化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 36-43.DOI: 10.16085/j.issn.1000-6613.2021-2552

• 化工过程与装备 • 上一篇    下一篇

基于MIC筛选规则和BP神经网络的变换装置建模及产品预测

潘艳秋(), 李鹏飞, 高石磊, 俞路   

  1. 大连理工大学化工学院,辽宁 大连 116024
  • 收稿日期:2021-12-15 修回日期:2022-03-17 出版日期:2022-10-20 发布日期:2022-11-10
  • 通讯作者: 潘艳秋
  • 作者简介:潘艳秋(1962—),女,教授,博士生导师,研究方向为过程强化与智能化工。E-mail:yqpan@dlut.edu.cn

Application of BP neural network based on MIC screening rules in modeling and product prediction of shift unit

PAN Yanqiu(), LI Pengfei, GAO Shilei, YU Lu   

  1. School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2021-12-15 Revised:2022-03-17 Online:2022-10-20 Published:2022-11-10
  • Contact: PAN Yanqiu

摘要:

在石化企业数字工厂建设中,装置的数字智能化建设十分重要。本文针对某石化企业变换装置数字化建设的需要,结合装置特点,建立了基于最大信息系数方法(MIC)的装置实时数据筛选规则和基于BP神经网络的装置产品质量预测模型。结果表明,利用实时数据筛选规则对采集到的44天共1041组装置实际运行数据进行分析,将161个变量参数删减到23个变量参数,有效降低了数据的维度,数据简化率达到85.63%;进一步采用Levenberg-Marquardt方法,用3层隐含层的网络结构建立装置的产品质量预测模型,模拟得到的装置出口变换气CO摩尔含量值与实际生产偏差很小(平均偏差1.193%),说明本文所建模型可以很好地预测装置产品组成。以上建立的模型可为装置生产优化提供支撑,并可集成到工厂信息物理系统(CPS)中,支撑装置数字化和智能化建设需要。本文所提出的建模方法同样可用于其他类似装置的建模参考。

关键词: 变换装置, 混合建模, BP神经网络, 最大信息系数方法, 信息物理系统

Abstract:

In the construction of digital factories in petrochemical enterprises, the digital intelligent construction of the unit is a key step. According to the need of a shift unit intelligent construction in a petrochemical enterprise, combined with the characteristics of the unit, a set of real-time data filtering rules was created based on maximum information coefficients (MIC), and the product quality prediction model was constructed based on the BP neural network. Results showed that own-developed real-time data filtering rules were used to analyze the actual operating data of a total of 1041 sets collected for 44 days. After the number of variables had been reduced from 161 to 23, it was found that the screening rules could effectively reduce the dimensionality of the data, with a data simplification rate of 85.63%. Furthermore, this model with the best product quality prediction was constructed by the Levenberg-Marquardt method and a network structure with three hidden layers. Comparing the CO molar content value of the shift gas at the outlet of the unit obtained by simulation with the actual production value, it was found that the simulated value deviated very little from the actual value (average deviation 1.193%), which showed that the model built in this paper could predict the product composition of unit very well, and it was proved to be reliable. This model is not only useful for optimizing shift unit production, but also integrated into the factory cyber-physical system (CPS) to facilitate unit digitization and intelligent construction. In addition, the method can be used as modeling reference of other similar units.

Key words: shift unit, hybrid modeling, BP neural network, MIC, CPS

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn