化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1103-1117.DOI: 10.16085/j.issn.1000-6613.2022-0899
收稿日期:
2022-05-16
修回日期:
2022-06-13
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
孙潇
作者简介:
孙潇(1993—),女,博士,研究方向为低温工程。E-mail:sunxiao@gedi.com.cn。
基金资助:
SUN Xiao1,2(), ZHU Guangtao1, PEI Aiguo3
Received:
2022-05-16
Revised:
2022-06-13
Online:
2023-03-15
Published:
2023-04-10
Contact:
SUN Xiao
摘要:
液氢能量密度高,作为氢的储运形式在远距离运输上具有成本优势。在减碳政策引导下,全球范围内液氢市场将进一步扩大,但氢液化装置能耗过高制约了液氢市场的发展。本文聚焦于国内外氢液化装置产业化现状,调研了国内外液氢产能和氢液化装置供应商;回顾了国际上两个典型氢液化装置的建设情况、流程特点和关键性能指标;梳理了近几年文献公开的氢液化流程的预冷方式、液氢产量和能耗,并且详细介绍了日本WE-NET项目和欧洲IDEALHY项目的氢液化流程;总结了氢液化装置的技术难点和发展现状。分析表明,低能耗氢液化流程设计已相对成熟,提升核心设备的效率和可靠性、完善液化过程的动态控制策略是推动氢液化装置产业化的关键。大型氢液化装置实现规模效应、小型氢液化装置提升启停能力是两个重要的发展方向。
中图分类号:
孙潇, 朱光涛, 裴爱国. 氢液化装置产业化与研究进展[J]. 化工进展, 2023, 42(3): 1103-1117.
SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117.
文献 | 美国 | 加拿大 | 欧洲 | 亚洲 (含中国) | 中国 |
---|---|---|---|---|---|
Krasae-in等①(2010)[ | 214 | 81 | 29.4 | 20.6 | 0.6 |
Aasadnia和Mehrpooya①(2018)[ | 214 | 81 | 29.4 | 29.2 | 0.6 |
Decker(2019)[ | 241 | 51 | 20 | 33.5 | 2.5 |
陈双涛等(2020)[ | >326 | 80 | 24 | 38.3 | 4 |
Elgowainy和Frank(2022)[ | 206 | 57 | — | — | — |
表1 国际上主要区域的液氢产量 (t/d)
文献 | 美国 | 加拿大 | 欧洲 | 亚洲 (含中国) | 中国 |
---|---|---|---|---|---|
Krasae-in等①(2010)[ | 214 | 81 | 29.4 | 20.6 | 0.6 |
Aasadnia和Mehrpooya①(2018)[ | 214 | 81 | 29.4 | 29.2 | 0.6 |
Decker(2019)[ | 241 | 51 | 20 | 33.5 | 2.5 |
陈双涛等(2020)[ | >326 | 80 | 24 | 38.3 | 4 |
Elgowainy和Frank(2022)[ | 206 | 57 | — | — | — |
建设年份 | 经营者 | 所在城市 | 液氢产量 /t·d-1 | 设备来源 |
---|---|---|---|---|
1995 | 航天101所 | 北京 | 0.5 | 林德 |
2007 | 航天101所 | 北京 | 1 | 法液空 |
2011 | 蓝星航天化工 | 西昌 | 1 | 法液空 |
2012 | 蓝星航天化工 | 文昌 | 2.5 | 法液空 |
2020 | 鸿达兴业 | 乌海 | — | 航天101所 |
2021 | 航天101所 | 北京 | 1.7 | 90%国产 |
2022 | 中科富海 | 中山 | 1.5 | 全国产 |
表2 国内现有氢液化装置
建设年份 | 经营者 | 所在城市 | 液氢产量 /t·d-1 | 设备来源 |
---|---|---|---|---|
1995 | 航天101所 | 北京 | 0.5 | 林德 |
2007 | 航天101所 | 北京 | 1 | 法液空 |
2011 | 蓝星航天化工 | 西昌 | 1 | 法液空 |
2012 | 蓝星航天化工 | 文昌 | 2.5 | 法液空 |
2020 | 鸿达兴业 | 乌海 | — | 航天101所 |
2021 | 航天101所 | 北京 | 1.7 | 90%国产 |
2022 | 中科富海 | 中山 | 1.5 | 全国产 |
建设时间 | 经营者 | 所在城市 | 液氢产量/t·d-1 | 设备来源 |
---|---|---|---|---|
2020年签约 | 林德、上海华谊 | 嘉兴 | — | 林德 |
2021年开工 | 嘉化能源 | 嘉兴 | 1.5 | 航天101所 |
2021年开工 | 河北旭阳 | 定州 | 1 | — |
2022年投产 | 空气化工产品 | 海盐 | 30 | 空气化工产品 |
2022年投产 | 中科富海 | 北京 | 5 | 中科富海 |
2022年投产 | 中科昊海 | 阜阳 | 1.5 | 中科富海 |
2022年开工 | 齐鲁氢能(山东) | 淄博 | 10 | 江苏国富氢能(引进俄罗斯工艺) |
2022年开工 | 空气产品久泰(内蒙古) | 呼和浩特 | 30 | 空气化工产品 |
2022年开工 | 中建航天 | 陇西 | 一期约7.1 二期约10.7 | 航天101所 |
预计2023年投产 | 华久氢能源(河南) | 洛阳 | 8.6 | 江苏国富氢能(引进俄罗斯工艺) |
预计2023年投产 | 中石化巴陵石化、湖南核电 | 岳阳 | 60 | — |
表3 国内规划的氢液化装置
建设时间 | 经营者 | 所在城市 | 液氢产量/t·d-1 | 设备来源 |
---|---|---|---|---|
2020年签约 | 林德、上海华谊 | 嘉兴 | — | 林德 |
2021年开工 | 嘉化能源 | 嘉兴 | 1.5 | 航天101所 |
2021年开工 | 河北旭阳 | 定州 | 1 | — |
2022年投产 | 空气化工产品 | 海盐 | 30 | 空气化工产品 |
2022年投产 | 中科富海 | 北京 | 5 | 中科富海 |
2022年投产 | 中科昊海 | 阜阳 | 1.5 | 中科富海 |
2022年开工 | 齐鲁氢能(山东) | 淄博 | 10 | 江苏国富氢能(引进俄罗斯工艺) |
2022年开工 | 空气产品久泰(内蒙古) | 呼和浩特 | 30 | 空气化工产品 |
2022年开工 | 中建航天 | 陇西 | 一期约7.1 二期约10.7 | 航天101所 |
预计2023年投产 | 华久氢能源(河南) | 洛阳 | 8.6 | 江苏国富氢能(引进俄罗斯工艺) |
预计2023年投产 | 中石化巴陵石化、湖南核电 | 岳阳 | 60 | — |
流程 | 指标 | Ingolstadt[ | Leuna[ |
---|---|---|---|
原料气 | 压力/MPa | 2 | 2.4 |
温度/K | <308 | <313 | |
杂质含量/10-6 | 4 | — | |
仲氢含量/% | 25 | 25 | |
液氢 | 产量/t·d-1 | 4.4 | 5.5 |
压力/MPa | 0.13 | 0.13 | |
温度/K | 21 | 21 | |
仲氢体积分数/% | ≥95 | ≥95 | |
初压缩机 | 压力范围/MPa | 0.1~0.3 | — |
电功率/kW | 57 | — | |
主压缩机 | 压力范围/MPa | 0.3~2.5 | — |
气体流量/m3‧h-1 | 16000 | — | |
电功率/kW | 1500 | — | |
效率/% | — | 65~70 | |
主膨胀机 | 效率/% | — | 85 |
液氮 | 流量/kg‧h-1 | 1750 | — |
能效 | 能耗/kW·h‧kgLH2-1 | 13.6 | 11.9 |
㶲效率/% | 21 | 23.6 |
表4 典型氢液化装置性能指标
流程 | 指标 | Ingolstadt[ | Leuna[ |
---|---|---|---|
原料气 | 压力/MPa | 2 | 2.4 |
温度/K | <308 | <313 | |
杂质含量/10-6 | 4 | — | |
仲氢含量/% | 25 | 25 | |
液氢 | 产量/t·d-1 | 4.4 | 5.5 |
压力/MPa | 0.13 | 0.13 | |
温度/K | 21 | 21 | |
仲氢体积分数/% | ≥95 | ≥95 | |
初压缩机 | 压力范围/MPa | 0.1~0.3 | — |
电功率/kW | 57 | — | |
主压缩机 | 压力范围/MPa | 0.3~2.5 | — |
气体流量/m3‧h-1 | 16000 | — | |
电功率/kW | 1500 | — | |
效率/% | — | 65~70 | |
主膨胀机 | 效率/% | — | 85 |
液氮 | 流量/kg‧h-1 | 1750 | — |
能效 | 能耗/kW·h‧kgLH2-1 | 13.6 | 11.9 |
㶲效率/% | 21 | 23.6 |
预冷方式 | 氢末级制冷方式 | 设计软件 | 液氢产量/t/d-1 | 能耗/kW·h‧kgLH2-1 | 文献 |
---|---|---|---|---|---|
液氮+氢克劳德循环 | 节流 | Aspen Plus | 约4 | 0.0014① | Hammad和Dincer(2018)[ |
液氮+氦JB循环 | 节流 | Aspen HYSYS+MATLAB | 1.7 | 10.25 | 殷靓等(2019)[ |
液氮+氦JB循环 | 节流 | Aspen HYSYS+MATLAB | 1.51 | 7.1329 | Yin和Ju(2020)[ |
液氮+氦JB循环 | 节流 | EcosimPro | 0.31 | — | Li等(2020)[ |
LNG+氮JB循环+氢克劳德循环 | 两相膨胀 | Aspen HYSYS | 300 | 11.05② | Yang等(2019)[ |
LNG+氦JB循环 | 无 | Aspen HYSYS | 0.5 | 17.37② | Chang等(2020)[ |
LNG | 两相膨胀 | Aspen HYSYS | 5 | 9.802② | 曹学文等(2021)[ |
LNG+混合工质JB循环 | 两相膨胀 | Aspen HYSYS | 6.1~10.4 | 6.609② | 王超等(2022)[ |
混合工质克劳德循环+氨-水吸收式制冷+混合工质JB循环 | 两相膨胀 | Aspen HYSYS | 90 | 6.47 | Aasadnia和Mehrpooya(2018)[ |
混合工质克劳德循环+混合工质JB循环 | 两相膨胀 | Aspen HYSYS | 290 | 1.102① | Ansarinasab等(2019)[ |
混合工质克劳德循环+混合工质JB循环 | 两相膨胀 | Aspen HYSYS | 290 | 4.022 | Ghorbani等(2019)[ |
混合工质克劳德循环+混合工质JB循环 | 两相膨胀 | Aspen HYSYS | 300 | 3.368 | Nouri等(2020)[ |
混合工质节流+氢克劳德循环 | 节流 | Aspen HYSYS | 125 | 7.09 | Berstad等(2021)[ |
混合工质节流+混合工质JB循环 | 节流 | Aspen HYSYS+MATLAB | 271.6 | 19.88 | 王国聪等(2021)[ |
混合工质节流+氮JB循环+两级混合工质JB循环 | — | Aspen HYSYS | 288.92 | 5.742 | Zhang和Liu(2021)[ |
混合工质克劳德循环+混合工质JB循环 | 两相膨胀 | Aspen HYSYS+MATLAB | — | 6.981 | 王超等(2021)[ |
氨-水吸收式制冷+混合工质克劳德循环+混合工质JB循环 | 两相膨胀 | Aspen HYSYS | 345.6 | 4.54 | Azizabadi等(2021)[ |
两组氨-水吸收式制冷+氢克劳德循环 | 两相膨胀 | Aspen HYSYS | 260 | 12.7 | Aasadnia等(2019)[ |
四级主动磁制冷 | 无 | Aspen HYSYS | 0.024 | — | Belkadi和Smaili(2018)[ |
六级主动磁制冷 | 无 | ANSYS Fluent | 0 | — | Hamdani等(2020)[ |
表5 2018年以来设计的氢液化流程
预冷方式 | 氢末级制冷方式 | 设计软件 | 液氢产量/t/d-1 | 能耗/kW·h‧kgLH2-1 | 文献 |
---|---|---|---|---|---|
液氮+氢克劳德循环 | 节流 | Aspen Plus | 约4 | 0.0014① | Hammad和Dincer(2018)[ |
液氮+氦JB循环 | 节流 | Aspen HYSYS+MATLAB | 1.7 | 10.25 | 殷靓等(2019)[ |
液氮+氦JB循环 | 节流 | Aspen HYSYS+MATLAB | 1.51 | 7.1329 | Yin和Ju(2020)[ |
液氮+氦JB循环 | 节流 | EcosimPro | 0.31 | — | Li等(2020)[ |
LNG+氮JB循环+氢克劳德循环 | 两相膨胀 | Aspen HYSYS | 300 | 11.05② | Yang等(2019)[ |
LNG+氦JB循环 | 无 | Aspen HYSYS | 0.5 | 17.37② | Chang等(2020)[ |
LNG | 两相膨胀 | Aspen HYSYS | 5 | 9.802② | 曹学文等(2021)[ |
LNG+混合工质JB循环 | 两相膨胀 | Aspen HYSYS | 6.1~10.4 | 6.609② | 王超等(2022)[ |
混合工质克劳德循环+氨-水吸收式制冷+混合工质JB循环 | 两相膨胀 | Aspen HYSYS | 90 | 6.47 | Aasadnia和Mehrpooya(2018)[ |
混合工质克劳德循环+混合工质JB循环 | 两相膨胀 | Aspen HYSYS | 290 | 1.102① | Ansarinasab等(2019)[ |
混合工质克劳德循环+混合工质JB循环 | 两相膨胀 | Aspen HYSYS | 290 | 4.022 | Ghorbani等(2019)[ |
混合工质克劳德循环+混合工质JB循环 | 两相膨胀 | Aspen HYSYS | 300 | 3.368 | Nouri等(2020)[ |
混合工质节流+氢克劳德循环 | 节流 | Aspen HYSYS | 125 | 7.09 | Berstad等(2021)[ |
混合工质节流+混合工质JB循环 | 节流 | Aspen HYSYS+MATLAB | 271.6 | 19.88 | 王国聪等(2021)[ |
混合工质节流+氮JB循环+两级混合工质JB循环 | — | Aspen HYSYS | 288.92 | 5.742 | Zhang和Liu(2021)[ |
混合工质克劳德循环+混合工质JB循环 | 两相膨胀 | Aspen HYSYS+MATLAB | — | 6.981 | 王超等(2021)[ |
氨-水吸收式制冷+混合工质克劳德循环+混合工质JB循环 | 两相膨胀 | Aspen HYSYS | 345.6 | 4.54 | Azizabadi等(2021)[ |
两组氨-水吸收式制冷+氢克劳德循环 | 两相膨胀 | Aspen HYSYS | 260 | 12.7 | Aasadnia等(2019)[ |
四级主动磁制冷 | 无 | Aspen HYSYS | 0.024 | — | Belkadi和Smaili(2018)[ |
六级主动磁制冷 | 无 | ANSYS Fluent | 0 | — | Hamdani等(2020)[ |
技术指标 | 氢克劳德循环 | 氦JB 循环 | 混合工质循环 | 氖JB 循环 |
---|---|---|---|---|
原料气压力/MPa | 3.04 | 3.55 | 3.04 | 5.07 |
制冷循环高压压力/ MPa | 4.05 | 3.04 | 5.07 | 5.07 |
理论最小液化功/kW·h‧kgLH2-1 | 3.96 | 3.96 | 3.96 | 3.96 |
循环能耗/kW·h‧kgLH2-1 | 8.75 | 8.61 | 9.92 | 8.40 |
效率①/% | 45.2 | 46.0 | 39.9 | 47.1 |
表6 WE-NET四种氢液化流程技术指标[50]
技术指标 | 氢克劳德循环 | 氦JB 循环 | 混合工质循环 | 氖JB 循环 |
---|---|---|---|---|
原料气压力/MPa | 3.04 | 3.55 | 3.04 | 5.07 |
制冷循环高压压力/ MPa | 4.05 | 3.04 | 5.07 | 5.07 |
理论最小液化功/kW·h‧kgLH2-1 | 3.96 | 3.96 | 3.96 | 3.96 |
循环能耗/kW·h‧kgLH2-1 | 8.75 | 8.61 | 9.92 | 8.40 |
效率①/% | 45.2 | 46.0 | 39.9 | 47.1 |
流程 | 指标 | 参数 |
---|---|---|
原料气 | 压力/MPa | 0.101 |
温度/K | 300 | |
液氢 | 产量/t·d-1 | 300 |
压力/MPa | 0.106 | |
温度/K | 20.4 | |
仲氢含量/% | ≥98 | |
原料气压缩机 | 压力范围/MPa | 0.106~3.04 |
气体流量/kg‧s-1 | 3.85 | |
效率/% | 80 | |
制冷循环压缩机C3 | 压力范围/MPa | 0.111~0.608 |
气体流量/kg‧s-1 | 0.95 | |
效率/% | 80 | |
制冷循环压缩机C4 | 压力范围/MPa | 0.608~4.05 |
气体流量/kg‧s-1 | 18.49 | |
效率/% | 80 | |
透平膨胀机T1 | 压力范围/MPa | 4.05~1.68 |
气体流量/kg‧s-1 | 18.49 | |
转速/r‧min-1 | 35000 | |
透平膨胀机T2 | 压力范围/MPa | 1.68~0.608 |
气体流量/kg‧s-1 | 17.54 | |
转速/r‧min-1 | 22300 |
表7 WE-NET氢克劳德循环关键参数[50]
流程 | 指标 | 参数 |
---|---|---|
原料气 | 压力/MPa | 0.101 |
温度/K | 300 | |
液氢 | 产量/t·d-1 | 300 |
压力/MPa | 0.106 | |
温度/K | 20.4 | |
仲氢含量/% | ≥98 | |
原料气压缩机 | 压力范围/MPa | 0.106~3.04 |
气体流量/kg‧s-1 | 3.85 | |
效率/% | 80 | |
制冷循环压缩机C3 | 压力范围/MPa | 0.111~0.608 |
气体流量/kg‧s-1 | 0.95 | |
效率/% | 80 | |
制冷循环压缩机C4 | 压力范围/MPa | 0.608~4.05 |
气体流量/kg‧s-1 | 18.49 | |
效率/% | 80 | |
透平膨胀机T1 | 压力范围/MPa | 4.05~1.68 |
气体流量/kg‧s-1 | 18.49 | |
转速/r‧min-1 | 35000 | |
透平膨胀机T2 | 压力范围/MPa | 1.68~0.608 |
气体流量/kg‧s-1 | 17.54 | |
转速/r‧min-1 | 22300 |
循环方式 | 项目 | 数值 | |||||
---|---|---|---|---|---|---|---|
混合工质循环 | 压力范围/MPa | 0.111~0.608 | |||||
气体流量/kg‧s-1 | 0.95 | ||||||
效率/% | 80 | ||||||
组分(摩尔分数)/% | 氮4.8、甲烷33.1、乙烷35.4、丙烷4.5、正丁烷22.2 | ||||||
氖氦JB循环 | 压缩机 | C1 | C2 | C3 | C4 | C5 | C6 |
压力范围/MPa | 5.93~6.44 | 5.38~5.95 | 4.57~5.40 | 3.88~4.59 | 3.88~4.43 | 4.41~5.00 | |
温度范围/K | 298~310.7 | 298~310.2 | 298~323.8 | 298~323.9 | 298~318.1 | 298~317.2 | |
效率/% | 79 | 79 | 80 | 80 | 81 | 80 | |
功率/kW | 112.4 | 137.4 | 227.0 | 227.9 | 265.4 | 254.9 | |
膨胀机 | T1 | T2 | T3 | T4 | T5 | T6 | |
压力范围/MPa | 6.34~4.61 | 4.59~2.99 | 2.97~1.23 | 1.21~0.38 | 4.90~1.67 | 1.67~0.27 | |
温度范围/K | 131.9~119.2 | 120.1~104.6 | 105.9~79.8 | 84.9~58.1 | 68.0~47.9 | 47.9~26.3 | |
效率/% | 81 | 82 | 83 | 85 | 83 | 85 | |
功率/kW | 116.1 | 138.7 | 229.6 | 231.9 | 259.7 | 267.2 |
表8 IDEALHY氢液化流程关键参数[52]
循环方式 | 项目 | 数值 | |||||
---|---|---|---|---|---|---|---|
混合工质循环 | 压力范围/MPa | 0.111~0.608 | |||||
气体流量/kg‧s-1 | 0.95 | ||||||
效率/% | 80 | ||||||
组分(摩尔分数)/% | 氮4.8、甲烷33.1、乙烷35.4、丙烷4.5、正丁烷22.2 | ||||||
氖氦JB循环 | 压缩机 | C1 | C2 | C3 | C4 | C5 | C6 |
压力范围/MPa | 5.93~6.44 | 5.38~5.95 | 4.57~5.40 | 3.88~4.59 | 3.88~4.43 | 4.41~5.00 | |
温度范围/K | 298~310.7 | 298~310.2 | 298~323.8 | 298~323.9 | 298~318.1 | 298~317.2 | |
效率/% | 79 | 79 | 80 | 80 | 81 | 80 | |
功率/kW | 112.4 | 137.4 | 227.0 | 227.9 | 265.4 | 254.9 | |
膨胀机 | T1 | T2 | T3 | T4 | T5 | T6 | |
压力范围/MPa | 6.34~4.61 | 4.59~2.99 | 2.97~1.23 | 1.21~0.38 | 4.90~1.67 | 1.67~0.27 | |
温度范围/K | 131.9~119.2 | 120.1~104.6 | 105.9~79.8 | 84.9~58.1 | 68.0~47.9 | 47.9~26.3 | |
效率/% | 81 | 82 | 83 | 85 | 83 | 85 | |
功率/kW | 116.1 | 138.7 | 229.6 | 231.9 | 259.7 | 267.2 |
项目 | 油轴承 | 气体轴承 | 磁轴承 |
---|---|---|---|
优势 | 周向速度高,允许的轴承力大 | 无油,周向速度高,轴承磨损小 | 无油,允许的轴承力大,轴承磨损小 |
不足 | 供油系统复杂,轴承磨损大 | 允许的轴承力中等 | 周向速度中等 |
表9 低温透平膨胀机轴承技术比较
项目 | 油轴承 | 气体轴承 | 磁轴承 |
---|---|---|---|
优势 | 周向速度高,允许的轴承力大 | 无油,周向速度高,轴承磨损小 | 无油,允许的轴承力大,轴承磨损小 |
不足 | 供油系统复杂,轴承磨损大 | 允许的轴承力中等 | 周向速度中等 |
指标 | 参数 |
---|---|
单个换热器最大尺寸/m×m×m | 8.2×1.5×3.4 |
温度/K | 4~366 |
压力/MPa | <13 |
内部材料 | ASTM 3003/EN AW 3003 |
接管、封头材料 | ASTM 5083/EN AW 5083 ASTM 5454/EN AW 5454 |
表10 林德铝板翅式换热器参数[63]
指标 | 参数 |
---|---|
单个换热器最大尺寸/m×m×m | 8.2×1.5×3.4 |
温度/K | 4~366 |
压力/MPa | <13 |
内部材料 | ASTM 3003/EN AW 3003 |
接管、封头材料 | ASTM 5083/EN AW 5083 ASTM 5454/EN AW 5454 |
1 | 滕欣余, 张国华, 胡辰树, 等. 我国典型城市氢能经济性和低成本氢源探索分析[J]. 化工进展, 2022, 41(12): 6295-6301. |
TENG Xinyu, ZHANG Guohua, HU Chenshu, et al. Analysis on hydrogen energy economy and low cost of hydrogen source in typical cities of China[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6295-6301. | |
2 | 陈伟锋, 尚娟, 邢百汇, 等. 关于天然气管网安全掺氢比10%的商榷[J]. 化工进展, 2022, 41(3): 1487-1493. |
CHEN Weifeng, SHANG Juan, XING Baihui, et al. Discussion on 10% as a safe ratio of hydrogen mixing into natural gas grids[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1487-1493. | |
3 | 贺明, 吕翠, 伍继浩, 等. 低温高压氢储运技术经济性分析[C]//第十五届全国低温工程大会. 上海, 2021. |
HE M, LYU C, WU J H, et al. Technical and economic analysis of cryo-compressed hydrogen storage and transportation[C]//The 15th National Cryogenic Engineering Conference. Shanghai, 2021. | |
4 | 吕翠, 王金阵, 朱伟平, 等. 氢液化技术研究进展及能耗分析[J]. 低温与超导, 2019, 47(7): 11-18. |
Cui LYU, WANG Jinzhen, ZHU Weiping, et al. Research progress and energy consumption analysis of hydrogen liquefaction technology[J]. Cryogenics & Superconductivity, 2019, 47(7): 11-18. | |
5 | 赖耀胜, 李龙. 氢能飞机发展现状分析[J]. 航空动力, 2021(6): 37-40. |
LAI Yaosheng, LI Long. Hydrogen powered aircraft[J]. Aerospace Power, 2021(6): 37-40. | |
6 | RUSSIAMAINNEWS. Russia to begin works on hydrogen aircraft engine[EB/OL]. [2022-04-24]. . |
7 | AASADNIA Majid, MEHRPOOYA Mehdi. Large-scale liquid hydrogen production methods and approaches: A review[J]. Applied Energy, 2018, 212: 57-83. |
8 | Products Air. Air Products’ new world-scale liquid hydrogen plant is onstream at its La Porte, Texas facility[EB/OL]. [2022-04-24]. . |
9 | Products Air. Air Products to build green liquid hydrogen production facility in Arizona[EB/OL]. [2022-04-24]. . |
10 | 中国化工报.韩国化工巨头晓星建全球最大液氢工厂[J]. 乙烯工业, 2020, 32(2): 13. |
China Chemical Industry News. South Korean chemical giant Xiaoxing built the world’s largest liquid hydrogen plant[J]. Ethylene Industry, 2020, 32(2): 13. | |
11 | EUN-JEE P. SK commits $ 16.5 billion to hydrogen investments[EB/OL]. [2022-04-22]. ,be%20used%20to%20power%20Hyundai%20Motor%E2%80%99 s%20Nexo%20SUV. |
12 | Songwut KRASAE-IN, STANG Jacob H, NEKSA Petter. Development of large-scale hydrogen liquefaction processes from 1898 to 2009[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4524-4533. |
13 | DECKER L. Latest global trend in liquid hydrogen production[R]. Brussels: HYPER Closing Seminar, 2019. |
14 | 陈双涛, 周楷淼, 赖天伟, 等. 大规模氢液化方法与装置[J]. 真空与低温, 2020, 26(3): 173-178. |
CHEN Shuangtao, ZHOU Kaimiao, LAI Tianwei, et al. Large-scale hydrogen liquefaction methods and devices[J]. Vacuum and Cryogenics, 2020, 26(3): 173-178. | |
15 | ELGOWAINY A, FRANK E. Opportunities and challenges of liquid hydrogen supply chain[R]. Liquid Hydrogen Technologies Workshop, 2022. |
16 | Fives. Fives enters strategic collaboration with Plug Power and Atlas Copco Gas and Process to expand offerings for global hydrogen liquefaction market[EB/OL]. [2022-04-24]. . |
17 | 北京中科富海低温科技有限公司. 国内首套氢液化装备实现出口[EB/OL]. [2022-04-19]. . |
FULLCRYO. The first set of domestic hydrogen liquefaction equipment has been exported[EB/OL]. [2022-04-19]. . | |
18 | 陈晓露, 刘小敏, 王娟, 等. 液氢储运技术及标准化[J]. 化工进展, 2021, 40(9): 4806-4814. |
CHEN Xiaolu, LIU Xiaomin, WANG Juan, et al. Technology and standardization of liquid hydrogen storage and transportation[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4806-4814. | |
19 | BRACHA M, LORENZ G, PATZELT A, et al. Large-scale hydrogen liquefaction in Germany[J]. International Journal of Hydrogen Energy, 1994, 19(1): 53-59. |
20 | WANNER M, GROSS R, OTTO W, et al. Concept and operation of a 4.4 ton/d liquid hydrogen facility[M]//KITTEL P. Advances in Cryogenic Engineering. Boston: Springer, 1994: 1217-1222. |
21 | BISCHOFF S, DECKER L. First operating results of a dynamic gas bearing turbine in an industrial hydrogen liquefier[J]. AIP Conference Proceedings, 2010, 1218(1): 887-894. |
22 | BERSTAD David O, STANG Jacob H, Petter NEKSÅ. Large-scale hydrogen liquefier utilising mixed-refrigerant pre-cooling[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4512-4523. |
23 | DRNEVICH R. Hydrogen delivery: liquefaction & compression[R]. Tonawanda: Hydrogen Delivery Workshop, 2003. |
24 | OHLIG K, Hydrogen DECKER L., 4. Liquefaction[M]//Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH Verlag GmbH and Co. kGaA., 2013:1-6. |
25 | HAMMAD Anwar, DINCER Ibrahim. Analysis and assessment of an advanced hydrogen liquefaction system[J]. International Journal of Hydrogen Energy, 2018, 43(2): 1139-1151. |
26 | 殷靓, 巨永林, 王刚. 1, 000 L/h氢液化装置工艺流程分析及优化[J]. 制冷技术, 2019, 39(1): 39-44. |
YIN Liang, JU Yonglin, WANG Gang. Process analysis and optimization of 1, 000 L/h hydrogen liquefaction system[J]. Chinese Journal of Refrigeration Technology, 2019, 39(1): 39-44. | |
27 | YIN Liang, JU Yonglin. Process optimization and analysis of a novel hydrogen liquefaction cycle[J]. International Journal of Refrigeration, 2020, 110: 219-230. |
28 | LI J, LIU L Q, XIONG L Y, et al. Dynamic simulations of medium-sized hydrogen liquefiers based on EcosimPro simulation software[J]. IOP Conference Series: Materials Science and Engineering, 2020, 755(1): 012070. |
29 | YANG Jae-Hyeon, YOON Younggak, Mincheol RYU, et al. Integrated hydrogen liquefaction process with steam methane reforming by using liquefied natural gas cooling system[J]. Applied Energy, 2019, 255: 113840. |
30 | CHANG Ho-Myung, KIM Bo Hyun, CHOI Byungil. Hydrogen liquefaction process with Brayton refrigeration cycle to utilize the cold energy of LNG[J]. Cryogenics, 2020, 108: 103093. |
31 | 曹学文, 杨健, 边江, 等. 新型双压Linde-Hampson氢液化工艺设计与分析[J]. 化工进展, 2021, 40(12): 6663-6669. |
CAO Xuewen, YANG Jian, BIAN Jiang, et al. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669. | |
32 | 王超, 孙恒, 李兆慈, 等. LNG冷能发电制氢及液化的综合能源系统研究[J]. 石油与天然气化工, 2022, 51(2): 46-52. |
WANG Chao, SUN Heng, LI Zhaoci, et al. Research on integrated energy system for hydrogen production and liquefaction from LNG cold energy generation[J]. Chemical Engineering of Oil & Gas, 2022, 51(2): 46-52. | |
33 | AASADNIA Majid, MEHRPOOYA Mehdi. Conceptual design and analysis of a novel process for hydrogen liquefaction assisted by absorption precooling system[J]. Journal of Cleaner Production, 2018, 205: 565-588. |
34 | ANSARINASAB Hojat, MEHRPOOYA Mehdi, SADEGHZADEH Milad. An exergy-based investigation on hydrogen liquefaction plant-exergy, exergoeconomic, and exergoenvironmental analyses[J]. Journal of Cleaner Production, 2019, 210: 530-541. |
35 | GHORBANI Bahram, MEHRPOOYA Mehdi, AASADNIA Majid, et al. Hydrogen liquefaction process using solar energy and organic Rankine cycle power system[J]. Journal of Cleaner Production, 2019, 235: 1465-1482. |
36 | NOURI Milad, MIANSARI Morteza, GHORBANI Bahram. Exergy and economic analyses of a novel hybrid structure for simultaneous production of liquid hydrogen and carbon dioxide using photovoltaic and electrolyzer systems[J]. Journal of Cleaner Production, 2020, 259: 120862. |
37 | BERSTAD David, SKAUGEN Geir, Øivind WILHELMSEN. Dissecting the exergy balance of a hydrogen liquefier: Analysis of a scaled-up Claude hydrogen liquefier with mixed refrigerant pre-cooling[J]. International Journal of Hydrogen Energy, 2021, 46(11): 8014-8029. |
38 | 王国聪, 徐则林, 多志丽, 等. 混合制冷剂氢气液化工艺优化[J]. 东北电力大学学报, 2021, 41(6): 61-70. |
WANG Guocong, XU Zelin, Zhili DUO, et al. Optimization of mixed refrigerant hydrogen liquefaction process[J]. Journal of Northeast Electric Power University, 2021, 41(6): 61-70. | |
39 | ZHANG Shengan, LIU Guilian. Design and performance analysis of a hydrogen liquefaction process[J]. Clean Technologies and Environmental Policy, 2022, 24(1): 51-65. |
40 | 王超, 孙恒, 耿金亮, 等. 基于PSO算法的双混合制冷剂氢液化流程优化[J]. 低温与超导, 2021, 49(11): 96-102. |
WANG Chao, SUN Heng, GENG Jinliang, et al. Optimization of double mixed refrigerants hydrogen liquefaction process based on PSO algorithm[J]. Cryogenics & Superconductivity, 2021, 49(11): 96-102. | |
41 | REZAIE AZIZABADI Hamed, ZIABASHARHAGH Masoud, MAFI Mostafa. Introducing a proper hydrogen liquefaction concept for using wasted heat of thermal power plants-case study: Parand gas power plant[J]. Chinese Journal of Chemical Engineering, 2021, 40: 187-196. |
42 | AASADNIA Majid, MEHRPOOYA Mehdi, ANSARINASAB Hojat. A 3E evaluation on the interaction between environmental impacts and costs in a hydrogen liquefier combined with absorption refrigeration systems[J]. Applied Thermal Engineering, 2019, 159: 113798. |
43 | BELKADI Mustapha, SMAILI Arezki. Thermal analysis of a multistage active magnetic regenerator cycle for hydrogen liquefaction[J]. International Journal of Hydrogen Energy, 2018, 43(6): 3499-3511. |
44 | HAMDANI Khathir, SMAILI Arezki, SARI Osmann. Numerical simulation of hydrogen active magnetic regenerative liquefier[J]. Renewable Energy, 2020, 158: 487-499. |
45 | OHIRA K. The world’s first hydrogen liquefaction by magnetic refrigeration[EB/OL]. [2022-05-07]. . |
46 | YAMAMOTO Takafumi D, Takeya Hiroyuki, SAITO Akiko T, et al. Gas-atomized particles of giant magnetocaloric compound HoB2 for magnetic hydrogen liquefiers[J]. Applied Physics A, 2021, 127(4): 301. |
47 | TANG X, SEPEHRI-AMIN H, TERADA N, et al. Magnetic refrigeration material operating at a full temperature range required for hydrogen liquefaction[J]. Nature Communications, 2022, 13(1): 1-8. |
48 | WE-NET. Subtask5: Development of hydrogen transportation and storage technologies[EB/OL]. [2022-04-25]. . |
49 | MATSUDA H, NAGAMI M. Study of large hydrogen liquefaction process[R]. 1997. |
50 | OHIRA K. A summary of liquid hydrogen and cryogenic technologies in Japan’s WE‐NET project[J]. AIP Conference Proceedings, 2004, 710(1): 27-34. |
51 | QUACK H, SEEMANN I, KLAUS M, et al. Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen[J]. AIP Conference Proceedings, 2014, 1573(1): 237-244. |
52 | BERSTAD D, WALNUM H T, NEKSÅ P, et al. Schedule for demonstration plant including options for location[R]. 2013. |
53 | LIU Qing, WANG Li, LI Yuanyuan, et al. Single-structured hybrid gas-magnetic bearing and its rotordynamic performance[J]. Nonlinear Dynamics, 2021, 104(1): 333-348. |
54 | Liquide Air. HYLIAL hydrogen liquefiers[EB/OL]. [2022-05-07]. . |
55 | OHLIG Klaus, BISCHOFF Stefan. Dynamic gas bearing turbine technology in hydrogen plants[J]. AIP Conference Proceedings, 2012, 1434(1): 814-819. |
56 | 刘立强. 大型氦低温制冷机研制进展[J]. 真空与低温, 2020, 26(6): 471-475. |
LIU Liqiang. Development of large helium cryo-plants[J]. Vacuum and Cryogenics, 2020, 26(6): 471-475. | |
57 | 李海辉, 蔡国成, 陈克平. 氢气增压透平膨胀机的设计制造[J]. 深冷技术, 2016(3): 45-49. |
LI Haihui, CAI Guocheng, CHEN Keping. Design and manufacture of Hangyang hydrogen boost turbine expander[J]. Cryogenic Technology, 2016(3): 45-49. | |
58 | 李海辉. 氢气膨胀机的开发及应用[J]. 深冷技术, 2017(3): 24-29. |
LI Haihui. Development and application of hydrogen expander[J]. Cryogenic Technology, 2017(3): 24-29. | |
59 | CARDELLA U F. Large-scale hydrogen liquefaction under the aspect of economic viability[Z]. 2018. |
60 | 朱志刚, 张启勇. “人造太阳”中的“冰”——EAST低温系统[J]. 自然杂志, 2018, 40(2): 108-112. |
ZHU Zhigang, ZHANG Qiyong. “Ice in the artificial Sun”—EAST cryogenic system[J]. Chinese Journal of Nature, 2018, 40(2): 108-112. | |
61 | 金晶晶, 胡忠军, 王炳明, 等. 氦气喷油式螺杆压缩机关键技术初步解决方案[J]. 低温工程, 2016(6): 29-35. |
JIN Jingjing, HU Zhongjun, WANG Bingming, et al. Key technology solutions of helium oil-injected screw compressors[J]. Cryogenics, 2016(6): 29-35. | |
62 | 胡忠军, 王炳明, 杨伟茂, 等. 大型氦气压缩机技术特点和发展趋势[J]. 真空与低温, 2020, 26(4): 270-277. |
HU Zhongjun, WANG Bingming, YANG Weimao, et al. Technical characteristics and development trend of large helium compressor[J]. Vacuum and Cryogenics, 2020, 26(4): 270-277. | |
63 | LINDE. Aluminium plate-fin heat exchangers[EB/OL]. [2022-05-07]. . |
64 | 章晓龙. 板翅式换热器芯体脱焊的工艺研究[J]. 低温与特气, 2022, 40(2): 28-31. |
ZHANG Xiaolong. Study on the process of core desoldering of plate-fin heat exchanger[J]. Low Temperature and Specialty Gases, 2022, 40(2): 28-31. | |
65 | ALPEMA. Aims and objectives[EB/OL]. [2022-05-09]. . |
66 | 毛文俊, 朱平, 柳红霞. 一种多通道高压板翅式换热器通道排列算法[J]. 工业仪表与自动化装置, 2021(6): 125-129. |
MAO Wenjun, ZHU Ping, LIU Hongxia. An optimal arrangement algorithm for of plate-fin heat exchanger channels[J]. Industrial Instrumentation & Automation, 2021(6): 125-129. | |
67 | 张帅, 欧阳峥嵘. 基于遗传算法的板翅式换热器优化策略[J]. 工程热物理学报, 2021, 42(11): 2919-2925. |
ZHANG Shuai, OUYANG Zhengrong. Optimization strategy of plate-fin heat exchanger based on genetic algorithm[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2919-2925. | |
68 | WANG Zhe, Bengt SUNDÉN, LI Yanzhong. A novel optimization framework for designing multi-stream compact heat exchangers and associated network[J]. Applied Thermal Engineering, 2017, 116: 110-125. |
69 | 刁希文, 滕越, 赵骞, 等. 正仲氢催化转化性能低温测试装置设计[J]. 低温与超导, 2022, 50(2): 84-88. |
DIAO Xiwen, TENG Yue, ZHAO Qian, et al. Design of cryogenic test device for catalytic conversion performance of ortho-parahydrogen[J]. Cryogenics & Superconductivity, 2022, 50(2): 84-88. | |
70 | SCHMAUCH George E, SINGLETON Alan H. Technical aspects of ortho-parahydrogen conversion[J]. Industrial & Engineering Chemistry, 1964, 56(5): 20-31. |
71 | SULLIVAN N S, ZHOU D, EDWARDS C M. Precise and efficient in situ ortho—para-hydrogen converter[J]. Cryogenics, 1990, 30(8): 734-735. |
72 | PARK Jinsoo, Hyunmuk LIM, RHEE Gwang Hoon, et al. Catalyst filled heat exchanger for hydrogen liquefaction[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121007. |
73 | 徐攀, 文键, 厉彦忠, 等. 氢正仲转化耦合流动换热板翅式换热器研究[J]. 西安交通大学学报, 2021, 55(12): 16-24. |
XU Pan, WEN Jian, LI Yanzhong, et al. Study on hydrogen ortho-para conversion coupled with flow and heat transfer of the plate fin heat exchanger[J]. Journal of Xi’an Jiaotong University, 2021, 55(12): 16-24. | |
74 | DONAUBAUER Philipp J, CARDELLA Umberto, DECKER Lutz, et al. Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion during liquefaction[J]. Chemical Engineering & Technology, 2019, 42(3): 669-679. |
75 | 刘蕙芳, 沈惠华. 仲氢的制备与储存的研究[J]. 低温与特气, 1988, 6(2): 17-20. |
LIU Huifang, SHEN Huihua. Study on preparation and storage of secondary hydrogen[J]. Low Temperature and Specialty Gases, 1988, 6(2): 17-20. | |
76 | 杨晓阳, 杨昌乐. 正仲氢转化催化剂性能研究[J]. 化学推进剂与高分子材料, 2018, 16(3): 79-82. |
YANG Xiaoyang, YANG Changle. Study on performance of orthohydrogen-parahydrogen converting catalyst[J]. Chemical Propellants & Polymeric Materials, 2018, 16(3): 79-82. | |
77 | 陆小飞, 邱立龙, 张启勇, 等. 大型氦制冷机过程模拟技术应用研究综述[J]. 工程热物理学报, 2021, 42(5): 1091-1099. |
LU Xiaofei, QIU Lilong, ZHANG Qiyong, et al. Review of application research for process simulation technologies of large-scale helium refrigerators[J]. Journal of Engineering Thermophysics, 2021, 42(5): 1091-1099. | |
78 | BRADU B, GAYET P, NICULESCU S I. Dynamic simulation of a 1.8K refrigeration unit for the LHC[C]//ICEC 22-ICMC 2008, 2008. |
79 | LYU C, QIU T N, WU J H, et al. Modeling and dynamic simulation of a large scale helium refrigerator[J]. Physics Procedia, 2015, 67: 135-140. |
80 | LU Xiaofei, FU Peng, ZHUANG Ming, et al. Process modeling and dynamic simulation for EAST helium refrigerator[J]. Plasma Science and Technology, 2016, 18(6): 693-698. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[3] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[4] | 闫青, 张云峰, 赵敏伟, 宋宁, 高辉, 周静. LNG接收站大跨距补偿平台的可行性分析[J]. 化工进展, 2023, 42(S1): 158-165. |
[5] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[6] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[7] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[10] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[11] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
[12] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[13] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[14] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[15] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |