化工进展 ›› 2023, Vol. 42 ›› Issue (1): 297-309.DOI: 10.16085/j.issn.1000-6613.2022-0512
收稿日期:
2022-03-29
修回日期:
2022-05-31
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
张和平
作者简介:
潘月磊(1992—),男,特任副研究员,研究方向为气凝胶热安全材料。E-mail: panyl@ustc.edu.cn。
基金资助:
PAN Yuelei(), CHENG Xudong, YAN Mingyuan, HE Pan, ZHANG Heping()
Received:
2022-03-29
Revised:
2022-05-31
Online:
2023-01-25
Published:
2023-02-20
Contact:
ZHANG Heping
摘要:
二氧化硅气凝胶是目前已知最轻的固体材料,具有热导率低、孔隙率高和比表面积大等优点,被誉为新型超级保温隔热材料。然而,二氧化硅气凝胶自身存在力学性能差和制备成本高的问题,大大限制了其在保温隔热领域大规模推广应用。本文简述了二氧化硅气凝胶合成技术和力学性能增强方法,从制备过程控制、老化条件优化、热处理、纤维复合和高分子聚合物复合等方面分析了其对气凝胶性能和工艺的影响,重点介绍了近年来二氧化硅气凝胶保温隔热材料应用在航空航天、军工领域、工业管道、建筑保温以及新能源汽车等领域的研究进展,总结了其在各领域应用的技术挑战。指出未来需进一步拓展二氧化硅气凝胶的使用温区,利用共前体和化学交联等方法增强高温下的隔热性能,同时解决气凝胶纤维复材“掉粉”和微米级粉体分散不均匀等难题,尤其是新能源汽车等新兴应用领域发展迅猛,未来仍需针对新的应用需求对其合成技术进行设计和优化。
中图分类号:
潘月磊, 程旭东, 闫明远, 何盼, 张和平. 二氧化硅气凝胶及其在保温隔热领域应用进展[J]. 化工进展, 2023, 42(1): 297-309.
PAN Yuelei, CHENG Xudong, YAN Mingyuan, HE Pan, ZHANG Heping. Silica aerogel and its application in the field of thermal insulation[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 297-309.
分类 | 工艺流程 | 特点 |
---|---|---|
颗粒气凝胶填充玻璃 | 用一定粒度和颗粒级的气凝胶颗粒填充入玻璃空腔中,最后密封形成颗粒气凝胶填充玻璃 | 制备工艺简单,成本低,性能稳定,在三类气凝胶的商业应用中处于主导地位 |
块状气凝胶玻璃 | 在两块玻璃之间放入大块气凝胶芯材,再用密封胶密封 | 块状气凝胶生产成本高且易碎,良品率低,但气凝胶连续性好,在作为太阳能集热板时集热系数较高 |
涂膜气凝胶玻璃 | 将凝胶用溶剂均质或超声分散后再镀膜;或将溶胶涂覆于玻璃上,再在玻璃上完成凝胶、干燥过程。 | 可通过改变配比和优化涂敷工艺来提高气凝胶玻璃性能;但涂层与玻璃基体之间的连接性和黏结性差 |
表1 不同SiO2气凝胶玻璃制备工艺流程及特点
分类 | 工艺流程 | 特点 |
---|---|---|
颗粒气凝胶填充玻璃 | 用一定粒度和颗粒级的气凝胶颗粒填充入玻璃空腔中,最后密封形成颗粒气凝胶填充玻璃 | 制备工艺简单,成本低,性能稳定,在三类气凝胶的商业应用中处于主导地位 |
块状气凝胶玻璃 | 在两块玻璃之间放入大块气凝胶芯材,再用密封胶密封 | 块状气凝胶生产成本高且易碎,良品率低,但气凝胶连续性好,在作为太阳能集热板时集热系数较高 |
涂膜气凝胶玻璃 | 将凝胶用溶剂均质或超声分散后再镀膜;或将溶胶涂覆于玻璃上,再在玻璃上完成凝胶、干燥过程。 | 可通过改变配比和优化涂敷工艺来提高气凝胶玻璃性能;但涂层与玻璃基体之间的连接性和黏结性差 |
1 | MALEKI Hajar, Luisa DURÃES, PORTUGAL António. An overview on silica aerogels synthesis and different mechanical reinforcing strategies[J]. Journal of Non-Crystalline Solids, 2014, 385: 55-74. |
2 | HE Fei, YU Wanjun, FANG Minhan, et al. An overview on silica aerogels synthesized by siloxane co-precursors[J]. Journal of Inorganic Materials, 2015, 30(12): 1243-1253. |
3 | GOLD V, LOENING K L, MCNAUGHT A D, et al. International union of pure and applied chemistry compendium of chemical terminology IUPAC recommendations[M]. Oxford: Blackwell Scientific Publications Limited, 1987: 230. |
4 | Nicola HÜSING, SCHUBERT Ulrich. Aerogels-airy materials: Chemistry, structure, and properties[J]. Angewandte Chemie International Edition, 1998, 37(1/2): 22-45. |
5 | KOCON L, DESPETIS F, PHALIPPOU B. Ultralow density silica aerogels by alcohol supercritical drying[J]. Journal of Non-Crystalline Solids, 1998, 225: 96-100. |
6 | AEGERTER M, LEVENTIS N, KOEBEL M. Aerogels handbook[M]. USA: Springer Science & Business Media, 2011. |
7 | BODAY Dylan, MURIITHI Beatrice, STOVER Robert, et al. Polyaniline nanofiber-silica composite aerogels[J]. Journal of Non-Crystalline Solids, 2012, 358(12/13): 1575-1580. |
8 | LINHARES T, PESSOA DE A M, DURÃES L. Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications[J]. Journal of Materials Chemistry A, 2019, 7(40): 22768-22802. |
9 | PAN Yuelei, HE Song, GONG Lunlun, et al. Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying[J]. Materials & Design, 2017, 113: 246-253. |
10 | PAN Yuelei, HE Song, CHENG Xudong, et al. A fast synthesis of silica aerogel powders-based on water glass via ambient drying[J]. Journal of Sol-Gel Science and Technology, 2017, 82(2): 594-601. |
11 | DORCHEH A S, ABBASI M H. Silica aerogel; synthesis, properties and characterization[J]. Journal of Materials Processing Technology, 2008, 199(1/2/3): 10-26. |
12 | LI W, WILLEY R J. Stability of hydroxyl and methoxy surface groups on silica aerogels[J]. Journal of Non-Crystalline Solids, 1997, 212(2/3): 243-249. |
13 | RAO A V, BHAGAT S D. Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid-base) sol-gel process[J]. Solid State Sciences, 2004, 6(9): 945-952. |
14 | PISAL A A, RAO A V. Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method[J]. Journal of Porous Materials, 2016, 23(6): 1547-1556. |
15 | SCARTEZZINI J L. Proceedings of CISBAT 2015 international conference on future buildings and districts-Sustainability from nano to urban scale-Vol. II[C]//Cisbat International Conference “future Buildings & Districts-sustainability from Nano to Urban Scale”. EPFL Solar Energy and Building Physics Laboratory, 2015. |
16 | SHAO Zaidong, HE Xiaoyong, NIU Ziwei, et al. Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths[J]. Materials Chemistry and Physics, 2015, 162: 346-353. |
17 | Tomasz BŁASZCZYŃSKI, Agnieszka ŚLOSARCZYK, MORAWSKI Maciej. Synthesis of silica aerogel by supercritical drying method[J]. Procedia Engineering, 2013, 57: 200-206. |
18 | TAMON Hajime, KITAMURA Taketo, OKAZAKI Morio. Preparation of silica aerogel from TEOS[J]. Journal of Colloid and Interface Science, 1998, 197(2): 353-359. |
19 | ISWAR S, MALFAIT W J, BALOG S, et al. Effect of aging on silica aerogel properties[J]. Microporous and Mesoporous Materials, 2017, 241: 293-302. |
20 | LIN Jiming, LI Guangze, LIU Wei, et al. A review of recent progress on the silica aerogel monoliths: Synthesis, reinforcement, and applications[J]. Journal of Materials Science, 2021, 56(18): 10812-10833. |
21 | FRICKE J, EMMERLING A. Aerogels-recent progress in production techniques and novel applications[J]. Journal of Sol-Gel Science and Technology, 1998, 13(1): 299-303. |
22 | SMITH D M, DESHPANDE R, JEFFREY B C. Preparation of low-density aerogels at ambient pressure[J]. MRS Online Proceedings Library, 1992, 271(1): 567-572. |
23 | WU Guoyou, YU Yuxi, CHENG Xuan, et al. Preparation and surface modification mechanism of silica aerogels via ambient pressure drying[J]. Materials Chemistry and Physics, 2011, 129(1/2): 308-314. |
24 | BANGI U K, DHERE S L, VENKATESWARA R A. Influence of various processing parameters on water-glass-based atmospheric pressure dried aerogels for liquid marble purpose[J]. Journal of Materials Science, 2010, 45(11): 2944-2951. |
25 | 武晨浩, 李昆锋, 李肖华, 等. 二氧化硅气凝胶常压干燥工艺的研究进展[J]. 化工进展, 2022, 41(2): 837-847. |
WU Chenhao, LI Kunfeng, LI Xiaohua, et al. Research progress on preparation of silica aerogels at ambient pressure drying[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 837-847. | |
26 | ZHOU Ting, CHENG Xudong, PAN Yuelei, et al. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying[J]. Applied Surface Science, 2018, 437: 321-328. |
27 | SHAFI Sameera, NAVIK Rahul, DING Xiao, et al. Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel[J]. Journal of Non-Crystalline Solids, 2019, 503/504: 78-83. |
28 | STRØM R A, MASMOUDI Y, RIGACCI A, et al. Strengthening and aging of wet silica gels for up-scaling of aerogel preparation[J]. Journal of Sol-Gel Science and Technology, 2007, 41(3): 291-298. |
29 | HÆREID S, ANDERSON J, EINARSRUD M A, et al. Thermal and temporal aging of TMOS-based aerogel precursors in water[J]. Journal of Non-Crystalline Solids, 1995, 185(3): 221-226. |
30 | LUCAS E M, DOESCHER M S, EBENSTEIN D M, et al. Silica aerogels with enhanced durability, 30-nm mean pore-size, and improved immersibility in liquids[J]. Journal of Non-Crystalline Solids, 2004, 350: 244-252. |
31 | ZHAO Junjie, DUAN Yuanyuan, WANG Xiaodong, et al. Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation[J]. International Journal of Heat and Mass Transfer, 2012, 55(19/20): 5196-5204. |
32 | LI Zhi, CHENG Xudong, HE Song, et al. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J]. Composites A: Applied Science and Manufacturing, 2016, 84: 316-325. |
33 | BODAY D J, STOVER R J, MURIITHI B, et al. Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels[J]. ACS Applied Materials & Interfaces, 2009, 1(7): 1364-1369. |
34 | ZHANG G, DASS A, RAWASHDEH A M M, et al. Isocyanate-crosslinked silica aerogel monoliths: Preparation and characterization[J]. Journal of Non-Crystalline Solids, 2004, 350: 152-164. |
35 | YOUSEFI A T, MOGHADDAS J. Cogeled copper-silica aerogel as a catalyst in hydrogen production from methanol steam reforming[J]. International Journal of Hydrogen Energy, 2015, 40(3): 1472-1480. |
36 | TALEBI Z, SOLTANI P, HABIBI N, et al. Silica aerogel/polyester blankets for efficient sound absorption in buildings[J]. Construction and Building Materials, 2019, 220: 76-89. |
37 | REIM M, KÖRNER W, MANARA J, et al. Silica aerogel granulate material for thermal insulation and daylighting[J]. Solar Energy, 2005, 79(2): 131-139. |
38 | STANDEKER S, NOVAK Z, KNEZ Z. Adsorption of toxic organic compounds from water with hydrophobic silica aerogels[J]. Journal of Colloid and Interface Science, 2007, 310(2): 362-368. |
39 | TSOU Peter. Silica aerogel captures cosmic dust intact[J]. Journal of Non-Crystalline Solids, 1995, 186: 415-427. |
40 | 李俊宁, 胡子君, 孙陈诚, 等. 高超声速飞行器隔热材料技术研究进展[J]. 宇航材料工艺, 2011, 41(6): 10-13, 31. |
LI Junning, HU Zijun, SUN Chencheng, et al. Thermal insulation materials for hypersonic vehicles[J]. Aerospace Materials & Technology, 2011, 41(6): 10-13, 31. | |
41 | 韩露, 袁磊, 于景坤. Research progress on SiO2 nanoporous thermal insulating material[J]. 耐火材料, 2012, 46(2): 146-150. |
HAN Lu, YUAN Lei, YU Jingkun. Research progress on SiO2 nanoporous thermal insulating material[J]. Refractories, 2012, 46(2): 146-150. | |
42 | 沈学霖, 朱光明, 杨鹏飞. 航空航天用隔热材料的研究进展[J]. 高分子材料科学与工程, 2016, 32(10): 164-169. |
SHEN Xuelin, ZHU Guangming, YANG Pengfei. Advances in heat insulation material applied for aerospace[J]. Polymer Materials Science & Engineering, 2016, 32(10): 164-169. | |
43 | MALFAIT W J, WERNERY J, ZHAO S, et al. Encyclopedia of Glass Science, Technology, History, and Culture: Silica aerogels[M]. New York: John Wiley & Sons Inc., 2021, 2: 981-989. |
44 | WANG Qin, YU Heng, ZHANG Zeyu, et al. One-pot synthesis of polymer-reinforced silica aerogels from high internal phase emulsion templates[J]. Journal of Colloid and Interface Science, 2020, 573: 62-70. |
45 | YEO J, LIU Z, NG T Y. Silica aerogels: A review of molecular dynamics modelling and characterization of the structural, thermal, and mechanical properties[M]. Cham: Springer International Publishing, 2020: 1575-1595. |
46 | 冯坚, 高庆福, 冯军宗, 等. SiO2气凝胶隔热复合材料性能及应用研究进展[C]. 第十六届全国复合材料学办年会(NCCM-16). 北京: 中国科学技术出版社, 2010: 76-80. |
FENG Jian, GAO Qingfu, FENG Junzong, et al. Progress on the performance and application of SiO2 aerogel insulation composites[C] The 16th National Conference on Composite Materials(NCCM-16) Beijing: Science and Technology of China Press, 2010: 76-80 | |
47 | ZHANG Xinxin, WEI Gaosheng, YU Fan. Influence of some parameters on effective thermal conductivity of nano-porous aerogel super insulator[C]//Proceedings of ASME 2005 Summer Heat Transfer Conference Collocated With the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, July, 2005, San Francisco, California, USA, 2009: 7-12. |
48 | LEE Kang. Aerogels for retrofitted increases in aircraft survivability[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April, 2002, Denver, Colorado. Reston, Virginia: AIAA, 2002: 1497. |
49 | 兰伟, 刘效疆. 长寿命热电池保温材料的研究[J]. 电源技术, 2005, 29(3): 167-169. |
LAN Wei, LIU Xiaojiang. Study on thermal insulation used in long-life thermal battery[J]. Chinese Journal of Power Sources, 2005, 29(3): 167-169. | |
50 | 陆磊, 顾于珏, 吴源昊. SiO2气凝胶在建筑材料应用上的研究[J]. 砖瓦, 2020(7): 83-85. |
LU Lei, GU Yujue, WU Yuanhao. Study on the application of silica aerogel in building materials[J]. Brick-Tile, 2020(7): 83-85. | |
51 | 黄杰, 陈令施. 浅谈气凝胶绝热毡在热力管道保温工程中的应用[J]. 城市建设理论研究, 2015, 5(8): 3030-3031. |
HUANG Jie, CHEN Lingshi. Application of aerogel thermal insulation felt in thermal pipeline thermal insulation engineering[J]. Urban Construction Theory Research, 2015, 5(8): 3030-3031. | |
52 | 董相禄, 倪明, 罗旭光, 等. 二氧化硅气凝胶毡在直埋蒸汽管的应用[J]. 煤气与热力, 2017, 37(11): 10-13. |
DONG Xianglu, NI Ming, LUO Xuguang, et al. Application of silica aerogel felt to directly buried steam pipe[J]. Gas & Heat, 2017, 37(11): 10-13. | |
53 | 任富建. 二氧化硅气凝胶复合毡热力管道保温性能分析[J]. 区域供热, 2016(1): 62-64, 76. |
REN Fujian. Analysis of thermal insulation performance of silica aerogel composite felt thermal pipeline[J]. District Heating, 2016(1): 62-64, 76. | |
54 | 张由素, 刘丰, 练绵炎, 等. SiO2气凝胶毡在化工管道领域应用研究[J]. 化工新型材料, 2016, 44(1): 250-251. |
ZHANG Yousu, LIU Feng, LIAN Mianyan, et al. Application research of silica aerogel material in the chemical pipeline[J]. New Chemical Materials, 2016, 44(1): 250-251. | |
55 | 吕谦. 注汽锅炉气凝胶节能技术研究与应用[C]//第十六届五省(市、区)稠油开采技术研讨会论文集, 2012: 487-490. |
LV Qian. Research and application of aerogel energy-saving technology for steam injection boilers[C]//Proceedings of the 16th Five-Province (City, District) Heavy Oil Exploitation Technology Seminar, 2012: 487-490. | |
56 | 包波. 注汽锅炉气凝胶节能技术研究与应用[J]. 设备管理与维修, 2014(S1): 219-221. |
BAO Bo. Research and application of aerogels energy saving technology for gas injection boiler [J]. Plant Maintenance Engineering, 2014(S1): 219-221. | |
57 | 徐雨虹. 注汽锅炉气凝胶节能技术研究与应用[J]. 石油和化工节能, 2014(2): 4. |
XU Yuhong. Research and application of aerogel energy-saving technology for steam injection boilers[J]. Petroleum & Chemical Energy Conservation, 2014(2): 4. | |
58 | 郭晓煜, 张光磊, 赵霄云, 等. 气凝胶在建筑节能领域的应用形式与效果[J]. 硅酸盐通报, 2015, 34(2): 444-449, 455. |
GUO Xiaoyu, ZHANG Guanglei, ZHAO Xiaoyun, et al. Forms and effect of aerogels as insulation materials in building energy-saving[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(2): 444-449, 455. | |
59 | 石静. 气凝胶在建筑节能领域的应用形式与效果分析[J]. 化工管理, 2018(9): 31-32. |
SHI Jing. Application form and effect analysis of aerogel in building energy saving fieldJ]. Chemical Enterprise Management, 2018(9): 31-32. | |
60 | BERARDI Umberto. The development of a monolithic aerogel glazed window for an energy retrofitting project[J]. Applied Energy, 2015, 154: 603-615. |
61 | FANTUCCI Stefano, FENOGLIO Elisa, GROSSO Giulia, et al. Development of an aerogel-based thermal coating for the energy retrofit and the prevention of condensation risk in existing buildings[J]. Science and Technology for the Built Environment, 2019, 25(9): 1178-1186. |
62 | LIANG Yuying, WU Huijun, HUANG Gongsheng, et al. Thermal performance and service life of vacuum insulation panels with aerogel composite cores[J]. Energy and Buildings, 2017, 154: 606-617. |
63 | AN Lu, WANG Jieyu, PETIT Donald, et al. A scalable crosslinked fiberglass-aerogel thermal insulation composite[J]. Applied Materials Today, 2020, 21: 100843. |
64 | LI Pengwei, WU Huijun, LIU Yanchen, et al. Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete[J]. Construction and Building Materials, 2019, 205: 529-542. |
65 | GÜNAY A A, KIM H, NAGARAJAN N, et al. Optically transparent thermally insulating silica aerogels for solar thermal insulation[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12603-12611. |
66 | GAO Tao, IHARA Takeshi, GRYNNING Steinar, et al. Perspective of aerogel glazings in energy efficient buildings[J]. Building and Environment, 2016, 95: 405-413. |
67 | GAO T, JELLE B P, GUSTAVSEN A. Building integration of aerogel glazings[J]. Procedia Engineering, 2016, 145: 723-728. |
68 | KIM G S, HYUN S H. Synthesis of window glazing coated with silica aerogel films via ambient drying[J]. Journal of Non-Crystalline Solids, 2003, 320(1/2/3): 125-132. |
69 | BURATTI C, MORETTI E. Glazing systems with silica aerogel for energy savings in buildings[J]. Applied Energy, 2012, 98: 396-403. |
70 | LV Yajun, WU Huijun, LIU Yanchen, et al. Quantitative research on the influence of particle size and filling thickness on aerogel glazing performance[J]. Energy and Buildings, 2018, 174: 190-198. |
71 | 王珊, 王欢, 杨建明, 等. 气凝胶节能玻璃的研究与应用进展[J]. 建筑节能, 2016, 44(8): 50-54. |
WANG Shan, WANG Huan, YANG Jianming, et al. Advances on research and application of aerogel glazing for energy efficiency[J]. Building Energy Efficiency, 2016, 44(8): 50-54. | |
72 | 何方, 吴菊英, 黃渝鸿, 等. 影响二氧化硅气凝胶隔热涂料热导率的因素[J]. 化工进展, 2014, 33(8): 2134-2139, 2169. |
HE Fang, WU Juying, HUANG Yuhong, et al. Effect of contents and sizes on the thermal conductivity of silica aerogel thermal insulation coatings[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 2134-2139, 2169. | |
73 | LIU ZhaoHui, DING Yidong, XIN Shu, et al. Preparation, characterization and properties of SiO2 aerogel composite thermal insulation coating[J]. Chemical Engineering Transactions, 2016, 55: 259-264. |
74 | SCHMIDT M, SCHWERTFEGER F. Applications for silica aerogel products[J]. Journal of Non-Crystalline Solids, 1998, 225: 364-368. |
75 | LIU Zongjian, LIU Ling, ZHONG Zhenggen, et al. Ultralight hybrid silica aerogels derived from supramolecular hydrogels self-assembled from insoluble nano building blocks[J]. RSC Advances, 2021, 11(13): 7331-7337. |
76 | ZHAO Xiaoming, LIU Yuanjun, LIANG Tenglong. Study on the Thermal Insulation Performance of PAN Pre-Oxidised Fibre Felts[J]. Fibres & Textiles in Eastern Europe, 2020, 28(3): 27-37. |
77 | ZHAO S, MALFAIT W J, DEMILECAMPS A, et al. Strong, thermally superinsulating biopolymer-silica aerogel hybrids by cogelation of silicic acid with pectin[J]. Angewandte Chemie, 2015, 127(48): 14490-14494. |
78 | HUANG Yajun, HE Song, CHEN Guangnan, et al. Fast preparation of glass fiber/silica aerogel blanket in ethanol & water solvent system[J]. Journal of Non-Crystalline Solids, 2019, 505: 286-291. |
79 | ŚLOSARCZYK A, WOJCIECH S, PIOTR Z, et al. Synthesis and characterization of carbon fiber/silica aerogel nanocomposites[J]. Journal of Non-Crystalline Solids, 2015, 416: 1-3. |
80 | SHAFI S, ZHAO Yaping. Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation[J]. Journal of Porous Materials, 2020, 27(2): 495-502. |
81 | YAN Mingyuan, PAN Yuelei, CHENG Xudong, et al. “Robust-Soft” anisotropic nanofibrillated cellulose aerogels with superior mechanical, flame-Retardant, and thermal insulating properties[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27458-27470. |
82 | LI Zhi, GONG Lunlun, CHENG Xudong, et al. Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior[J]. Materials & Design, 2016, 99: 349-355. |
83 | ADHIKARY S K, ASHISH D K, RUDŽIONIS Ž. Aerogel based thermal insulating cementitious composites: A review[J]. Energy and Buildings, 2021, 245: 111058. |
84 | CUI Jun, HOU Peng, DING Qing, et al. Study on properties and analysis on market of domestic fiberglass reinforced aerogel blanket[J]. Fiber Glass, 2019, 2: 30-35. |
85 | 彭罗文, 艾明星, 柳培玉, 等. 二氧化硅气凝胶材料在建筑领域的应用研究及发展概述[J]. 建筑节能, 2018, 46(1): 41-48. |
PENG Luowen, AI Mingxing, LIU Peiyu, et al. Overview of the application and development of silica aerogel material in the building field[J]. Building Energy Efficiency, 2018, 46(1): 41-48. | |
86 | XU Xiang, ZHANG Qiangqiang, HAO Menglong, et al. Double-negative-index ceramic aerogels for thermal superinsulation[J]. Science, 2019, 363(6428): 723-727. |
87 | REN Bo, LIU Jinging, RONG Yedong, et al. Nanofibrous aerogel bulk assembled by cross-linked SiC/SiO x core-shell nanofibers with multifunctionality and temperature-invariant hyperelasticity[J]. ACS Nano, 2019, 13(10): 11603-11612. |
88 | WANG Fei, HUANG Lu, LIU Zhaohui, et al. Performance optimization of SiO2 aerogel mortar[J]. Equipment Environmental Engineering, 2016, 13(2): 13-17. |
89 | NG S, JELLE B P, SANDBERG L I C, et al. Experimental investigations of aerogel-incorporated ultra-high performance concrete[J]. Construction and Building Materials, 2015, 77: 307-316. |
90 | GAO T, JELLE B P, GUSTAVSEN A, et al. Aerogel-incorporated concrete: An experimental study[J]. Construction and Building Materials, 2014, 52: 130-136. |
91 | NG S, SANDBERG L I, JELLE B P. Insulating and strength properties of an aerogel-incorporated mortar based an UHPC formulations[J]. Key Engineering Materials, 2014, 629/630: 43-48. |
92 | NG S, JELLE B P, STÆHLI T. Calcined clays as binder for thermal insulating and structural aerogel incorporated mortar[J]. Cement and Concrete Composites, 2016, 72: 213-221. |
93 | STEFANIDOU M, IOANNA-MARIA M, MYRTA G M. Influence of aerogel as aggregate in the properties of cement mortars[J]. IOP Conference Series: Earth and Environmental Science, 2020, 410(1): 012117. |
94 | NG S, JELLE B P, ZHEN Y, et al. Effect of storage and curing conditions at elevated temperatures on aerogel-incorporated mortar samples based on UHPC recipe[J]. Construction and Building Materials, 2016, 106: 640-649. |
95 | 沈军, 连娅, 祖国庆, 等. 气凝胶低成本制备及其在建筑保温领域中的应用[J]. 功能材料, 2015, 46(7): 7001-7007. |
SHEN Jun, LIAN Ya, ZU Guoqing, et al. Aerogel low-cost preparation and its application in the field of building insulation[J]. Journal of Functional Materials, 2015, 46(7): 7001-7007. | |
96 | LI Qing, ZHANG Yuanting, WEN Zhexi, et al. An evacuated receiver partially insulated by a solar transparent aerogel for parabolic trough collector[J]. Energy Conversion and Management, 2020, 214: 112911. |
97 | WANG Qin, YU Heng, ZHANG Zeyu, et al. One-pot synthesis of polymer-reinforced silica aerogels from high internal phase emulsion templates[J]. Journal of Colloid and Interface Science, 2020, 573: 62-70. |
98 | ILIS G G. Progress in exergy, energy, and the environment: experimental insulation performance evaluation of aerogel for household refrigerators[M]. Cham: Springer, 2014: 495-506. |
99 | 马荣, 童跃进, 关怀民. SiO2气凝胶的研究现状与应用[J]. 材料导报, 2011, 25(1): 58-64. |
MA Rong, TONG Yuejin, GUAN Huaimin. Current research and applications of silica aerogels[J]. Materials Review, 2011, 25(1): 58-64. | |
100 | 罗嘉联, 林思程, 钟奇君. 超级绝热材料气凝胶在冰箱中的应用探究[J]. 江西建材, 2014(9): 2, 5. |
LUO Jialian, LIN Sicheng, ZHONG Qijun. Research on the application of super insulating material aerogel in refrigerator[J]. Jiangxi Building Materials, 2014(9): 2, 5. | |
101 | WENG Jingwen, OUYANG Dongxu, YANG Xiaoqing, et al. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material[J]. Energy Conversion and Management, 2019, 200: 112071. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[5] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[6] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[7] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[8] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[9] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[10] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[11] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[12] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[13] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[14] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[15] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |