1 |
AR6 Change Climate 2021: The Physical Science Basis[EB/OL]. .
|
2 |
李寿生. 努力开创我国煤化工产业高端化多元化低碳化发展的新局面[N]. 中国化工报,2021-10-22.
|
|
LI Shousheng. Strive to create a new situation of high-end, diversified and low-carbon development of China’s coal chemical industry[N]. China Chemical Industry News, 2021-10-22.
|
3 |
亢万忠. 煤化工技术[M]. 北京:中国石化出版社,2017:58.
|
|
KANG Wanzhong. Coal chemical technology[M]. Beijing: China Petrochemical Press, 2017: 58.
|
4 |
ZHANG You, YUAN Zengwei, MARGNI Manuele, et al. Intensive carbon dioxide emission of coal chemical industry in China[J]. Applied Energy, 2019(236):540-550.
|
5 |
史悦智. 以碳减排、回收利用模式提升现代煤化工发展的分析与探讨[J]. 煤化工,2021,49(5):1-5.
|
|
SHI Yuezhi. Analysis and discussion on promoting development of modern coal chemical industry by carbon emission reduction and recycling[J]. Coal Chemical Industry, 2021, 49(5):1-5.
|
6 |
吴秀章. 中国二氧化碳捕集与地质封存首次规模化探索[M]. 北京:科学出版社,2013.
|
|
WU Xiuzhang. Carbon dioxide capture and geological storage the first massive exploration in China[M]. Beijing: Science Press, 2013.
|
7 |
谢克昌. 煤化工发展与规划[M]. 北京:化学工业出版社,2005:79.
|
|
XIE Kechang. Development and planning of coal chemical industry[M]. Beijing: Chemical Industry Press, 2005: 79.
|
8 |
CHEN Jianjun, YANG Siyu, QIAN Yu. A novel path for carbon-rich resource utilization with lower emission and higher efficiency: an integrated process of coal gasification and coking to methanol production[J]. Energy, 2019, 177: 304-318.
|
9 |
CHEN Q, LYU M, TANG Z, et al. Opportunities of integrated systems with CO2 utilization technologies for green fuel & chemicals production in a carbon-constrained society[J]. Journal of CO2 Utilization, 2016, 14: 1-9.
|
10 |
CHEN Qianqian, Min LYU, GU Yu, et al. Hybrid energy system for a coal-based chemical industry[J]. Joule, 2018(2):1-14.
|
11 |
王明华. 绿氢耦合煤化工系统的性能分析及发展建议[J]. 现代化工,2021, 41(11): 4-8.
|
|
WANG Minghua. Performance analysis and suggestions on hydrogen energy coupling coal chemical system[J]. Modern Chemical Industry, 2021, 41(11): 4-8.
|
12 |
YANG Qing, CHU Genyun, YANG Qingchun, et al. Process development and technoeconomic analysis of different integration methods of coal-to-ethylene glycol process and solid oxide electrolysis cells[J]. Industrial & Engineering Chemistry Research, 2021, 60(40): 14519-14533.
|
13 |
WANG Dongliang, MENG Wenliang, ZHOU Huairong, et al. Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission[J]. Energy, 2021, 231: 120970.
|
14 |
王哮江,刘鹏,李荣春,等. “双碳”目标下先进发电技术研究进展及展望[J]. 热力发电,2022, 51(1): 52-59.
|
|
WANG Xiaojiang, LIU Peng, LI Rongchun, et al. Research progress and prospects of advanced power generation technology under the goal of carbon emission peak and carbon neutrality[J]. Thermal Power Generation, 2022, 51(1): 52-59.
|
15 |
相宏伟,杨勇,李永旺. 碳中和目标下的煤化工变革与发展[J]. 化工进展,2022,41(3):1399-1408.
|
|
XIANG Hongwei, YANG Yong, LI Yongwang. Transformation and development of coal chemical industry under the goal of carbon neutralization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1399-1408.
|
16 |
张巍,张帆,张军,等. 与新能源耦合发展 推动现代煤化工绿色低碳转型的思考与建议[J]. 中国煤炭,2021,47(11):56-60.
|
|
ZHANG Wei, ZHANG Fan, ZHANG Jun . et al. Coupling development with new energy and thinking and suggestions on promoting the green and low-carbon transformation of modern coal chemical industry[J]. China Coal, 2021, 47(11): 56-60.
|
17 |
黄文章,袁建军,石国峰,等. 风电制氢与煤化工集成系统可行性分析[J]. 现代化工,2021, 41(7): 5-8.
|
|
HUANG Wenzhang, YUAN JianJun, SHI GuoFeng, et al. Feasibility discussion about an integration system between hydrogen production by wind power and coal chemical industry[J]. Modern Chemical Industry, 2021, 41(7): 5-8.
|
18 |
苏万银. 第三代清华炉:更稳更快更高更长[J]. 中国石油和化工产业观察, 2021(6): 49.
|
|
SU Wanyin. The third generation Tsinghua furnace: more stable, faster, higher and longer[J]. China Petrochemical Industry Observer, 2021(6): 49.
|
19 |
姜兴剑. 煤制烯烃及其热电系统能耗特点及节能分析[J]. 神华科技,2017,15(6):91-94.
|
|
JIANG Xingjian. Energy consumption characteristics of coal-to-olefin and its thermoelectric system and energy-saving analysis[J]. Energy Science and Technology, 2017,15(6):91-94.
|
20 |
孙成和. 一种煤化工甲醇制备过程中的低温余热利用工艺[J]. 中国科技信息,2020(7):73,75.
|
|
SUN Chenghe. A low temperature waste heat utilization process in the preparation of methanol in coal chemical industry[J]. China Science and Technology Information, 2020(7):73, 75.
|
21 |
郭云峰,栾爱国,杨立志. CO2气体在煤气化装置中应用与不同煤种关系的探讨[J]. 广州化工,2010,38(2):189-190.
|
|
GUO Yunfeng, LUAN Aiguo, YANG Lizhi. Study on CO2 used in gasification installment and its relationship with different coal[J]. Guangzhou Chemical Industry, 2010, 38(2):189-190.
|
22 |
尹文越. 二氧化碳返炉对煤制天然气工艺的影响[J]. 大氮肥, 2018,41(2):78-79,97.
|
|
YIN Wenyue. The influence of recycled CO2 to coal-to-natural gas process[J]. Large Scale Nitrogenous Fertilizer Industry, 2018, 41(2): 78-79, 97.
|
23 |
刘阳,吴秀章,刘永健,等. 基于二氧化碳返炉的煤制天然气联产甲醇和乙二醇工艺研究[J]. 现代化工,2021,41(7):214-218.
|
|
LIU Yang, WU Xiuzhang, LIU Yongjian, et al. Study on coal to synthetic natural gas with co-production of methanol and ethylene glycol based on carbon dioxide back to gasifier[J]. Modern Chemical Industry, 2021, 41(7): 214-218.
|
24 |
韩明珠,赵强,王宝宝,等. 煤制乙二醇驰放气的回收[J]. 化工管理,2021(12): 63-64.
|
|
HAN Mingzhu, ZHAO Qiang, WANG Baobao, et al. Recovery of exhaust gas from coal to ethylene glycol[J]. Chemical Management, 2021(12): 63-64.
|
25 |
WANG Peng, CHEN Wei, CHIANG Fu-Kuo, et al. Synthesis of stable and low-CO2 selective ε-iron carbide Fischer-Tropsch catalysts[J]. Science Advances, 2018, 4(10): DOI: 10.1126/sciadv.aau2947.
|
26 |
LU Wenyang, CAO Qingxi, XU Bang, et al. A new approach of reduction of carbon dioxide emission and optimal use of carbon and hydrogen content for the desired syngas production from coal[J]. Journal of Cleaner Production, 2020, 265(121786): 1-11.
|
27 |
WANG Sen, WANG Pengfei, SHI Dezhi, et al. Direct conversion of syngas into light olefins with low CO2 emission[J]. ACS Catalysis, 2020, 10: 2046-2059.
|
28 |
CHENG Kang, ZHOU Wei, KANG Jincan, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and Stability[J]. Chem, 2017(3):334-347.
|
29 |
LIN Tiejun, QI Xingzhen, WANG Xinxing, et al. Direct production of higher oxygenates by syngas conversion over a multifunctional catalyst[J]. Angewandte Chemie International Edition, 2019, 58(14): 4627-4631.
|
30 |
王维波,汤瑞佳,江绍静,等. 延长石油煤化工CO2捕集, 利用与封存(CCUS)工程实践[J]. 非常规油气,2021,8(2):1-7,106.
|
|
WANG Weibo, TANG Ruijia, JIANG Shaojing, et al. The engineering practice of CO2 capture, utilization and storage(CCUS) in coal chemical industry of Yanchang Petroleum[J]. Unconventional Oil & Gas, 2021, 8(2): 1-7, 106.
|
31 |
中国石化成立碳捕集、利用与封存(CCUS)重点实验室[J]. 油气地质与采收率,2021(5):80.
|
|
Sinopec establishes Key Laboratory of carbon capture, utilization and storage (CCUs)[J]. Petroleum Geology and Recovery Efficiency, 2021(5): 80.
|
32 |
LI Xiaochun, WEI Ning, JIAO Zunsheng, et al. Cost curve of large-scale deployment of CO2-enhanced water recovery technology in modern coal chemical industries in China[J]. International Journal of Greenhouse Gas Control, 2019, 81: 66-82.
|
33 |
晏水平,方梦祥,张卫风,等. 烟气中CO2 化学吸收法脱除技术分析与进展[J]. 化工进展,2006,25(6):1018-1024.
|
|
YAN Shuiping, FANG Mengxiang, ZHANG Weifeng, et al. Technique analyses and research progress of CO2 separation from flue gas by chemical absorption[J]. Chemical Industry and Engineering Progress, 2006, 25(6): 1018-1024.
|
34 |
王志, 原野, 生梦龙, 等. 膜法碳捕集技术——研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101.
|
|
WANG Zhi, YUAN Ye, SHENG Menglong, LI et al. Membrane technology for carbon capture—Research status and prospects[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1097-1101.
|
35 |
CHENG Kang, YE Wang, ZHANG Qinghong, et al. Relay catalysis in the direct conversion of carbon dioxide to high-value chemicals[J]. Scientia Sinica Chimica, 2020,50(7): 743-755.
|
36 |
陈倩倩, 顾宇, 唐志永, 等. 以二氧化碳规模化利用技术为核心的碳减排方案[J]. 中国科学院院刊, 2019, 34(4): 478-487.
|
|
CHEN Qianqian, GU Yu, TANG Zhiyong, et al. Carbon dioxide sizable utilization technology based carbon reduction solutions[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 478-487.
|
37 |
QIN Jiaxiang, JIANG Junqiao, Shuxian YE, et al. A novel thermoplastic elastomer from double CO2-Route oligomers[J]. Advanced Industrial and Engineering Polymer Research, 2019, 2(4):186-195.
|
38 |
王集杰,韩哲,陈思宇,等. 太阳燃料甲醇合成[J]. 化工进展,2022,41(3):1309-1317.
|
|
WANG Jijie, HAN Zhe, CHEN Siyuet al. Liquid sunshine methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317.
|