1 |
MA Y, XIA L, MENG W. A review of advanced manufacturing strategies and development in typical industrialized countries[J]. Journal of Physics: Conference Series, 2019, 1237: 42007.
|
2 |
中国电子技术标准化研究院, 中国信息物理系统发展论坛. 信息物理系统建设指南 (2020)[EB/OL]. [2020-12-11]. .
|
|
China Electronics Standardization Institute, China Cyber Physics System Development Forum. Cyber-physical system construction guide (2020) [EB/OL]. [2020-12-11]. .
|
3 |
LI D. Perspective for smart factory in petrochemical industry[J]. Computers & Chemical Engineering, 2016, 91: 136-148.
|
4 |
FENG Y, ZHAO Y, ZHENG H, et al. Data-driven product design toward intelligent manufacturing: a review[J]. International Journal of Advanced Robotic Systems, 2020, 17(2): 1729881420911257-1-1729881420911257-18.
|
5 |
EESA A, ARABO W. A normalization methods for backpropagation: a comparative study[J]. Science Journal of University of Zakho, 2017, 5: 319.
|
6 |
ANTWI P, LI J, BOADI P O, et al. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network[J]. Bioresource Technology, 2017, 228: 106-115.
|
7 |
刘金鹏, 赵兵涛, 钱魏锋, 等. 基于BP神经网络的旋风分离器分割粒径模化与预测[J]. 化工进展, 2021, 40(2): 671-677.
|
|
LIU Jinpeng, ZHAO Bingtao, QIAN Weifeng, et al. Modeling and prediction of particle cutoff size of cyclone separator based on BP neural network[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 671-677.
|
8 |
董玉玺, 李乐宁, 田文德. 基于多层优化PCC-SDG方法的化工过程故障诊断[J]. 化工学报, 2018, 69(3): 1173-1181.
|
|
DONG Yuxi, LI Lening, TIAN Wende. A novel fault diagnosis method based on multilayer optimized PCC-SDG[J]. CIESC Journal, 2018, 69(3): 1173-1181.
|
9 |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3): 245-255.
|
10 |
ZHOU Y, LI S. BP neural network modeling with sensitivity analysis on monotonicity based Spearman coefficient[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 200: 103977.
|
11 |
任玉佳, 王骥, 田文德. 基于特征工程和KELM的化工过程故障检测与识别[J].高校化学工程学报, 2019, 33(5): 1271-1284.
|
|
RENG Yujia, WANG Ji, TIAN Wende. Fault detection and identification in chemical processes based on feature engineering and kernel extreme learning machine[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(5): 1271-1284.
|
12 |
RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518.
|
13 |
马立平. 统计数据标准化-无量纲化方法-现代统计分析方法的学与用(三)[J]. 北京统计, 2000(3): 34-35.
|
|
MA Liping. Statistical data standardization-dimensionless method-learning and application of modern statistical analysis methods (3)[J]. Beijing statistics,2000(3):34-35.
|
14 |
顾俊发, 许明阳, 马方圆, 等. 基于MIC的支持向量回归及其在化工过程中的应用[J].化工学报, 2021, 72(3): 1480-1486.
|
|
GU Junfa, XU Mingyang, MA Fangyuan, et al. Support vector regression based on maximal information coefficient and its application in chemical industrial processes[J]. CIESC Journal, 2021, 72(3): 1480-1486.
|
15 |
高石磊. 基于数字化建模的变换装置产品预测与优化[D]. 大连: 大连理工大学, 2021.
|
|
GAO Shilei. Product prediction and optimization of shift device based on digital modeling[D]. Dalian: Dalian University of Technology, 2021.
|
16 |
孟燕霞. 最大信息系数算法研究[D]. 太原: 太原理工大学, 2019.
|
|
MENG Y X. The maximal information coefficient algorithm research[D]. Taiyuan: Taiyuan University of Technology, 2019.
|
17 |
RESHEF D, RESHEF Y, MITZENMACHER M, et al. Equitability analysis of the maximal information coefficient, with comparisons[J]. Arxiv Preprint Arxiv:, 2013.
|
18 |
马文礼, 李治平, 高闯, 等. 页岩气井初期产能主控因素“Pearson-MIC”分析方法[J]. 中国科技论文, 2018, 13(15): 1765-1771.
|
|
MA Wenli, LI Zhiping, GAO Chuang, et al. “Pearson-MIC” analysis method for the initial production key controlling factors of shale gas wells[J]. China Sciencepaper, 2018, 13(15): 1765-1771.
|
19 |
姜丰, 朱家玲, 胡开永, 等. Pearson相关系数评价ORC系统蒸发器特性的应用研究[J].太阳能学报, 2019, 40(10): 2732-2738.
|
|
JIANG Feng, ZHU Jialing, HU Kaiyong, et al. Pearson correlation coefficient evaluation of orc system evaporator characteristics applied research[J]. Acta Energiae Solaris Sinica, 2019, 40(10): 2732-2738.
|
20 |
DAMILOLA E B, AMBROSE A, OMOLEYE J. Artificial neural network and its applications in the energy sector: an overview[J]. International Journal of Energy Economics and Policy, 2020, 10(2): 250-264.
|
21 |
ASTHANA S, PANDIT A, BAHRDWAJ A. Analysis of multiple hidden layers vs. accuracy in performance using back propagation neural network[J]. Indian Journal of Science and Technology, 2017, 10(4): doi:10.17485/ijst/2017/v10i4/110899.
|