化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3431-3445.DOI: 10.16085/j.issn.1000-6613.2021-1739
收稿日期:
2021-08-13
修回日期:
2021-12-24
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
崔晓钰
作者简介:
汤振彪(1997—),男,硕士研究生,研究方向为强化传热传质。E-mail:Received:
2021-08-13
Revised:
2021-12-24
Online:
2022-07-25
Published:
2022-07-23
Contact:
CUI Xiaoyu
摘要:
液体阵列射流冲击冷却是解决高热流密度散热问题的最有效技术之一,能够有效地对目标表面进行散热,具有散热能力高、能效比高和噪声低的优点,在散热方面具有巨大优势。本文简述了国内外对阵列射流冲击的研究进展,从换热工质和射流冲击冷板的换热结构两个方面,指出了其对液体阵列射流冲击换热特性的影响,并介绍了倾斜射流和旋流射流两种新型阵列射流方式。综合分析了常用的液体换热工质和纳米流体换热工质在射流冲击过程中强化换热的原理,介绍了喷嘴孔型、喷嘴的排列方式和冲击表面结构三种阵列射流结构。分析表明,不同孔型的喷嘴会影响流体的射流速度和湍流特性,不同的喷嘴排列方式会对射流流体的相互作用和有效冲击面积产生影响,不同的冲击表面会影响射流工质的循环混合,这些都将对射流冷板的换热特性产生很大影响。指出了解影响液体阵列射流冲击效果的主要因素,是改善和提高射流换热性能的根本方法。
中图分类号:
汤振彪, 崔晓钰. 液体阵列射流冲击冷板工质与传热结构研究进展[J]. 化工进展, 2022, 41(7): 3431-3445.
TANG Zhenbiao, CUI Xiaoyu. Research progress on working medium and heat transfer structure of liquid cooling plate with array jet impingement[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3431-3445.
1 | CARLOMAGNO G M, IANIRO A. Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: a review[J]. Experimental Thermal and Fluid Science, 2014, 58: 15-35. |
2 | WEBB B W, MA C F. Single-phase liquid jet impingement heat transfer[J]. Advances in Heat Transfer, 1995, 26: 105-217. |
3 | AMANO R S, SUNDEN B. Impingement jet cooling in gas turbines[M]. Ashurst, Southamption: WIT Press, 2014. |
4 | WAE-HAYEE M, YERANEE K, SUKSUWAN W, et al. Heat transfer enhancement in rotary drum dryer by incorporating jet impingement to accelerate drying rate[J]. Drying Technology, 2021, 39(10): 1314-1324. |
5 | CHANG S W, CHIOU S F, CHANG S F. Heat transfer of impinging jet array over concave-dimpled surface with applications to cooling of electronic chipsets[J]. Experimental Thermal and Fluid Science, 2007, 31(7): 625-640. |
6 | ANWARULLAH M, VASUDEVA RAO V, SHARMA K V. Experimental investigation for enhancement of heat transfer from cooling of electronic components by circular air jet impingement[J]. Heat and Mass Transfer, 2012, 48(9): 1627-1635. |
7 | CHAUHAN R, SINGH T, THAKUR N S, et al. Heat transfer augmentation in solar thermal collectors using impinging air jets: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3179-3190. |
8 | NADDA R, KUMAR A, MAITHANI R. Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 331-353. |
9 | BROWNE E A, MICHNA G J, JENSEN M K, et al. Microjet array single-phase and flow boiling heat transfer with R134a[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5027-5034. |
10 | SHIN J H, ROZENFELD T, SHOCKNER T, et al. Local heat transfer under an array of micro jet impingement using HFE-7000[J]. Applied Thermal Engineering, 2019, 158: 113716. |
11 | HONG F J, ZHANG C Y, HE W, et al. Confined jet array impingement boiling of subcooled aqueous ethylene glycol solution[J]. International Communications in Heat and Mass Transfer, 2014, 56: 165-173. |
12 | MA C F, ZHENG Q, KO S Y. Local heat transfer and recovery factor with impinging free-surface circular jets of transformer oil[J]. International Journal of Heat and Mass Transfer, 1997, 40(18): 4295-4308. |
13 | EASTMAN J A, CHOI U S, LI S, et al. Novel thermal properties of nanostructured materials[J]. Journal of Metastable and Nanocrystalline Materials, 1999, 2/3/4/5/6: 629-634. |
14 | CHOI S U S. Nanofluids: from vision to reality through research[J]. Journal of Heat Transfer, 2009, 131(3): 033106. |
15 | WANG X W, XU X F, CHOI S U S. Thermal conductivity of nanoparticle-fluid mixture[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(4): 474-480. |
16 | EASTMAN J A, CHOI S U S, LI S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Applied Physics Letters, 2001, 78(6): 718-720. |
17 | MODAK M, CHOUGULE S S, SAHU S K. An experimental investigation on heat transfer characteristics of hot surface by using CuO-water nanofluids in circular jet impingement cooling[J]. Journal of Heat Transfer, 2018, 140(1): 012401. |
18 | Jizu LYU, CHANG Shengnan, HU Chengzhi, et al. Experimental investigation of free single jet impingement using Al2O3-water nanofluid[J]. International Communications in Heat and Mass Transfer, 2017, 88: 126-135. |
19 | Jizu LYU, HU Chengzhi, BAI Minli, et al. Experimental investigation of free single jet impingement using SiO2-water nanofluid[J]. Experimental Thermal and Fluid Science, 2017, 84: 39-46. |
20 | SU Zhonggen, ZHENG Wei, ZHANG Zhendong. Study on diesel cylinder-head cooling using nanofluid coolant with jet impingement[J]. Thermal Science, 2015, 19(6): 2025-2037. |
21 | LI Qiang, XUAN Yimin, YU Feng. Experimental investigation of submerged single jet impingement using Cu-water nanofluid[J]. Applied Thermal Engineering, 2012, 36: 426-433. |
22 | LI Q, XUAN Y M, YU F, et al. Experimental investigation of submerged impinging jet using Cu-water nanofluid[C]//Proceedings of 2010 14th International Heat Transfer Conference. Washington, 2011: 469-473. |
23 | Peng TIE, LI Qiang, XUAN Yimin. Heat transfer performance of Cu-water nanofluids in the jet arrays impingement cooling system[J]. International Journal of Thermal Sciences, 2014, 77: 199-205. |
24 | SENKAL C, TORII S. Investigation on the multiple jet impingement heat transfer using Al2O3-water nanofluid[C]//Proceedings of ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. Burlingame, 2014. |
25 | AMJADIAN M, SAFARZADEH H, BAHIRAEI M, et al. Heat transfer characteristics of impinging jet on a hot surface with constant heat flux using Cu2O-water nanofluid: an experimental study[J]. International Communications in Heat and Mass Transfer, 2020, 112: 104509. |
26 | SUN Bin, QU Yi, YANG Di. Heat transfer of single impinging jet with Cu nanofluids[J]. Applied Thermal Engineering, 2016, 102: 701-707. |
27 | MODAK M, CHOUGULE S S, SAHU S K. An experimental investigation on heat transfer characteristics of hot surface by using CuO-water nanofluids in circular jet impingement cooling[J]. Journal of Heat Transfer, 2018, 140(1): 012401. |
28 | WEBB B W, MA C F. Single-phase liquid jet impingement heat transfer[J]. Advances in Heat Transfer, 1995, 26: 105-217. |
29 | LEE J, LEE S J. The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement[J]. International Journal of Heat and Mass Transfer, 2000, 43(18): 3497-3509. |
30 | STEVENS J, WEBB B W. Local heat transfer coefficients under an axisymmetric, single-phase liquid jet[J]. Journal of Heat Transfer, 1991, 113(1): 71-78. |
31 | ELISON B, WEBB B W. Local heat transfer to impinging liquid jets in the initially laminar, transitional, and turbulent regimes[J]. International Journal of Heat and Mass Transfer, 1994, 37(8): 1207-1216. |
32 | GARIMELLA S V, NENAYDYKH B. Nozzle-geometry effects in liquid jet impingement heat transfer[J]. International Journal of Heat and Mass Transfer, 1996, 39(14): 2915-2923. |
33 | GARIMELLA S V, RICE R A. Confined and submerged liquid jet impingement heat transfer[J]. Journal of Heat Transfer, 1995, 117(4): 871-877. |
34 | STEVENS J, WEBB B W. Measurements of flow structure in the radial layer of impinging free-surface liquid jets[J]. International Journal of Heat and Mass Transfer, 1993, 36(15): 3751-3758. |
35 | LEE D H, SONG J, JO M C. The effects of nozzle diameter on impinging jet heat transfer and fluid flow[J]. Journal of Heat Transfer, 2004, 126(4): 554-557. |
36 | LOU Z Q, MUJUMDAR A S, YAP C. Effects of geometric parameters on confined impinging jet heat transfer[J]. Applied Thermal Engineering, 2005, 25(17/18): 2687-2697. |
37 | O’DONOVAN T S, MURRAY D B. Jet impingement heat transfer-Part Ⅰ: Mean and root-mean-square heat transfer and velocity distributions[J]. International Journal of Heat and Mass Transfer, 2007, 50(17/18): 3291-3301. |
38 | BRIGNONI L A, GARIMELLA S V. Effects of nozzle-inlet chamfering on pressure drop and heat transfer in confined air jet impingement[J]. International Journal of Heat and Mass Transfer, 2000, 43(7): 1133-1139. |
39 | GULATI P, KATTI V, PRABHU S V. Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet[J]. International Journal of Thermal Sciences, 2009, 48(3): 602-617. |
40 | LEE D H, SONG J, JO M C. The effects of nozzle diameter on impinging jet heat transfer and fluid flow[J]. Journal of Heat Transfer, 2004, 126(4): 554-557. |
41 | FABBRI M, DHIR V K. Optimized heat transfer for high power electronic cooling using arrays of microjets[J]. Journal of Heat Transfer, 2005, 127(7): 760-769. |
42 | 李超, 贺占蜀, 李大磊. 纯水射流流场分布及冲击换热数值模拟研究[J]. 机械设计与制造, 2020(8): 103-107. |
LI Chao, HE Zhanshu, LI Dalei. Numerical simulation of water jet flow field distribution and impingement heat transfer[J]. Machinery Design & Manufacture, 2020(8): 103-107. | |
43 | MARZEC K, KUCABA-PIETAL A. Heat transfer characteristic of an impingement cooling system with different nozzle geometry[J]. Journal of Physics: Conference Series, 2014, 530: 012038. |
44 | ROYNE A, DEY C J. Effect of nozzle geometry on pressure drop and heat transfer in submerged jet arrays[J]. International Journal of Heat and Mass Transfer, 2006, 49(3/4): 800-804. |
45 | WHELAN B P, ROBINSON A J. Nozzle geometry effects in liquid jet array impingement[J]. Applied Thermal Engineering, 2009, 29(11/12): 2211-2221. |
46 | POPIEL C O, BOGUSLAWSKI L. Mass or heat transfer in impinging single, round jets emitted by a bell-shaped nozzle and sharp-ended orifice[C]//Proceeding of International Heat Transfer Conference 8. Begellhouse, 1986: 1187-1192. |
47 | LEE J, LEE S J. The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement[J]. International Journal of Heat and Mass Transfer, 2000, 43(18): 3497-3509. |
48 | GARIMELLA S V, NENAYDYKH B. Nozzle-geometry effects in liquid jet impingement heat transfer[J]. International Journal of Heat and Mass Transfer, 1996, 39(14): 2915-2923. |
49 | GEERS L F G, TUMMERS M J, BUENINCK T J, et al. Heat transfer correlation for hexagonal and in-line arrays of impinging jets[J]. International Journal of Heat and Mass Transfer, 2008, 51(21/22): 5389-5399. |
50 | 韩宇萌, 王新军, 仇璐珂, 等. 阵列射流冲击冷却换热特性的数值研究[J]. 汽轮机技术, 2010, 52(3): 161-164. |
HAN Yumeng, WANG Xinjun, QIU Luke, et al. Numerical study on heat transfer characteristics of jet array impingement[J]. Turbine Technology, 2010, 52(3): 161-164. | |
51 | SAN J Y, LAI Maode. Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets[J]. International Journal of Heat and Mass Transfer, 2001, 44(21): 3997-4007. |
52 | 孙润鹏, 朱卫兵, 陈昌将, 等. 阵列射流冲击冷却传热特性的数值研究[J]. 热科学与技术, 2012, 11(1): 34-41. |
SUN Runpeng, ZHU Weibing, CHEN Changjiang, et al. Numerical investigation on heat transfer characteristics of jet array impingement cooling[J]. Journal of Thermal Science and Technology, 2012, 11(1): 34-41. | |
53 | XING Yunfei, WEIGAND B. Optimum jet-to-plate spacing of inline impingement heat transfer for different crossflow schemes[J]. Journal of Heat Transfer, 2013, 135(7): 072201. |
54 | SAN J Y, CHEN J J. Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array[J]. International Journal of Heat and Mass Transfer, 2014, 71: 8-17. |
55 | 谢浩, 张靖周. 阵列射流冲击冷却换热系数的数值研究[J]. 能源研究与利用, 2005(5): 45-47. |
XIE Hao, ZHANG Jingzhou. Numerical research on jet arrayed impingement cooling heat exchange coefficient[J]. Energy Research and Utilization, 2005(5): 45-47. | |
56 | CHIU H C, JANG J H, YAN W M. Experimental study on the heat transfer under impinging elliptic jet array along a film hole surface using liquid crystal thermograph[J]. International Journal of Heat and Mass Transfer, 2009, 52(19/20): 4435-4448. |
57 | SU L M, CHANG S W. Detailed heat transfer measurements of impinging jet arrays issued from grooved surfaces[J]. International Journal of Thermal Sciences, 2002, 41(9): 823-841. |
58 | YAN W M, MEI S C. Measurement of detailed heat transfer along rib-roughened surface under arrays of impinging elliptic jets[J]. International Journal of Heat and Mass Transfer, 2006, 49(1/2): 159-170. |
59 | HSIEH S S, TSAI H H, CHAN S C. Local heat transfer in rotating square-rib-roughened and smooth channels with jet impingement[J]. International Journal of Heat and Mass Transfer, 2004, 47(12/13): 2769-2784. |
60 | JIA R G, ROKNI M, SUNDÉN B. Impingement cooling in a rib-roughened channel with cross-flow[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2001, 11(7): 642-662. |
61 | CHUNG Y S, LEE D H, LEE J S. Technical Note Heat transfer characteristics of an axisymmetric jet impinging on the rib-roughened convex surface[J]. International Journal of Heat and Mass Transfer, 1999, 42(11): 2101-2110. |
62 | YAN W M, LIU H C, SOONG C Y, et al. Experimental study of impinging heat transfer along rib-roughened walls by using transient liquid crystal technique[J]. International Journal of Heat and Mass Transfer, 2005, 48(12): 2420-2428. |
63 | CHANG H, ZHANG D, HUANG T. Impingement heat transfer from rib roughened surface within arrays of circular jet: the effect of the relative position of the jet hole to the ribs[C]//Proceedings of ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. Orlando, 1997. |
64 | CHANG H, ZHANG J, HUANG T. Experimental investigation on impingement heat transfer from rib roughened surface within arrays of circular jet: effect of geometric parameters[C]//Proceedings of ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. Stockholm, 1998. |
65 | CHANG H P, ZHANG J Y, HUANG T P. Experimental investigation on impingement heat transfer from rib roughened surface within arrays of circular jets: Correlation[C]//Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air. Munich, 2000. |
66 | XING Y F, SPRING S, WEIGAND B. Experimental and numerical investigation of impingement heat transfer on a flat and micro-rib roughened plate with different crossflow schemes[J]. International Journal of Thermal Sciences, 2011, 50(7): 1293-1307. |
67 | ANDREWS G E, HUSSAIN R A A A, MKPADI M C. Enhanced impingement heat transfer: The influence of impingement X/D for interrupted rib obstacles (rectangular pin fins)[J]. Journal of Turbomachinery, 2006, 128(2): 321-331. |
68 | HONG S K, RHEE D H, CHO H H. Heat/mass transfer with circular pin fins in impingement/effusion cooling system with crossflow[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(4): 728-737. |
69 | NDAO S, LEE H J, PELES Y, et al. Heat transfer enhancement from micro pin fins subjected to an impinging jet[J]. International Journal of Heat and Mass Transfer, 2012, 55(1/2/3): 413-421. |
70 | BRAKMANN R, CHEN L L, WEIGAND B, et al. Experimental and numerical heat transfer investigation of an impinging jet array on a target plate roughened by cubic micro pin Fins1[J]. Journal of Turbomachinery, 2016, 138(11): 111010. |
71 | CHANG S W, JAN Y J, CHANG S F. Heat transfer of impinging jet-array over convex-dimpled surface[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 3045-3059. |
72 | EKKAD S V, KONTROVITZ D. Jet impingement heat transfer on dimpled target surfaces[J]. International Journal of Heat and Fluid Flow, 2002, 23(1): 22-28. |
73 | KANOKJARUVIJIT K, MARTINEZ-BOTAS R F. Jet impingement on a dimpled surface with different crossflow schemes[J]. International Journal of Heat and Mass Transfer, 2005, 48(1): 161-170. |
74 | CALISKAN S, BASKAYA S. Experimental investigation of impinging jet array heat transfer from a surface with V-shaped and convergent-divergent ribs[J]. International Journal of Thermal Sciences, 2012, 59: 234-246. |
75 | RAO Yu, CHEN Peng, WAN Chaoyi. Experimental and numerical investigation of impingement heat transfer on the surface with micro W-shaped ribs[J]. International Journal of Heat and Mass Transfer, 2016, 93: 683-694. |
76 | XING Y F, SPRING S, WEIGAND B. Experimental and numerical investigation of impingement heat transfer on a flat and micro-rib roughened plate with different crossflow schemes[J]. International Journal of Thermal Sciences, 2011, 50(7): 1293-1307. |
77 | XING Y F, WEIGAND B. Experimental investigation on staggered impingement heat transfer on a rib roughened plate with different crossflow schemes[C]//ASME Turbo Expo 2010: Power for Land, Sea, and Air. Glasgow, 2010. |
78 | LO Y H, LIU Y H. Heat transfer of impinging jet arrays onto half-smooth, half-rough target surfaces[J]. Applied Thermal Engineering, 2018, 128: 79-91. |
79 | PERRY K P. Heat transfer by convection from a hot gas jet to a plane surface[J]. Proceedings of the Institution of Mechanical Engineers, 1954, 168(1): 775-784. |
80 | 陈欣欣, 王川, 施卫东, 等. 不同冲击角度下淹没冲击水射流的数值计算[J]. 排灌机械工程学报, 2020, 38(7): 658-662, 669. |
CHEN Xinxin, WANG Chuan, SHI Weidong, et al. Numerical simulation of submerged impinging water jet at different impact angles[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(7): 658-662, 669. | |
81 | PARIDA P R, EKKAD S V, NGO K. Experimental and numerical investigation of confined oblique impingement configurations for high heat flux applications[J]. International Journal of Thermal Sciences, 2011, 50(6): 1037-1050. |
82 | DEBNATH S, KHAN M H U, AHMED Z U. Turbulent swirling impinging jet arrays: a numerical study on fluid flow and heat transfer[J]. Thermal Science and Engineering Progress, 2020, 19: 100580. |
[1] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[2] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[3] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[4] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[5] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[6] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[7] | 刘厚励, 顾中浩, 阳康, 张莉. 3D打印槽道结构槽宽对池沸腾传热特性的影响[J]. 化工进展, 2023, 42(5): 2282-2288. |
[8] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[9] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[10] | 马润梅, 杨海超, 李正大, 李双喜, 赵祥, 章国庆. 表面强化镀层对高速轴承腔密封端面变形及摩擦磨损影响分析[J]. 化工进展, 2023, 42(4): 1688-1697. |
[11] | 尚玉, 肖满, 崔秋芳, 涂特, 晏水平. CO2捕集工艺中热再生气余热的PVDF/BN-OH平板复合膜回收特性[J]. 化工进展, 2023, 42(3): 1618-1628. |
[12] | 高婷婷, 蒋振, 吴晓毅, 郝婷婷, 马学虎, 温荣福. 微乳液脉动热管应用于锂离子电池的散热性能[J]. 化工进展, 2023, 42(3): 1167-1177. |
[13] | 谢迎春, 马洪亭, 徐畅, 马硕, 陈默, 刘军, 孙国强. 竖管渗流降膜蒸发式冷凝器传热特性分析[J]. 化工进展, 2023, 42(3): 1187-1194. |
[14] | 邹银才, 李清国, 吴辉, 钟小兵, 陈咸志. 弹载相变热沉传热仿真与优化[J]. 化工进展, 2023, 42(3): 1248-1256. |
[15] | 杨茂飞, 李金旺, 周刘伟. 亲水改性超薄平板热管传热性能[J]. 化工进展, 2023, 42(2): 692-698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |