化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1187-1198.DOI: 10.16085/j.issn.1000-6613.2021-2316
孔祥宇1(), 谢亮1, 王延民2, 翟尚鹏2(), 王建国1()
收稿日期:
2021-11-11
修回日期:
2021-12-12
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
翟尚鹏,王建国
作者简介:
孔祥宇(1994—),男,博士研究生,研究方向为CO2的综合利用。E-mail:基金资助:
KONG Xiangyu1(), XIE Liang1, WANG Yanmin2, ZHAI Shangpeng2(), WANG Jianguo1()
Received:
2021-11-11
Revised:
2021-12-12
Online:
2022-03-23
Published:
2022-03-28
Contact:
ZHAI Shangpeng,WANG Jianguo
摘要:
新型吸附材料对CO2进行吸附分离并催化转化为高附加值产品,具有绿色清洁的优点,是未来全球应对气候变化的重要技术选择之一,但在复杂环境CO2的捕集过程中存在无法高效吸附分离以及成本较高的问题。本文简述了CO2吸附材料最新研究进展以及资源化利用的有效途径,主要介绍了金属有机骨架(MOF)、分子筛、多孔碳材料、共价有机骨架(COF)等吸附材料的物化性质等对吸附量和选择性的影响,从催化转化的角度对合成甲酸、甲醇以及烯烃等小分子化合物进行了论述。基于含CO2废气的综合治理问题,探讨了将钢铁行业中的烟道气以及高炉煤气等进行加氢的可行性,在CO2捕集和转化的科学技术进步上开拓了新思路,对CO2更加清洁高效利用,实现低碳化、智能化多能融合进行展望。
中图分类号:
孔祥宇, 谢亮, 王延民, 翟尚鹏, 王建国. CO2的捕集及资源化利用[J]. 化工进展, 2022, 41(3): 1187-1198.
KONG Xiangyu, XIE Liang, WANG Yanmin, ZHAI Shangpeng, WANG Jianguo. CO2 capture and resource utilization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1187-1198.
1 | LIU R S, SHI X D, WANG C T, et al. Advances in post-combustion CO2 capture by physical adsorption: from materials innovation to separation practice[J]. ChemSusChem, 2021, 14(6): 1428-1471. |
2 | SINGH G, LEE J, KARAKOTI A, et al. Emerging trends in porous materials for CO2 capture and conversion[J]. Chemical Society Reviews, 2020, 49(13): 4360-4404. |
3 | CUI G, WANG J, ZHANG S. Active chemisorption sites in functionalized ionic liquids for carbon capture[J]. Chemical Society Reviews, 2016, 45(15): 4307-4339. |
4 | SINGH G, LAKHI K S, KIM I Y, et al. Highly efficient method for the synthesis of activated mesoporous biocarbons with extremely high surface area for high-pressure CO2 adsorption[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29782-29793. |
5 | ZHOU H C, KITAGAWA S. Metal-organic frameworks (MOFs)[J]. Chemical Society Reviews, 2014, 43(16): 5415-5418. |
6 | DZUBAK A L, LIN L C, KIM J, et al. Ab initio carbon capture in open-site metal-organic frameworks[J]. Nature Chemistry, 2012, 4(10): 810-816. |
7 | CHEN C W, FENG X B, ZHU Q, et al. Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture[J]. Inorganic Chemistry, 2019, 58(4): 2717-2728. |
8 | NGUYEN J G, COHEN S M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification[J]. Journal of the American Chemical Society, 2010, 132(13): 4560-4561. |
9 | CHEN T H, POPOV I, ZENASNI O, et al. Superhydrophobic perfluorinated metal-organic frameworks[J]. Chemical Communications, 2013, 49(61): 6846. |
10 | FRACAROLI A M, FURUKAWA H, SUZUKI M, et al. Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water[J]. Journal of the American Chemical Society, 2014, 136(25): 8863-8866. |
11 | GAO Y X, LIU K, KANG R X, et al. A comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: kinetics, isotherms and mechanisms[J]. Journal of Hazardous Materials, 2018, 359: 248-257. |
12 | ZHAO P, FANG H, MUKHOPADHYAY S, et al. Structural dynamics of a metal-organic framework induced by CO2 migration in its non-uniform porous structure[J]. Nature Communications, 2019, 10: 999. |
13 | SONG Z, DONG Q, XU W L, et al. Molecular layer deposition-modified 5A zeolite for highly efficient CO2 capture[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 769-775. |
14 | MASON J A, MCDONALD T M, BAE T H, et al. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O[J]. Journal of the American Chemical Society, 2015, 137(14): 4787-4803. |
15 | MIYAMOTO M, ONO S, KUSUKAMI K, et al. High water tolerance of a core-shell-structured zeolite for CO2 adsorptive separation under wet conditions[J]. ChemSusChem, 2018, 11(11): 1756-1760. |
16 | ZHOU Y, ZHANG J, WANG L, et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving[J]. Science, 2021, 373(6552): 315-320. |
17 | PANDA D, KUMAR E A, SINGH S K. Amine modification of binder-containing zeolite 4A bodies for post-combustion CO2 capture[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5301-5313. |
18 | WANG R, WANG P, YAN X, et al. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 5800-5806. |
19 | YU D, HU J, ZHOU L H, et al. Nitrogen-doped coal tar pitch based microporous carbons with superior CO2 capture performance[J]. Energy & Fuels, 2018, 32(3): 3726-3732. |
20 | ZHANG P X, ZHONG Y, DING J, et al. A new choice of polymer precursor for solvent-free method: preparation of N-enriched porous carbons for highly selective CO2 capture[J]. Chemical Engineering Journal, 2019, 355: 963-973. |
21 | SINGH G, LAKHI K S, SATHISH C I, et al. Oxygen-functionalized mesoporous activated carbons derived from casein and their superior CO2 adsorption capacity at both low- and high-pressure regimes[J]. ACS Applied Nano Materials, 2019, 2(3): 1604-1613. |
22 | DIERCKS C S, YAGHI O M. The atom, the molecule, and the covalent organic framework[J]. Science, 2017, 355(6328): 923. |
23 | BABARAO R, JIANG J W. Exceptionally high CO2 storage in covalent-organic frameworks: atomistic simulation study[J]. Energy & Environmental Science, 2008, 1(1): 139-143. |
24 | WANG G B, LEUS K, JENA H S, et al. A fluorine-containing hydrophobic covalent triazine framework with excellent selective CO2 capture performance[J]. Journal of Materials Chemistry A, 2018, 6(15): 6370-6375. |
25 | CUI Xu, GAO Peng, LI Shenggang, et al. Selective production of aromatics directly from carbon dioxide hydrogenation[J]. ACS Catalysis, 2019, 9(5): 3866-3876. |
26 | LI Kongzhai, CHEN Jingguang. CO2 hydrogenation to methanol over ZrO2-containing catalysts: insights into ZrO2 induced synergy[J]. ACS Catalysis, 2019, 9(9): 7840-7861. |
27 | JIANG Xiao, NIE Xiaowa, GUO Xinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034. |
28 | GAO Peng, LI Shenggang, BU Xianni, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nature Chemistry, 2017, 9(10): 1019-1024. |
29 | LI Zelong, WANG Jijie, QU Yuanzhi, et al. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12): 8544-8548. |
30 | WEI Jian, GE Qingjie, YAO Ruwei, et al. Directly converting CO2 into a gasoline fuel[J]. Nature Communications, 2017, 8(1): 15174. |
31 | LIU Xiaoliang, WANG Mengheng, ZHOU Cheng, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chemical Communications, 2018, 54(2): 140-143. |
32 | NI Youming, CHEN Zhiyang, FU Yi, et al. Selective conversion of CO2 and H2 into aromatics[J]. Nature Communications, 2018, 9(1): 3457. |
33 | WEI Jian, YAO Ruwei, GE Qingjie, et al. Catalytic hydrogenation of CO2 to isoparaffins over Fe-based multifunctional catalysts[J]. ACS Catalysis, 2018, 8(11): 9958-9967. |
34 | LI Zelong, QU Yuanzhi, WANG Jijie, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule, 2019, 3(2): 570-583. |
35 | OLAH George A. Beyond oil and gas: the methanol economy[J]. Angewandte Chemie International Edition, 2005, 44(18): 2636-2639. |
36 | WANG Lingxiang, WANG Liang, ZHANG Jian, et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts[J]. Angewandte Chemie, 2018, 130(21): 6212-6216. |
37 | KULD Sebastian, THORHAUGE Max, FALSIG Hanne, et al. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis[J]. Science, 2016, 352(6288): 969-974. |
38 | KATTEL Shyam, RAMÍREZ Pedro J, CHEN Jingguang G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331): 1296-1299. |
39 | KATTEL S, RAMÍREZ P J, CHEN J G et al. Response to comment on “active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts”[J]. Science, 2017, 357(6354): eaan8210. |
40 | BEHRENS Malte, STUDT Felix, KASATKIN Igor, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083): 893-897. |
41 | MILLS G A. Status and future opportunities for conversion of synthesis gas to liquid fuels[J]. Fuel, 1994, 73(8): 1243-1279. |
42 | GUPTA M, SMITH M L, SPIVEY J J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts[J]. ACS Catalysis, 2011, 1(6): 641-656. |
43 | KATTEL S, LIU P, CHEN J G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface[J]. Journal of the American Chemical Society, 2017, 139(29): 9739-9754. |
44 | YI Qun, LI Wenying, FENG Jie, et al. Carbon cycle in advanced coal chemical engineering[J]. Chemical Society Reviews, 2015, 44(15): 5409-5445. |
45 | LUK H T, MONDELLI C, FERRÉ D C, et al. Status and prospects in higher alcohols synthesis from syngas[J]. Chemical Society Reviews, 2017, 46(5): 1358-1426. |
46 | AO M, PHAM G H, SUNARSO J, et al. Active centers of catalysts for higher alcohol synthesis from syngas: a review[J]. ACS Catalysis, 2018, 8(8): 7025-7050. |
47 | XU Di, DING Mingyue, HONG Xinlin, et al. Selective C2+ alcohol synthesis from direct CO2 hydrogenation over a Cs-promoted Cu-Fe-Zn catalyst[J]. ACS Catalysis, 2020, 10(9): 5250-5260. |
48 | ZENG Lingzhen, WANG Zhiye, WANG Yongke, et al. Photoactivation of Cu centers in metal-organic frameworks for selective CO2 conversion to ethanol[J]. Journal of the American Chemical Society, 2020, 142(1): 75-79. |
49 | 张轩, 黄耀桢, 邵秀丽, 等. 结构化铜基催化剂电化学还原CO2为多碳产物研究进展[J]. 化工进展, 2021, 40(7): 3736-3746. |
ZHANG X, HUANG X Z, SHAO X L, et al. Recent progress in structured Cu-based catalysts for electrochemical CO2 reduction to C2+ products [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3736-3746. | |
50 | QIAO J L, LIU Y Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. |
51 | ROSEN B A, SALEHI-KHOJIN A, THORSON M R, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials[J] Science, 2011, 334(6056): 643-644. |
52 | LU Q, ROSEN J, ZHOU Y, et al. A selective and efficient electrocatalyst for carbon dioxide reduction[J]. Nature Communications, 2014, 5: 3242. |
53 | PETERSON A A, ABILD-PEDERSEN F, STUDT F, et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J]. Energy & Environmental Science, 2010, 3(9): 1311. |
54 | ZHANG Lei, ZHAO Zhijian, GONG Jinlong. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angewandte Chemie International Edition, 2017, 56(38): 11326-11353. |
55 | Rern Jern LIM, XIE Mingshi, Mahasin Alam SK, et al. A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts[J]. Catalysis Today, 2014, 233: 169-180. |
56 | LI H Z, QIU C L, REN S J, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels[J]. Science, 2020, 367(6478): 667-671. |
57 | GAO D F, ZHOU H, WANG J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4291. |
58 | YIN Zhouyang, YU Chao, ZHAO Zhonglong, et al. Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene[J]. Nano Letters, 2019, 19(12): 8658-8663. |
59 | YAN Yilong, FANG Qiaojun, PAN Jingkong, et al. Efficient photocatalytic reduction of CO2 using Fe-based covalent triazine frameworks decorated with in situ grown ZnFe2O4 nanoparticles[J]. Chemical Engineering Journal, 2021, 408: 127358. |
60 | ZHANG T, HAN X, LIU H, et al. Quasi-double-star nickel and iron active sites for high-efficiency carbon dioxide electroreduction[J]. Energy & Environmental Science, 2021, 14(9): 4847-4857. |
61 | 高继贤, 刘静, 翟尚鹏, 等. 活性焦(炭)干法烟气净化技术的应用进展[J]. 化工进展, 2011, 30(5): 1097-1105. |
GAO J X, LIU J, ZHAI S P, et al. Application progress of flue gas dry purification technology by activated coke(carbon)[J].Chemical Industry and Engineering Progress, 2011, 30(5): 1097-1105. | |
62 | 武传朋, 张晨昕, 郭大为, 等. 还原法脱除烟气中SO x 和/或NO x 的研究进展[J]. 化工进展, 2017, 36(S1): 457-463. |
WU C P, ZHANG C X, GUO D W, et al. Progress of reduction technology on removing SO x and/or NO x from flue gas[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 457-463. | |
63 | 翟尚鹏, 黄丽娜, 曾艳. 湿法脱硫净烟气再热技术的应用[J]. 环境工程, 2015, 33(8): 52-55. |
ZHAI S P, HUANG L N, ZENG Y. Application of clean flue gas reheat technology in the wet desulfurization[J]. Environmental Engineering, 2015, 33(8): 52-55. | |
64 | 黄丽娜, 翟尚鹏, 陈茂兵. 氨法脱硫中亚硫酸铵氧化技术的研究进展[J]. 华北电力技术, 2012(12): 25-28. |
HUANG L N, ZHAI S P, CHEN M B. Technology of ammonium sulfite in ammonia flue gas desulphurization process[J]. North China Electric Power, 2012(12): 25-28. | |
65 | 王光永, 张华西, 吴强, 等. 活性炭改性钼基催化剂用于高CO焦炉气加氢脱硫[J]. 石油化工, 2019, 48(7): 687-693. |
WANG G Y, ZHANG H X, WU Q, et al. Hydrodesulfurization of coke oven gas rich in CO over Mo-based catalyst modified by activated carbon[J]. Petrochemical Technology, 2019, 48(7): 687-693. | |
66 | 李全权, 钱卫强. 焦炉煤气和转炉煤气资源化利用途径探讨[J]. 冶金动力, 2020, 39(4): 17-20. |
LI Q Q, QIAN W Q. Discussion on resource utilization of coke oven gas and converter gas[J]. Metallurgical Power, 2020, 39(4): 17-20. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[5] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[6] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[7] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[8] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[9] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[10] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[11] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
[12] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[13] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[14] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[15] | 徐贤, 崔楼伟, 刘杰, 施俊合, 朱永红, 刘姣姣, 刘涛, 郑化安, 李冬. 原料组成对半焦中间相结构发展的影响[J]. 化工进展, 2023, 42(5): 2343-2352. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |