化工进展 ›› 2022, Vol. 41 ›› Issue (9): 5085-5093.DOI: 10.16085/j.issn.1000-6613.2021-2444
郑瑾1,2(), 韩瑞瑞1,2,3(), 李丹丹1,2, 王馨妤1,2,4, 高春阳1,2, 杜显元1,2(), 张晓飞1,2, 邹德勋3
收稿日期:
2021-11-29
修回日期:
2022-03-16
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
杜显元
作者简介:
郑瑾(1985—),女,博士,高级工程师,研究方向为土壤修复、环境生物技术。E-mail:zhengjin2810@163.com基金资助:
ZHENG Jin1,2(), HAN Ruirui1,2,3(), LI Dandan1,2, WANG Xinyu1,2,4, GAO Chunyang1,2, DU Xianyuan1,2(), ZHANG XiaoFei1,2, ZOU Dexun3
Received:
2021-11-29
Revised:
2022-03-16
Online:
2022-09-25
Published:
2022-09-27
Contact:
DU Xianyuan
摘要:
为揭示化学氧化法与微生物法联合修复技术在石油污染土壤修复中应用可行性,本研究采用正交实验设计和联合修复实验,以过氧化尿素(UHP)为氧化剂,Fe2+为激活剂,研究了UHP去除石油烃的条件及其与微生物联合修复土壤石油污染物的效果。结果表明,利用UHP氧化土壤中石油烃的最佳条件为:UHP添加质量分数4%、UHP∶Fe2+ (摩尔比)=30∶1及水∶土=3∶2。过氧化尿素氧化法与微生物法联合作用下,石油烃降解率比单一微生物修复法和过氧化尿素氧化修复法分别提高了35.45%~47.26%和3.35%~15.16%。过氧化尿素与微生物的修复顺序优化结果显示,过氧化尿素预氧化联合微生物修复比先进行微生物修复再进行过氧化尿素氧化对土壤中石油烃的降解率提高了11.81%。研究结果证明过氧化尿素联合微生物修复对降解土壤中石油烃污染的可行性。
中图分类号:
郑瑾, 韩瑞瑞, 李丹丹, 王馨妤, 高春阳, 杜显元, 张晓飞, 邹德勋. 过氧化尿素与微生物联合修复石油污染土壤[J]. 化工进展, 2022, 41(9): 5085-5093.
ZHENG Jin, HAN Ruirui, LI Dandan, WANG Xinyu, GAO Chunyang, DU Xianyuan, ZHANG XiaoFei, ZOU Dexun. Joint remediation of petroleum contaminated soil by urea peroxide with microorganism[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5085-5093.
指标名称 | 值 |
---|---|
石油烃/mg·kg-1 | 44191 |
含水率/% | 1.54 |
pH | 8.17 |
有机碳/g·kg-1 | 71.19 |
(总氮/总磷)/g·kg-1 | 1.19/0.57 |
氨氮/mg·kg-1 | 2.72 |
饱和烃/% | 56.12 |
芳香烃/% | 23.60 |
胶质/% | 20.28 |
表1 土壤理化性质
指标名称 | 值 |
---|---|
石油烃/mg·kg-1 | 44191 |
含水率/% | 1.54 |
pH | 8.17 |
有机碳/g·kg-1 | 71.19 |
(总氮/总磷)/g·kg-1 | 1.19/0.57 |
氨氮/mg·kg-1 | 2.72 |
饱和烃/% | 56.12 |
芳香烃/% | 23.60 |
胶质/% | 20.28 |
水平 | UHP质量分数(A)/% | UHP∶Fe2+ (E) | 水∶土(C) |
---|---|---|---|
1 | 1 | 10∶1 | 1∶2 |
2 | 2 | 30∶1 | 1∶1 |
3 | 4 | 50∶1 | 3∶2 |
表2 试验因素与水平
水平 | UHP质量分数(A)/% | UHP∶Fe2+ (E) | 水∶土(C) |
---|---|---|---|
1 | 1 | 10∶1 | 1∶2 |
2 | 2 | 30∶1 | 1∶1 |
3 | 4 | 50∶1 | 3∶2 |
实验序号 | 水平组合 | 实验条件 | ||
---|---|---|---|---|
UHP质量分数(A)/% | UHP∶Fe 2+(E) | 水∶土(C) | ||
1 | A1E1C1 | 1 | 10∶1 | 1∶2 |
2 | A1E2C2 | 1 | 30∶1 | 1∶1 |
3 | A1E3C3 | 1 | 50∶1 | 3∶2 |
4 | A2E1C2 | 2 | 10∶1 | 1∶1 |
5 | A2E2C3 | 2 | 30∶1 | 3∶2 |
6 | A2E3C1 | 2 | 50∶1 | 1∶2 |
7 | A3E1C3 | 4 | 10∶1 | 3∶2 |
8 | A3E2C1 | 4 | 30∶1 | 1∶2 |
9 | A3E3C2 | 4 | 50∶1 | 1∶1 |
表3 正交实验设计结果表
实验序号 | 水平组合 | 实验条件 | ||
---|---|---|---|---|
UHP质量分数(A)/% | UHP∶Fe 2+(E) | 水∶土(C) | ||
1 | A1E1C1 | 1 | 10∶1 | 1∶2 |
2 | A1E2C2 | 1 | 30∶1 | 1∶1 |
3 | A1E3C3 | 1 | 50∶1 | 3∶2 |
4 | A2E1C2 | 2 | 10∶1 | 1∶1 |
5 | A2E2C3 | 2 | 30∶1 | 3∶2 |
6 | A2E3C1 | 2 | 50∶1 | 1∶2 |
7 | A3E1C3 | 4 | 10∶1 | 3∶2 |
8 | A3E2C1 | 4 | 30∶1 | 1∶2 |
9 | A3E3C2 | 4 | 50∶1 | 1∶1 |
处理组 | 实验方法 |
---|---|
CK | 菌剂及氧化剂无添加 |
B | 10% 的菌剂 |
UF | UHP(4%,质量分数)、UHP∶Fe 2+ (摩尔比)=30∶1 |
UF+B | UF为UHP(4%,质量分数)、UHP∶Fe 2+ (摩尔比)= 30∶1;B为10%的菌剂 |
B+UF | B为10%的菌剂;UF为UHP(4%,质量分数)、 UHP∶Fe 2+ (摩尔比)=30∶1 |
表4 过氧化尿素联合微生物修复实验条件及实验设计
处理组 | 实验方法 |
---|---|
CK | 菌剂及氧化剂无添加 |
B | 10% 的菌剂 |
UF | UHP(4%,质量分数)、UHP∶Fe 2+ (摩尔比)=30∶1 |
UF+B | UF为UHP(4%,质量分数)、UHP∶Fe 2+ (摩尔比)= 30∶1;B为10%的菌剂 |
B+UF | B为10%的菌剂;UF为UHP(4%,质量分数)、 UHP∶Fe 2+ (摩尔比)=30∶1 |
实验序号 | 实验条件 | 石油 降解率/% | ||
---|---|---|---|---|
UHP质量分数(A) | UHP∶Fe 2+ (E) | 水∶土(C) | ||
1 | 1% | 10∶1 | 1∶2 | 27.85 |
2 | 1% | 30∶1 | 1∶1 | 31.66 |
3 | 1% | 50∶1 | 3∶2 | 29.39 |
4 | 2% | 10∶1 | 1∶1 | 33.58 |
5 | 2% | 30∶1 | 3∶2 | 34.34 |
6 | 2% | 50∶1 | 1∶2 | 29.39 |
7 | 4% | 10∶1 | 3∶2 | 38.53 |
8 | 4% | 30∶1 | 1∶2 | 40.81 |
9 | 4% | 50∶1 | 1∶1 | 34.34 |
k1 | 87.98 | 99.50 | 97.39 | |
k2 | 97.06 | 106.25 | 99.21 | |
k3 | 112.90 | 92.18 | 101.35 | |
k1 | 29.33 | 33.17 | 32.46 | |
k2 | 32.35 | 35.42 | 33.07 | |
k3 | 37.63 | 30.73 | 33.78 | |
R | 8.31 | 4.69 | 1.32 |
表5 石油降解率直观分析表
实验序号 | 实验条件 | 石油 降解率/% | ||
---|---|---|---|---|
UHP质量分数(A) | UHP∶Fe 2+ (E) | 水∶土(C) | ||
1 | 1% | 10∶1 | 1∶2 | 27.85 |
2 | 1% | 30∶1 | 1∶1 | 31.66 |
3 | 1% | 50∶1 | 3∶2 | 29.39 |
4 | 2% | 10∶1 | 1∶1 | 33.58 |
5 | 2% | 30∶1 | 3∶2 | 34.34 |
6 | 2% | 50∶1 | 1∶2 | 29.39 |
7 | 4% | 10∶1 | 3∶2 | 38.53 |
8 | 4% | 30∶1 | 1∶2 | 40.81 |
9 | 4% | 50∶1 | 1∶1 | 34.34 |
k1 | 87.98 | 99.50 | 97.39 | |
k2 | 97.06 | 106.25 | 99.21 | |
k3 | 112.90 | 92.18 | 101.35 | |
k1 | 29.33 | 33.17 | 32.46 | |
k2 | 32.35 | 35.42 | 33.07 | |
k3 | 37.63 | 30.73 | 33.78 | |
R | 8.31 | 4.69 | 1.32 |
组别 | Ace | Chao | Shannon | Simpson | Coverage |
---|---|---|---|---|---|
CK | 1028 | 1038 | 4.95 | 0.018 | 0.997 |
UF | 903 | 876 | 3.85 | 0.073 | 0.993 |
B | 839 | 826 | 3.48 | 0.110 | 0.996 |
UF+B | 825 | 844 | 4.11 | 0.041 | 0.997 |
B+UF | 961 | 828 | 3.72 | 0.051 | 0.996 |
表6 土壤样品微生物群落多样性指数
组别 | Ace | Chao | Shannon | Simpson | Coverage |
---|---|---|---|---|---|
CK | 1028 | 1038 | 4.95 | 0.018 | 0.997 |
UF | 903 | 876 | 3.85 | 0.073 | 0.993 |
B | 839 | 826 | 3.48 | 0.110 | 0.996 |
UF+B | 825 | 844 | 4.11 | 0.041 | 0.997 |
B+UF | 961 | 828 | 3.72 | 0.051 | 0.996 |
1 | LI Lei, SHEN Xinqiang, JIANG Mei. Characteristics of total petroleum hydrocarbon contamination in sediments in the Yangtze Estuary and adjacent sea areas[J]. Continental Shelf Research, 2019, 175: 110-115. |
2 | ZHANG Guichi, WANG Jian, ZHAO Hui, et al. PAH degradation and gene abundance in soils and vegetables inoculated with PAH-degrading endophytic bacteria[J]. Applied Soil Ecology, 2021, 168: 104193. |
3 | 肖元松, 彭福田, 束怀瑞, 等. 过氧化尿素对桃幼树淹水胁迫的缓解效果研究[J]. 植物营养与肥料学报, 2016, 22(2): 502-510. |
XIAO Yuansong, PENG Futian, SHU Huairui, et al. Alleviation of urea peroxide to waterlogging damage in young peach trees[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 502-510. | |
4 | 何红振, 李韶峰, 于文杰. 过氧化尿素的合成及其应用研究进展[J]. 化学推进剂与高分子材料, 2016, 14(4): 19-31, 43. |
HE Hongzhen, LI Shaofeng, YU Wenjie. Synthesis of urea peroxide and research progress of its application[J]. Chemical Propellants & Polymeric Materials, 2016, 14(4): 19-31, 43. | |
5 | 秦娇龙. 生物炭活化过氧化尿素对土壤熏蒸剂的吸附降解及其大气散发的控制[D]. 上海: 上海交通大学, 2019. |
QIN Jiaolong. Activation of urea-hydrogen peroxide by biochar to adsorb and degradate soil fumigant and reduce its soil-air emissions[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
6 | LI Dan, ZHAO Yaqin, WANG Liping, et al. Remediation of phenanthrene contaminated soil through persulfate oxidation coupled microbial fortification[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106098. |
7 | XU Shen, WANG Wei, ZHU Lizhong. Enhanced microbial degradation of benzo[a]pyrene by chemical oxidation[J]. Science of the Total Environment, 2019, 653: 1293-1300. |
8 | XU Jinlan, DU Juan, LI Lu, et al. Fast-stimulating bioremediation of macro crude oil in soils using matching Fenton pre-oxidation[J]. Chemosphere, 2020, 252: 126622. |
9 | 高春阳. Fenton氧化联合微生物降解原油污染土壤的研究[D]. 北京: 中国地质大学(北京), 2019. |
GAO Chunyang. Fenton pre-oxidation followed by microbial degradation to remove crude oil from contaminated soil[D]. Beijing: China University of Geosciences, 2019. | |
10 | 罗玉虎, 卢楠. 芬顿法修复石油污染土壤使用条件优化的研究[J]. 土地开发工程研究, 2019, 4(4): 33-37. |
LUO Yuhu, LU Nan. Optimization of soil use conditions using Fenton method for repairing oil-contaminated soil[J]. Land Development and Engineering Research, 2019, 4(4): 33-37. | |
11 | 朱瑞利. 两种氧化体系联合生物刺激修复总石油烃污染土壤[J]. 化工环保, 2021, 41(6): 750-754. |
ZHU Ruili. Remediation of total petroleum hydrocarbon contaminated soil using two different oxidation systems combined with biostimulation[J]. Environmental Protection of Chemical Industry, 2021, 41(6): 750-754. | |
12 | 张碧波, 陈剑, 冉启洋, 等. 柠檬酸改性芬顿对土壤中石油烃的去除效果[J]. 湖南农业科学, 2019(12): 38-41. |
ZHANG Bibo, CHEN Jian, RAN Qiyang, et al. Practical application of citric acid modified Fenton to remove petroleum hydrocarbons from soil[J]. Hunan Agricultural Sciences, 2019(12): 38-41. | |
13 | WANG Hongqi, HUA Fei, ZHAO Yicun, et al. Immobilization of pseudomonas sp. DG17 onto sodium alginate-attapulgite-calcium carbonate[J]. Biotechnology & Biotechnological Equipment, 2014, 28(5): 834-842. |
14 | 郑瑾, 王馨妤, 李杰, 等. 腐植酸改性生物质电厂灰固定化微生物修复石油烃污染土壤[J]. 环境工程, 2020, 38(8): 34-40. |
ZHENG Jin, WANG Xinyu, LI Jie, et al. Bioremediation of crude oil in contaminated soil by microorganisms immobilized with humic acid-modified biofuel ash[J]. Environmental Engineering, 2020, 38(8): 34-40. | |
15 | 张雪苍, 周国磊, 傅科涵, 等. Soleris检测技术在焙烤食品微生物检测中的应用研究[J]. 食品科技, 2020, 45(4): 321-326. |
ZHANG Xuecang, ZHOU Guolei, FU Kehan, et al. Application of soleris system in the detection of microorganism in baked food[J]. Food Science and Technology, 2020, 45(4): 321-326. | |
16 | HU Weigang, RAN Jinzhi, DONG Longwei, et al. Aridity-driven shift in biodiversity-soil multifunctionality relationships[J]. Nature Communications, 2021, 12(1): 5350. |
17 | WANG Yu, GAO Congyu, ZHANG Yizhen, et al. Bimetal-organic framework derived CoFe/NC porous hybrid nanorods as high-performance persulfate activators for bisphenol a degradation[J]. Chemical Engineering Journal, 2021, 421: 127800. |
18 | TANG Xianjin, HASHMI Muhammad Zaffar, ZENG Biao, et al. Application of iron-activated persulfate oxidation for the degradation of PCBs in soil[J]. Chemical Engineering Journal, 2015, 279: 673-680. |
19 | WANG Qing, WANG Beibei, MA Yuan, et al. Enhanced superoxide radical production for ofloxacin removal via persulfate activation with Cu-Fe oxide[J]. Chemical Engineering Journal, 2018, 354: 473-480. |
20 | ABENA Marie Thérèse Bidja, LI Tongtong, SHAH Muhammad Naeem, et al. Biodegradation of total petroleum hydrocarbons (TPH) in highly contaminated soils by natural attenuation and bioaugmentation[J]. Chemosphere, 2019, 234: 864-874. |
21 | 韩旭, 李广云, 尹宁宁, 等. Fenton氧化-微生物法降解土壤中石油烃[J]. 化工环保, 2017, 37(2): 237-242. |
HAN Xu, LI Guangyun, YIN Ningning, et al. Degradation of petroleum hydrocarbons in soil by Fenton oxidation-microbial method[J]. Environmental Protection of Chemical Industry, 2017, 37(2): 237-242. | |
22 | 汪林, 蒲思淇, 王明新, 等. 过碳酸钠修复石油污染土壤及其环境效应[J]. 化工进展, 2022, 41(4): 2171-2179. |
WANG lin, PU Siqi, WANG Mingxin, et al. Remediation of petroleum-contaminated soil by sodium percarbonate and its environmental effects[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2171-2179. | |
23 | 刘其友, 李琳, 张云波, 等. Fenton氧化技术处理稠油污染土壤[J]. 环境工程学报, 2013, 7(4): 1563-1567. |
LIU Qiyou, LI Lin, ZHANG Yunbo, et al. Heavy oil-contaminated soils remediation by Fenton oxidation[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1563-1567. | |
24 | FRANKENBERGER W T Jr. Factors affecting the fate of urea peroxide added to soil[J]. Bulletin of Environmental Contamination and Toxicology, 1997, 59(1): 50-57. |
25 | 高春阳, 韩占涛, 陈昌照, 等. 过氧化氢、过碳酸钠活化过硫酸钠氧化-微生物降解联用技术修复原油污染土壤[J]. 化工环保, 2019, 39(1): 71-76. |
GAO Chunyang, HAN Zhantao, CHEN Changzhao, et al. Remediation of crude oil contaminated soil by H2O2 and Na2CO3·1.5H2O2 activated Na2S2O8 oxidation-microbial degradation combination process[J]. Environmental Protection of Chemical Industry, 2019, 39(1): 71-76. | |
26 | 张博凡, 徐文斐, 王加华, 等. 菌糠炭与微生物协同吸附-降解石油烃类污染物[J]. 石油学报(石油加工), 2019, 35(4): 736-743. |
ZHANG Bofan, XU Wenfei, WANG Jiahua, et al. Adsorption and degradation of petroleum hydrocarbon with biochars and microorganisms[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(4): 736-743. | |
27 | XU Jinlan, XIN Lei, HUANG Tinglin, et al. Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation[J]. Journal of Environmental Sciences, 2011, 23(11): 1873-1879. |
28 | 苏荣国, 牟伯中, 王修林, 等. 微生物对石油烃的降解机理及影响因素[J]. 化工环保, 2001, 21(4): 205-208. |
SU Rongguo, MU Bozhong, WANG Xiulin, et al. Biodegradation mechanism and affecting factors of petroleum hydrocarbons[J]. Environmental Protection of Chemical Industry, 2001, 21(4): 205-208. | |
29 | ABTAHI Hamid, PARHAMFAR Milad, SAEEDI Reza, et al. Effect of competition between petroleum-degrading bacteria and indigenous compost microorganisms on the efficiency of petroleum sludge bioremediation: field application of mineral-based culture in the composting process[J]. Journal of Environmental Management, 2020, 258: 110013. |
30 | 宋雪英, 宋玉芳, 孙铁珩, 等. 石油污染土壤生物修复中外源微生物的影响[J]. 环境科学学报, 2007, 27(7): 1168-1173. |
SONG Xueying, SONG Yufang, SUN Tieheng, et al. Limited effect of introduced microbial inoculants in the bioremediation of petroleum-contaminated soils[J]. Acta Scientiae Circumstantiae, 2007, 27(7): 1168-1173. | |
31 | GONG Xiaobao. Remediation of weathered petroleum oil-contaminated soil using a combination of biostimulation and modified Fenton oxidation[J]. International Biodeterioration & Biodegradation, 2012, 70: 89-95. |
32 | LU Mang, ZHANG Zhongzhi, QIAO Wei, et al. Remediation of petroleum-contaminated soil after composting by sequential treatment with Fenton-like oxidation and biodegradation[J]. Bioresource Technology, 2010, 101(7): 2106-2113. |
33 | 赵淑凤, 刘慧, 赵磊, 等. 不同铁、氮转化功能微生物对Fe(II)化学氧化的响应[J]. 地球科学, 2021, 46(4): 1481-1489. |
ZHAO Shufeng, LIU Hui, ZHAO Lei, et al. Responses of different iron and nitrogen transformation functional microorganisms to Fe(Ⅱ) chemical oxidation[J]. Earth Science, 2021, 46(4): 1481-1489. | |
34 | WANG Qing, SONG Xin, WEI Changlong, et al. In situ remediation of Cr(Ⅵ) contaminated groundwater by ZVI-PRB and the corresponding indigenous microbial community responses: a field-scale study[J]. The Science of the Total Environment, 2022, 805: 150260. |
35 | Sabine FLÖDER, JASCHINSKI Sybill, WELLS Gudrun, et al. Dominance and compensatory growth in phytoplankton communities under salinity stress[J]. Journal of Experimental Marine Biology and Ecology, 2010, 395(1/2): 223-231. |
36 | WU Manli, WU Jialuo, ZHANG Xiaohui, et al. Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil[J]. Chemosphere, 2019, 237: 124456. |
37 | ZHEN Lisha, HU Ting, LV Rui, et al. Succession of microbial communities and synergetic effects during bioremediation of petroleum hydrocarbon-contaminated soil enhanced by chemical oxidation[J]. Journal of Hazardous Materials, 2021, 410: 124869. |
38 | LI Lu, ZHANG Zena, WANG Yuheng, et al. Efficient removal of heavily oil-contaminated soil using a combination of Fenton pre-oxidation with biostimulated iron and bioremediation[J]. Journal of Environmental Management, 2022, 308: 114590. |
[1] | 刘柏成, 李法云, 赵琦慧, 吝美霞. 禾本科植物修复多环芳烃污染土壤研究进展[J]. 化工进展, 2023, 42(7): 3736-3748. |
[2] | 陈韶云, 周贤太, 纪红兵. 金属卟啉/碳纳米管仿生催化剂的制备及其在Baeyer-Villiger氧化反应中的催化机理[J]. 化工进展, 2023, 42(3): 1332-1340. |
[3] | 陈佳昆, 汤健, 夏恒, 乔俊飞. 城市固废炉排炉焚烧过程二𫫇英排放浓度数值仿真[J]. 化工进展, 2023, 42(2): 1061-1072. |
[4] | 颜子涵, 陈群云, 李卓, 付融冰, 李彦伟, 吴志根. 改进型土壤破碎混拌结构的性能数值分析与优化[J]. 化工进展, 2022, 41(S1): 72-80. |
[5] | 丁兴江, 章学来, 朱嘉豪, 毛发, 房满庭, 冯天平. 三水合乙酸钠复合相变材料过冷特性实验统计分析[J]. 化工进展, 2022, 41(11): 5946-5960. |
[6] | 刘少斌, 齐宏, 余智强, 何明键, 于喜奎. 基于Taguchi方法的微小通道性能分析与参数优化[J]. 化工进展, 2021, 40(12): 6409-6422. |
[7] | 李文英, 李阳, 马艳飞, 张俊锋, 李秋红, 何芳. 含油污泥资源化处理方法进展[J]. 化工进展, 2020, 39(10): 4191-4199. |
[8] | 王晓峰, 陈晨, 宋瑶, 李春晓, 杜显元, 李薇. 槐糖脂-LAS-Na2SiO3复配修复石油污染土壤影响因素分析[J]. 化工进展, 2019, 38(06): 2933-2938. |
[9] | 李丽, 刘宝树, 郑学明, 孙华. 舒巴坦钠溶析结晶工艺优化[J]. 化工进展, 2019, 38(06): 2905-2914. |
[10] | 王治红, 丁晓明, 吴明鸥, 沈晓燕. 有机朗肯循环在多品位余热发电中的应用[J]. 化工进展, 2019, 38(05): 2189-2196. |
[11] | 张岩, 祝新哲, 孟琪, 田林青, 吴国钟. 分子模拟十六烷基三甲基溴化铵对石油污染物在粗糙石英砂表面脱附的影响[J]. 化工进展, 2018, 37(12): 4932-4938. |
[12] | 郭睿, 宋博, 郭煜, 李云鹏, 土瑞香, 王映月, 马兰. 木质素磺酸盐接枝共聚物的合成及工艺优化[J]. 化工进展, 2018, 37(05): 1962-1967. |
[13] | 刘忠慧, 于旷世, 张海霞, 朱治平. 基于Aspen Plus的循环流化床工业气化炉模拟[J]. 化工进展, 2018, 37(05): 1709-1717. |
[14] | 程琛, 闫正. 复频超声降解土霉素废水[J]. 化工进展, 2015, 34(04): 1143-1146,1164. |
[15] | 刘军霞, 姚庆鑫, 杨金, 周磊, 谢建军. 多指标正交实验优化可发性三聚氰胺甲醛树脂的制备[J]. 化工进展, 2015, 34(02): 474-478. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |