|---|---|---|---|
上 | 中 | 下 | ||||
150,150,100,150 | 0.109 | 74.9 | 0.503 | 0.080 | 0.035 | 0.62 |
150,300,600,600 | 0.0828 | 81.6 | 2.065 | 8.159 | 3.275 | 13.45 |
150,300,600,900 | 0.0881 | 80.4 | 2.336 | 7.339 | 11.350 | 21.02 |
150,600,900,600 | 0.0994 | 77.8 | 5.473 | 9.832 | 2.239 | 17.54 |
表 6 细颗粒模型的破碎刀辊平均功率和总功率计算结果
不同转速/r·min-1 | 混合均匀度 | 混合质量/% | 平均功率/kW | 总功率/kW | ||
---|---|---|---|---|---|---|
上 | 中 | 下 | ||||
150,150,100,150 | 0.109 | 74.9 | 0.503 | 0.080 | 0.035 | 0.62 |
150,300,600,600 | 0.0828 | 81.6 | 2.065 | 8.159 | 3.275 | 13.45 |
150,300,600,900 | 0.0881 | 80.4 | 2.336 | 7.339 | 11.350 | 21.02 |
150,600,900,600 | 0.0994 | 77.8 | 5.473 | 9.832 | 2.239 | 17.54 |
1 | 李淋萍, 吕忠祥. 重金属污染土壤修复技术研究的现状与展望[J]. 化工管理, 2020(29): 76-77. |
LI Linping, Zhongxiang LYU. Status and prospects of research on remediation technologies for heavy metal contaminated soil[J]. Chemical Management, 2020(29): 76-77. | |
2 | 闫琴, 杨晓伟. 矿区重金属污染土壤的修复技术研究进展[C]//中国环境科学学会学术年会, 2013. |
YAN Qin, YANG Xiaowei. Research progress in remediation technology for heavy metal contaminated soil in mining areas[C]//Annual Academic Conference of the Chinese Society of Environmental Sciences, 2013. | |
3 | CUI S, HAN Q, ZHANG T Y. Overview of leaching remediation of heavy metal contamination in soil[C]//5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS), Electr Network, 2021(245): 02005. |
4 | LYCKOVA B, HUDA V, JAROSINSKI A. Ashes as an agent for cement-lime based solidification/stabilization of the hazardous waste[C]//14th Conference on Environment and Mineral Processing, VSB TU, Ostrava, Czech Republic, 2010: 93-96. |
5 | 张志生. 固化稳定化技术处理重金属类污染土壤效果及应用前景的研究[J]. 皮革制作与环保科技, 2021, 2(7): 57-58. |
ZHANG Zhisheng. Study on the effect and application prospect of solidification and stabilization technology in treating heavy metal-like contaminated soil[J]. Leather Manufacture and Environmental, 2021, 2(7): 57-58. | |
6 | 张长波, 罗启仕, 付融冰, 等. 污染土壤的固化/稳定化处理技术研究进展[J]. 土壤, 2009, 41(1): 8-15. |
ZHANG Changbo, LUO Qishi, FU Rongbing, et al. Advances in solidification/stabilization technology for contaminated soil[J]. Soils, 2009, 41(1): 8-15. | |
7 | 林慧丽, 李彦伟, 张树立, 等. 矿区重金属污染土壤修复一体机颗粒混拌效果的数值研究[J]. 现代矿业, 2021, 37(10): 137-140. |
LIN Huili, LI Yanwei, ZHANG Shuli, et al. Numerical study on the effect of particle mixing in an integrated machine for remediation of heavy metal contaminated soil in mining areas[J]. Modern Mining, 2021, 37(10): 137-140. | |
8 | 姜世平, 于海龙, 芮筱亭, 等. 散体系统冲击破碎的动力学分析[J]. 爆炸与冲击, 2014, 34(2): 247-251. |
JIANG Shiping, YU Hailong, RUI Xiaoting, et al. Kinetic analysis of impact crushing of bulk systems[J]. Explosion and Shock Waves, 2014, 34(2): 247-251. | |
9 | 王增会, 李锡夔. 利用连接尺度方法的颗粒材料破碎数值分析[J]. 计算力学学报, 2015, 32(5): 656-661. |
WANG Zenghui, LI Xikui. Numerical analysis of granular material fragmentation using a connected scale approach[J]. Chinese Journal of Computational Mechanics, 2015, 32(5): 656-661. | |
10 | 傅华, 凌华, 蔡正银. 粗颗粒土颗粒破碎影响因素试验研究[J]. 河海大学学报(自然科学版), 2009, 37(1): 75-79. |
FU Hua, LING Hua, CAI Zhengyin. Experimental study on factors influencing particle fragmentation of coarse-grained soils[J]. Journal of Hohai University(Natural Sciences), 2009, 37(1): 75-79. | |
11 | 张鹤, 李天津, 刘马林, 等. 大颗粒与壁面碰撞的离散单元法模拟与分析[J]. 原子能科学技术, 2017, 51(12): 2212-2217. |
ZHANG He, LI Tianjin, LIU Malin, et al. Discrete unit method simulation and analysis of large particle-wall collisions[J]. Atomic Energy Science and Technology, 2017, 51(12): 2212-2217. | |
12 | 苏明. 考虑颗粒破碎的粗粒料力学特性研究综述[J]. 长江科学院院报, 2015, 32(5): 86-92. |
SU Ming. A review of the mechanical properties of coarse grained materials considering particle fragmentation[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(5): 86-92. | |
13 | CHEN L Q, ZHANG J Q, KONG X L. Genetic optimal design of straw crusher based on ADAMS[C]//International Conference on Manufacturing Engineering and Automation, Guangzhou, China, 2010: 929-932. |
14 | 张书浩. 气固流化床内斜片挡板受力分布特性的实验研究[D]. 北京: 中国石油大学(北京), 2018. |
ZHANG Shuhao. Experimental study on the force distribution characteristics of inclined sheet baffles in gas-solid fluidized beds[D]. Beijing: China University of Petroleum(Beijing), 2018. | |
15 | 尹新伟, 胡月龙, 杨学鹏, 等. 双齿辊破碎机的破碎力离散元模拟研究[J]. 煤炭科学技术, 2020, 48(6): 154-161. |
YIN Xinwei, HU Yuelong, YANG Xuepeng, et al. Discrete element simulation study of crushing force in a double tooth roll crusher[J]. Coal Science and Technology, 2020, 48(6): 154-161. | |
16 | 许玉鹏, 崔丽杰, 葛蔚, 等. 颗粒混合过程DEM模拟中搜索网格尺寸的优化[J]. 计算机与应用化学, 2011, 28(6): 657-660. |
XU Yupeng, CUI Lijie, GE Wei, et al. Optimization of search grid size in DEM simulations of particle mixing processes[J]. Computers and Applied Chemistry, 2011, 28(6): 657-660. | |
17 | 王团结. 基于三维离散元的土石混合料振动压实特性研究[D]. 郑州: 郑州大学, 2015. |
WANG Tuanjie. Research on vibratory compaction characteristics of soil and stone mixes based on three-dimensional discrete elements[D]. Zhengzhou: Zhengzhou University, 2015. | |
18 | 赵凯, 李磊, 吴琪, 等. 基于颗粒接触状态理论的砂-砾混合料排水剪切强度试验研究[J]. 应用基础与工程科学学报, 2022, 30(2): 351-360. |
ZHAO Kai, LI Lei, WU Qi, et al. Experimental study on the drainage shear strength of sand-gravel mixes based on particle contact state theory[J]. Journal of Basic Science and Engineering, 2022, 30(2): 351-360. | |
19 | 肖海, 高峰, 邵艳艳, 等. 土壤原始颗粒对不同破碎机制下团聚体稳定性的影响[J]. 土壤学报, 2021, 58(3): 649-656. |
XIAO Hai, GAO Feng, SHAO Yanyan, et al. Influence of original soil particles on the stability of agglomerates under different fragmentation mechanisms[J]. Acta Pedologica Sinica, 2021, 58(3): 649-656. | |
20 | 丁启朔, 沈凤悦, 丁为民, 等. 粘性土重塑方法分析与破碎性能比较[J]. 农业机械学报, 2013, 44(1): 90-94. |
DING Qishuo, SHEN Fengyue, DING Weimin, et al. Analysis of clayey soil remodelling methods and comparison of crushing performance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(1): 90-94. | |
21 | 聂超超, 韩振南, 赵远, 等. 基于EDEM数值模拟的搅拌叶片优化设计[J]. 机械设计与制造, 2019(4): 17-25. |
NIE Chaochao, HAN Zhennan, ZHAO Yuan, et al. Optimal design of mixing blades based on EDEM numerical simulation[J]. Machinery Design & Manufacture, 2019(4): 17-25. | |
22 | 何晓宁, 张学军, 赵壮, 等. 基于离散元法的油莎豆降阻挖掘装置设计与试验[J]. 农业机械学报, 2021, 52(12): 124-133. |
HE Xiaoning, ZHANG Xuejun, ZHAO Zhuang, et al. Design and test of resistance-reducing excavation device of cyperus edulis based on discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 124-133. | |
23 | BOSS J, 陈幼康. 关于混合料混匀度计算公式的评价[J]. 烧结球团, 1989(1): 57-64. |
BOSS J, CHEN Y K. An evaluation of the formulae for calculating the mixability of blends[J]. Sintering and Pelletizing, 1989(1): 57-64. | |
24 | 刘瑜, 周甲伟, 张晓玲. 颗粒物料输送过程运动特性的离散元模拟[J]. 图学学报, 2015, 36(6): 896-902. |
LIU Y, ZHOU J W, ZHANG X L. Discrete element simulation of the kinematic properties of granular material transport processes[J]. Journal of Graphics, 2015, 36(6): 896-902. |
[1] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[2] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[3] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[4] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[5] | 刘柏成, 李法云, 赵琦慧, 吝美霞. 禾本科植物修复多环芳烃污染土壤研究进展[J]. 化工进展, 2023, 42(7): 3736-3748. |
[6] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[7] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[8] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[9] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[10] | 李雪, 王艳君, 王玉超, 陶胜洋. 仿生表面用于雾水收集的最新研究进展[J]. 化工进展, 2023, 42(5): 2486-2503. |
[11] | 邹银才, 李清国, 吴辉, 钟小兵, 陈咸志. 弹载相变热沉传热仿真与优化[J]. 化工进展, 2023, 42(3): 1248-1256. |
[12] | 孙潇, 朱光涛, 裴爱国. 氢液化装置产业化与研究进展[J]. 化工进展, 2023, 42(3): 1103-1117. |
[13] | 邱沫凡, 蒋琳, 刘荣正, 刘兵, 唐亚平, 刘马林. 气固流化床化学反应数值模拟中颗粒尺度模型研究进展[J]. 化工进展, 2023, 42(10): 5047-5058. |
[14] | 包淼清. 苯乙烯产品的浙江制造质量标准研究[J]. 化工进展, 2022, 41(S1): 648-655. |
[15] | 郑瑾, 韩瑞瑞, 李丹丹, 王馨妤, 高春阳, 杜显元, 张晓飞, 邹德勋. 过氧化尿素与微生物联合修复石油污染土壤[J]. 化工进展, 2022, 41(9): 5085-5093. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 298
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 185
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |