[1] ZHANG X H,HU R J,LIU Y F,et al.The performance of Co/ZrO2-Al2O3 composite oxide catalyst for CH4/CO2 reforming reaction[J]. International Journal of Hydrogen Energy,2015,40(32):10026-10032.
[2] SONG C S. Global challenges and strategies for control conversion and utilization of CO2 for sustainable development involving energy,catalysis,adsorption and chemical processing[J]. Catal.Today,2006,115(1-4):2-32.
[3] ASHCROFT A T,CHEETHAM A K,GREEN L H,et al. Partial oxidation of methane to synthesis gas-using carbon-dioxide[J]. Nature,1991,352:225-226.
[4] LIU Y F,HE Z H,ZHOU L,et al. Simultaneous oxidative conversion and CO2 reforming of methane to syngas over Ni/vermiculite catalysts[J]. Catalysis Communications,2013,42:40-44.
[5] SUN N N,WEN X. Catalytic performance and characterization of Ni-CaO-ZrO2 catalysts for dry reforming of methane[J]. Applied Surface Science,2011,257(21):9169-9176.
[6] QI J Z,SUN Y P,XIE Z L,et al. Development of Cu foam-based Ni catalyst for solar thermal reforming of methane with carbon dioxide[J]. Journal of Energy Chemistry,2015,24(6):786-793.
[7] SUN N N,WEN X,WANG F,et al. Effect of pore structure on Ni catalyst for CO2 reforming of CH4[J]. Energy Environ.Sci.,2010,3:366-369.
[8] XU L L,SONG H,CHOU L J. Carbon dioxide reforming of methane over ordered mesoporous NiO-Al2O3 composite oxides[J]. Catal.Sci.Technol.,2011(1):1032-1042.
[9] LUAN A E C,IRIARTE M E. Carbon dioxide reforming of methane over a metalmodified Ni-Al2O3 catalyst[J].Appl. Catal,A:Gen.,2008,343(1/2):10-15.
[10] LI Y,HE D,ZHU Q,et al. Effects of redox properties and acid-base properties on isosynthesis over ZrO2-based catalysts[J]. Catal.,2004, 221(2):584-593.
[11] 何玉彬,李新忠. 神经网络控制技术及其应用[M]. 北京:科学出版社,2000:2-35. HE Y B, LI X Z. Shen jing wang luo kong zhi ji shu ji qi ying yong[M]. Beijing:Science Press,2000:2-35.
[12] 张敬玲. BP神经网络的应用[J]. 石家庄技术学院报,2015,27(4):34-35. ZHANG J L. Application of BP neural network[J]. Journal of Shijiazhuang Vocational Technology Institute,2015,27(4):34-35.
[13] 王文新,潘立登,李荣,等. 常减压蒸馏装置双模型结构RBF神经网络建模及其应用[J]. 北京化工大学学报,2004,31(4):91-94. ` WANG W X,PAN L D,LI R,et al. Development of RBF neural network with double model structure and its application to atmospheric and vacuum distillation units[J]. Journal of Beijing University of Chemical Technology,2004,31(4):91-94.
[14] JUAN G S,JOSE D,MARTIN G,et al. Neural networks for analyzing the relevance of input variables in the prediction of tropospheric ozone concentration[J]. Atmospheric Environment,2006,40:6173-6180.
[15] 苏鑫,裴华健,吴迎亚,等. 应用经遗传算法优化的BP神经网络预测催化裂化装置焦炭产率[J]. 化工进展,2016,35(2):389-396. ` SU X,PEI H J,WU Y Y,et al. Predicting coke yield of FCC unit using genetic algorithm optimized BP neural network[J]. Chemical Industry and Engineering Progress,2016,35(2):389-396.
[16] 李晨,张海涛,应卫勇,等. 钴基催化剂F-T合成的人工神经网络模拟[J]. 计算机与应用化学,2006,23(10):963-966. LI C,ZHANG H T,YING W Y,et al. Aritncial neural network simulation of cobalt-based catalyst F-T synthesis[J]. Computers and Applied Chemistry,2006,23(10):963-966.
[17] 黄玮,丛玉凤,郭大鹏. 基于BP神经网络的石蜡催化氧化反应的研究[J]. 石油化工高等学校学报,2012,25(6):30-38. HANG W,CONG Y F,GUO D P. Catalytic oxidized reaction of paraffin wax based on BP neural network[J]. Journal of Feterochemcial Universities,2012,25(6):30-38.
[18] XU L L,ZHAO H H,SONG H L. Ordered mesoporous alumina supported nickel based catalysts for carbon dioxide reforming of methane[J]. Hydrogen Energy,2012,37(9):7497-7511.
[19] CHEN X Y,CHAU K W,BUSARI A O. A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model[J]. Engineering Applications of Artificial Intelligence,2015,46:258-268.
[20] BARCENAS O P,OLIVAS E S,MARTIN J D. Unbiased sensitivity analysis and pruning techniques[J]. Ecoogical Modelling,2005,182(2):149-158.
[21] MURIEL G,IOANNIS D,SOVAN L. Review and comparison of methods to study the contribution of variables in artificial neural networks models[J]. Ecological Modelling,2003,160(3):249-264.
[22] SOVAN L,MARITXU G,GIRAUDEL J L. Predicting stream nitrogen concentration from watershed features using neural networks[J]. Water Research,1999,33(16):3469-3478.
[23] SZECOWKA P M,SZCZUREK A,LICZNERSKI B W. On reliability of neural network sensitivity analysis applied for sensor array optimization[J]. Sensors and Actuators B,2011,157:298-303.
[24] NIKHIL R P. Soft computing for feature analysis[J]. Fuzzy Sets and Systems,1999,103:201-221.
[25] PODOLAK I. Feedforward neural network's sensitivity to input data[J]. Computer Physics Conunication,1999,117:181-188.
[26] PARK Y S,JORGE R,SOVAN L. Sensitivity analysis and stability patterns of two-species pest models using artificial neural networks[J]. Ecological Modelling,2007,204:427-438. |