化工进展 ›› 2023, Vol. 42 ›› Issue (1): 310-320.DOI: 10.16085/j.issn.1000-6613.2022-0571
刘战剑1(), 杨金月1, 景境1, 张曦光1, 汪怀远1,2
收稿日期:
2022-04-06
修回日期:
2022-06-18
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
刘战剑
作者简介:
刘战剑(1990—),男,副教授,硕士生导师,研究方向为仿生界面材料制备及应用。E-mail:liuzhanjian2012@163.com。
基金资助:
LIU Zhanjian1(), YANG Jinyue1, JING Jing1, ZHANG Xiguang1, WANG Huaiyuan1,2
Received:
2022-04-06
Revised:
2022-06-18
Online:
2023-01-25
Published:
2023-02-20
Contact:
LIU Zhanjian
摘要:
受自然界超浸润现象的启发,三维超浸润多孔材料因其具有独特的油水分离优势受到科研工作者的广泛关注。本文首先分析了三维超浸润多孔油水分离材料的表面浸润性基础模型,包括Young模型、Wenzel模型和CassieBaxter模型;随后指出设计三维超浸润多孔材料的关键是调控材料的表面能和纳微结构,总结了三维超浸润多孔材料存在的独特优势,包括空隙率高、密度小、质地轻、比表面积大等特性;揭示了常见的三维超浸润多孔材料的油水分离原理,包括表面介质或基团对油滴/水滴的吸附效应以及不同亲疏性的选择效应。基于此,概括了不同种类三维超浸润多孔材料在油水分离领域中的研究进展,包括三维超浸润多孔海绵、三维超浸润多孔泡沫、三维超浸润多孔气凝胶,并针对不同类型三维超浸润多孔材料在油水分离过程中存在的独特优势和缺陷进行了总结,指出三维超浸润多孔材料在实际应用中存在的问题和挑战,并对研究出机械性能稳定、回弹性好、具备持久分离效果的三维超浸润多孔材料进行了展望。
中图分类号:
刘战剑, 杨金月, 景境, 张曦光, 汪怀远. 三维超浸润多孔材料在油水分离中的研究进展[J]. 化工进展, 2023, 42(1): 310-320.
LIU Zhanjian, YANG Jinyue, JING Jing, ZHANG Xiguang, WANG Huaiyuan. Research progress of three-dimensional super-wetting porous materials in oil-water separation[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 310-320.
49 | CHEN Jiucun, YOU Hui, XU Liqun, et al. Facile synthesis of a two-tier hierarchical structured superhydrophobic-superoleophilic melamine sponge for rapid and efficient oil/water separation[J]. Journal of Colloid and Interface Science, 2017, 506: 659-668. |
50 | STOLZ A, LE FLOCH S, REINERT L, et al. Melamine-derived carbon sponges for oil-water separation[J]. Carbon, 2016, 107: 198-208. |
51 | LIANG Liping, XUE Yuanyuan, WU Qian, et al. Self-assembly modification of polyurethane sponge for application in oil/water separation[J]. RSC Advances, 2019, 9(69): 40378-40387. |
52 | CHEN Junyong, XIANG Junhui, YUE Xian, et al. Synthesis of a superhydrophobic polyvinyl alcohol sponge using water as the only solvent for continuous oil-water separation[J]. Journal of Chemistry, 2019, 2019: 7153109. |
53 | WANG C F, HUANG H C, CHEN L T. Protonated melamine sponge for effective oil/water separation[J]. Scientific Reports, 2015, 5: 14294. |
54 | CHENG Huan, XIAO Dongdong, TANG Yujing, et al. Nanocellulose sponges: sponges with Janus character from nanocellulose: Preparation and applications in the treatment of hemorrhagic wounds (adv. healthcare mater. 17/2020)[J]. Advanced Healthcare Materials, 2020, 9(17): 2070057. |
55 | SU Chunping, YANG Hao, ZHAO Huiping, et al. Recyclable and biodegradable superhydrophobic and superoleophilic chitosan sponge for the effective removal of oily pollutants from water[J]. Chemical Engineering Journal, 2017, 330: 423-432. |
56 | LU Zihan, SONG Jun, PAN Kewen, et al. EcoFlex sponge with ultrahigh oil absorption capacity[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20037-20044. |
57 | LI Lijie, RONG Liduo, XU Zhangting, et al. Cellulosic sponges with pH responsive wettability for efficient oil-water separation[J]. Carbohydrate Polymers, 2020, 237: 116133. |
58 | Junwei LYU, WANG Bin, MA Qi, et al. Preparation of superhydrophobic melamine sponges decorated with polysiloxane nanotubes by plasma enhanced chemical vapor deposition (PECVD) method for oil/water separation[J]. Materials Research Express, 2018, 5(7): 075025. |
59 | LIU Hao, KANG Yong. Superhydrophobic and superoleophilic modified EPDM foam rubber fabricated by a facile approach for oil/water separation[J]. Applied Surface Science, 2018, 451: 223-231. |
60 | WAN Zuteng, LIU Yangchengyi, CHEN Shangda, et al. Facile fabrication of a highly durable and flexible MoS2@RTV sponge for efficient oil-water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546: 237-243. |
61 | RONG Jian, ZHANG Tao, QIU Fengxian, et al. Design and preparation of efficient, stable and superhydrophobic copper foam membrane for selective oil absorption and consecutive oil-water separation[J]. Materials & Design, 2018, 142: 83-92. |
62 | CHEN Xi, HE Yi, FAN Yi, et al. Facile fabrication of a robust superwetting three-dimensional (3D) nickel foam for oil/water separation[J]. Journal of Materials Science, 2017, 52(4): 2169-2179. |
63 | GE Xiao, QIN Wenxiu, ZHANG Haimin, et al. A three-dimensional porous Co@C/carbon foam hybrid monolith for exceptional oil-water separation[J]. Nanoscale, 2019, 11(25): 12161-12168. |
64 | CAO Xiaohan, ZHOU Yujie, WEI Xiangdong, et al. Lightweight, mechanical robust foam with a herringbone-like porous structure for oil/water separation and filtering[J]. Polymer Testing, 2018, 72: 86-93. |
65 | ZHANG Xin, WANG Bo, QIN Xiuming, et al. Cellulose acetate monolith with hierarchical micro/nano-porous structure showing superior hydrophobicity for oil/water separation[J]. Carbohydrate Polymers, 2020, 241: 116361. |
66 | YANG Wenjie, YUEN Anthony Chun Yin, LI Ao, et al. Recent progress in bio-based aerogel absorbents for oil/water separation[J]. Cellulose, 2019, 26(11): 6449-6476. |
67 | KIM C H, YOUN H J, LEE H L. Preparation of cross-linked cellulose nanofibril aerogel with water absorbency and shape recovery[J]. Cellulose, 2015, 22(6): 3715-3724. |
68 | ZHAO Yang, HU Chuangang, HU Yue, et al. A versatile, ultralight, nitrogen-doped graphene framework[J]. Angewandte Chemie International Edition, 2012, 51(45): 11371-11375. |
69 | KARATUM O, STEINER S A, GRIFFIN J S, et al. Flexible, mechanically durable aerogel composites for oil capture and recovery[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 215-224. |
70 | WANG Sen, WANG Xiao, SHI Xiaoyu, et al. A three-dimensional polyoxometalate/graphene aerogel as a highly efficient and recyclable absorbent for oil/water separation[J]. New Carbon Materials, 2021, 36(1): 189-197. |
71 | YAGOUB Hajo, ZHU Liping, SHIBRAEN Mahmoud H M A, et al. Complex aerogels generated from nano-polysaccharides and its derivatives for oil-water separation[J]. Polymers, 2019, 11(10): 1593. |
72 | REN Ruipeng, WANG Zhen, REN Jing, et al. Highly compressible polyimide/graphene aerogel for efficient oil/water separation[J]. Journal of Materials Science, 2019, 54(7): 5918-5926. |
1 | AGISTA Madhan, GUO Kun, YU Zhixin. A state-of-the-art review of nanoparticles application in petroleum with a focus on enhanced oil recovery[J]. Applied Sciences, 2018, 8(6): 871. |
2 | AHMAD A A, MUHAMMAD I, SHAH T, et al. Remediation methods of crude oil contaminated soil[J]. World Journal of Agriculture and Soil Science, 2020, 4(3): 000595. |
3 | WU Xiaohui, YUE Bo, SU Yi, et al. Pollution characteristics of polycyclic aromatic hydrocarbons in common used mineral oils and their transformation during oil regeneration[J]. Journal of Environmental Sciences, 2017, 56: 247-253. |
4 | HAJJARI M, TABATABAEI M, AGHBASHLO M, et al. A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste-oil biodiesel utilization[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 445-464. |
5 | ZHANG Yan, YIN Maoli, LIN Xinghuan, et al. Functional nanocomposite aerogels based on nanocrystalline cellulose for selective oil/water separation and antibacterial applications[J]. Chemical Engineering Journal, 2019, 371: 306-313. |
6 | HU Yue, ZHU Yanji, WANG Huaiyuan, et al. Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation[J]. Chemical Engineering Journal, 2017, 322: 157-166. |
7 | CAI Yongwei, ZHAO Qi, QUAN Xuejun, et al. Fluorine-free and hydrophobic hexadecyltrimethoxysilane-TiO2 coated mesh for gravity-driven oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124189. |
8 | HUANG Qunxing, HAN Xu, MAO Feiyan, et al. Effect of the particle surface on oil recovery from petroleum sludge[J]. Energy & Fuels, 2014, 28(7): 4480-4485. |
9 | AURELL J, GULLETT B K. Aerostat sampling of PCDD/PCDF emissions from the Gulf oil spill in situ burns[J]. Environmental Science & Technology, 2010, 44(24): 9431-9437. |
10 | ADEBAJO M, FROST R, KLOPROGGE J, et al. Porous materials for oil spill cleanup: A review of synthesis and absorbing properties[J]. Journal of Porous Materials, 2003, 10: 159-170. |
11 | LI Haoyu, MU Peng, LI Jian, et al. Inverse desert beetle-like ZIF-8/PAN composite nanofibrous membrane for highly efficient separation of oil-in-water emulsions[J]. Journal of Materials Chemistry A, 2021, 9(7): 4167-4175. |
12 | ZHONG Qi, SHI Guogui, SUN Qing, et al. Robust PVA-GO-TiO2 composite membrane for efficient separation oil-in-water emulsions with stable high flux[J]. Journal of Membrane Science, 2021, 640: 119836. |
13 | HAN Meiling, ZHANG Jin, CHU Wen, et al. Research progress and prospects of marine oily wastewater treatment: a review[J]. Water, 2019, 11(12): 2517. |
14 | QIN Yi, LI Shan, LI Yun, et al. Mechanically robust polybenzoxazine/reduced graphene oxide wrapped-cellulose sponge towards highly efficient oil/water separation, and solar-driven for cleaning up crude oil[J]. Composites Science and Technology, 2020, 197: 108254. |
15 | GORB E V, GORB S N. Physicochemical properties of functional surfaces in pitchers of the carnivorous plant Nepenthes alata blanco (Nepenthaceae)[J]. Plant Biology, 2006, 8(6): 841-848. |
16 | DUAN Haonan, Honghong LYU, SHEN Boxiong, et al. Superhydrophobic-superoleophilic biochar-based foam for high-efficiency and repeatable oil-water separation[J]. Science of the Total Environment, 2021, 780: 146517. |
17 | ZHU Haiyan, GAO Lin, YU Xinquan, et al. Durability evaluation of superhydrophobic copper foams for long-term oil-water separation[J]. Applied Surface Science, 2017, 407: 145-155. |
18 | XU Xu, LI Minxuan, LI Xiang, et al. Fabricated smart sponge with switchable wettability and photocatalytic response for controllable oil-water separation and pollutants removal[J]. Journal of Industrial and Engineering Chemistry, 2020, 92: 278-286. |
19 | ZHU Meng, LIU Yucheng, CHEN Mingyan, et al. Metal mesh-based special wettability materials for oil-water separation: A review of the recent development[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108889. |
20 | Young T. Thomas Young—An essay on the cohesion of fluids PDF[J]. Philosophical Transactions of the Royal Society of the Royal Society of London, 1805, 95: 65-87. |
21 | MCHALE G, SHIRTCLIFFE N J, NEWTON M I. Contact-angle hysteresis on super-hydrophobic surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2004, 20(23): 10146-10149. |
22 | WU Jie, HUANG Junjie. Dynamic behaviors of liquid droplets on a gas diffusion layer surface: Hybrid lattice Boltzmann investigation[J]. Journal of Applied Physics, 2015, 118: 044902. |
23 | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
24 | KOISHI T, YASUOKA K, FUJIKAWA S, et al. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(21): 8435-8440. |
73 | FANG Ying, JING Chuyan, LI Guoliang, et al. Wood-derived systems for sustainable oil/water separation[J]. Advanced Sustainable Systems, 2021, 5(7): 2100039. |
74 | YUE Xuejie, LI Zhangdi, ZHANG Tao, et al. Design and fabrication of superwetting fiber-based membranes for oil/water separation applications[J]. Chemical Engineering Journal, 2019, 364: 292-309. |
75 | HAN Lei, WU Wenhao, HUANG Zhong, et al. Preparation and characterization of a novel fluorine-free and pH-sensitive hydrophobic porous diatomite ceramic as highly efficient sorbent for oil-water separation[J]. Separation and Purification Technology, 2021, 254: 117620. |
76 | FU Qiliang, ANSARI Farhan, ZHOU Qi, et al. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures[J]. ACS Nano, 2018, 12(3): 2222-2230. |
77 | ZHAO Yueyue, MIAO Xiaran, LIN Jinyou, et al. A hierarchical and gradient structured supersorbent comprising three-dimensional interconnected porous fibers for efficient oil spillage cleanup[J]. Journal of Materials Chemistry A, 2016, 4(24): 9635-9643. |
78 | SHI Guogui, WU Mingming, ZHONG Qi, et al. Superhydrophobic waste cardboard aerogels as effective and reusable oil absorbents[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2021, 37(25): 7843-7850. |
79 | FAN Mingzhi, REN Zhiying, ZHANG Zhen, et al. Simple preparation of a durable and low-cost load-bearing three-dimensional porous material for emulsion separation[J]. New Journal of Chemistry, 2021, 45(38): 17893-17901. |
80 | HAN Longxiang, BI Hengchang, XIE Xiao, et al. Superhydrophobic graphene-coated sponge with microcavities for high efficiency oil-in-water emulsion separation[J]. Nanoscale, 2020, 12(34): 17812-17820. |
25 | GIACOMELLO A, CHINAPPI M, MELONI S, et al. Metastable wetting on superhydrophobic surfaces: continuum and atomistic views of the Cassie-Baxter-Wenzel transition[J]. Physical Review Letters, 2012, 109(22): 226102. |
26 | LIU Mingjie, WANG Shutao, WEI Zhixiang, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials, 2009, 21(6): 665-669. |
27 | GUO Zhiguang, LIU Weimin. Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure[J]. Plant Science, 2007, 172(6): 1103-1112. |
28 | 邱宇辰, 刘克松, 江雷. 花生叶表面的高黏附超疏水特性研究及其仿生制备[J]. 中国科学: 化学, 2011, 41(2): 403-408. |
QIU Yuchen, LIU Kesong, JIANG Lei. Peanut leaves with high adhesive superhydrophobicity and their biomimetic materials[J]. Scientia Sinica Chimica, 2011, 41(2): 403-408. | |
29 | ZHANG Lei, ZHOU Zhilian, CHENG Bin, et al. Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2006, 22(20): 8576-8580. |
30 | ZHANG Fengxiang, WANG Zhang, XU Shiying. Macroporous resin purification of grass carp fish (Ctenopharyngodon idella) scale peptides with in vitro angiotensin-I converting enzyme (ACE) inhibitory ability[J]. Food Chemistry, 2009, 117(3): 387-392. |
31 | DENG Yuying, PENG Changsheng, DAI Min, et al. Recent development of super-wettable materials and their applications in oil-water separation[J]. Journal of Cleaner Production, 2020, 266: 121624. |
32 | GUAN Yihao, CHENG Fangqin, PAN Zihe. Superwetting polymeric three dimensional (3D) porous materials for oil/water separation: a review[J]. Polymers, 2019, 11(5): 806. |
33 | LI Yuqi, ZHANG Hui, FAN Mizi, et al. A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil-water separation in marine environments[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(36): 25394-25400. |
34 | PHANTHONG P, REUBROYCHAROEN P, KONGPARAKUL S, et al. Fabrication and evaluation of nanocellulose sponge for oil/water separation[J]. Carbohydrate Polymers, 2018, 190: 184-189. |
35 | LI Meng, BIAN Cheng, YANG Guoxin, et al. Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion[J]. Chemical Engineering Journal, 2019, 368: 350-358. |
36 | WANG Xiaolong, PAN Yamin, LIU Xianhu, et al. Facile fabrication of superhydrophobic and eco-friendly poly(lactic acid) foam for oil-water separation via skin peeling[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14362-14367. |
37 | GAO Runan, XIAO Shaoliang, GAN Wentao, et al. Mussel adhesive-inspired design of superhydrophobic nanofibrillated cellulose aerogels for oil/water separation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9047-9055. |
38 | EJAZ AHMED F, LALIA B S, HILAL N, et al. Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation[J]. Desalination, 2014, 344: 48-54. |
39 | XU Tao, DING Yichun, LIANG Zhipeng, et al. Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: methods, properties, and applications[J]. Progress in Materials Science, 2020, 112: 100656. |
40 | ZHANG Ying, WU Yongjun, YANG Xukun, et al. High-strength thermal insulating mullite nanofibrous porous ceramics[J]. Journal of the European Ceramic Society, 2020, 40(5): 2090-2096. |
41 | LIU Hui, SU Sisi, XIE Jiawen, et al. Preparation of superhydrophobic magnetic stearic acid polyurethane sponge for oil-water separation[J]. Journal of Materials Research, 2020, 35(21): 2925-2935. |
42 | YONG Jiale, YANG Qing, GUO Chunlei, et al. A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation[J]. RSC Advances, 2019, 9(22): 12470-12495. |
43 | GE Mingzheng, CAO Chunyan, HUANG Jianying, et al. Rational design of materials interface at nanoscale towards intelligent oil-water separation[J]. Nanoscale Horizons, 2018, 3(3): 235-260. |
44 | JIN Ling, WANG Yijing, XUE Tao, et al. Smart amphiphilic random copolymer-coated sponge with pH-switchable wettability for on-demand oil/water separation[J]. Langumir, 2019, 35(45): 14473-14480. |
45 | ZHANG Li, DONG Dongyu, SHAO Leishan, et al. Cost-effective one-pot surface modified method to engineer a green superhydrophobic sponge for efficient oil/water mixtures as well as emulsions separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 576: 43-54. |
46 | ZHANG Ze, YANG Gang, WU Jun, et al. Enhanced properties of magnetic ultralight pear sponge assisted by Fenton-like reaction for oil-water separation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126: 332-340. |
47 | PENG Min, ZHU Yuan, LI Hui, et al. Synthesis and application of modified commercial sponges for oil-water separation[J]. Chemical Engineering Journal, 2019, 373: 213-226. |
48 | CAO Mengjue, FENG Yi, CHEN Qian, et al. Flexible Co-ZIF-L@melamine sponge with underwater superoleophobicity for water/oil separation[J]. Materials Chemistry and Physics, 2020, 241: 122385. |
[1] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[2] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
[3] | 路建美. 柔性吸附材料最新研究进展[J]. 化工进展, 2023, 42(6): 2781-2798. |
[4] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[5] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[6] | 孔祥如, 张肖阳, 孙鹏翔, 崔琳, 董勇. 直接空气捕碳固体多孔材料的研究进展[J]. 化工进展, 2023, 42(3): 1471-1483. |
[7] | 金鑫, 李玉姗, 解青青, 王梦雨, 夏星帆, 杨朝合. 多孔材料催化丙酮缩甘油合成研究进展[J]. 化工进展, 2023, 42(2): 731-743. |
[8] | 马文杰, 姚卫棠. 共价有机框架(COFs)在锂离子电池中的应用[J]. 化工进展, 2023, 42(10): 5339-5352. |
[9] | 叶泽权, 吴青芸, 顾林. 纤维素基油水分离材料研究进展[J]. 化工进展, 2022, 41(6): 3038-3050. |
[10] | 梁华根, 齐正伟, 贾林辉, 盖泽嘉, 荆胜羽, 尹诗斌. 锂-氧气电池用泡桐木衍生三维自支撑Co、N、S共掺杂多孔炭[J]. 化工进展, 2022, 41(5): 2555-2565. |
[11] | 孔祥宇, 谢亮, 王延民, 翟尚鹏, 王建国. CO2的捕集及资源化利用[J]. 化工进展, 2022, 41(3): 1187-1198. |
[12] | 梁格, 黄翔峰, 刘婉琪, 熊永娇, 彭开铭. 超疏水三维多孔材料在乳化液油水分离中的应用研究进展[J]. 化工进展, 2022, 41(12): 6557-6572. |
[13] | 王文霞, 刘小丰, 陈浠, 许艳虹, 蒙振邦, 郑俊霞, 安太成. 多孔g-C3N4基光催化材料的制备及应用研究进展[J]. 化工进展, 2022, 41(1): 300-309. |
[14] | 陈琦, 王文涛, 张志鹏, 晏太红. 共价有机框架材料对放射性核素吸附的研究进展[J]. 化工进展, 2021, 40(S2): 241-255. |
[15] | 李翠翠, 张婷, 安静, 曾见有, 马海霞. 三维有序大孔钙钛矿金属氧化物作为高效燃烧催化剂的研究进展[J]. 化工进展, 2021, 40(6): 3181-3190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |