化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2555-2565.DOI: 10.16085/j.issn.1000-6613.2021-1011
梁华根1(), 齐正伟2, 贾林辉1, 盖泽嘉2, 荆胜羽2, 尹诗斌3()
收稿日期:
2021-05-12
修回日期:
2021-06-17
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
尹诗斌
作者简介:
梁华根(1985—),男,副研究员,研究方向为电催化与能源材料。E-mail:基金资助:
LIANG Huagen1(), QI Zhengwei2, JIA Linhui1, GAI Zejia2, JING Shengyu2, YIN Shibin3()
Received:
2021-05-12
Revised:
2021-06-17
Online:
2022-05-05
Published:
2022-05-24
Contact:
YIN Shibin
摘要:
正极是锂-氧气(Li-O2)电池的电化学反应场所,其直接决定了电池性能。本研究采用泡桐木为原材料,在NaCl/CoCl2混合熔融盐介质中,以三聚氰胺和硫脲为氮源和硫源,一步热解炭化制备出Co、N、S共掺杂的三维自支撑多孔炭材料(wd-NSC),并直接用作Li-O2电池正极。利用X射线衍射、扫描电镜、透射电镜、氮气吸脱附、拉曼光谱、X射线光电子能谱等对所获三维自支撑多孔炭材料的形貌、晶体结构与化学成分进行了表征。研究结果表明,Co、N、S共掺杂的三维自支撑多孔炭材料表现出高比容量(在0.05mA/cm2的电流密度下,放电比容量可达12.83mA·h/cm2)和出色的循环稳定性(在电流密度为0.1mA/cm2和限定容量为0.5mA·h/cm2下,循环寿命可达125次),优异的电池性能可归因于三维分级多孔结构及Co、N、S共掺杂的协同作用。
中图分类号:
梁华根, 齐正伟, 贾林辉, 盖泽嘉, 荆胜羽, 尹诗斌. 锂-氧气电池用泡桐木衍生三维自支撑Co、N、S共掺杂多孔炭[J]. 化工进展, 2022, 41(5): 2555-2565.
LIANG Huagen, QI Zhengwei, JIA Linhui, GAI Zejia, JING Shengyu, YIN Shibin. Three dimensional self-supporting Co, N, S co-doped porous carbon derived from paulownia wood for Li-O2 batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2555-2565.
材料 | SBET/m2·g-1 | Smicro/m2·g-1 | Smeso/m2·g-1 | Vt/cm3·g-1 | Vmicro/cm3·g-1 | Vmeso/cm3·g-1 | daverage/nm |
---|---|---|---|---|---|---|---|
wd-NSC | 879.4 | 66.4 | 813.0 | 0.61 | 0.31 | 0.34 | 2.9 |
wd-NC | 362.1 | 292.2 | 69.9 | 0.19 | 0.12 | 0.09 | 2.3 |
表1 wd-NSC和wd-NC的孔结构参数
材料 | SBET/m2·g-1 | Smicro/m2·g-1 | Smeso/m2·g-1 | Vt/cm3·g-1 | Vmicro/cm3·g-1 | Vmeso/cm3·g-1 | daverage/nm |
---|---|---|---|---|---|---|---|
wd-NSC | 879.4 | 66.4 | 813.0 | 0.61 | 0.31 | 0.34 | 2.9 |
wd-NC | 362.1 | 292.2 | 69.9 | 0.19 | 0.12 | 0.09 | 2.3 |
材料 | wC/% | wN/% | wO/% | wS/% | wCo/% |
---|---|---|---|---|---|
wd-NSC | 72.68 | 8.07 | 15.96 | 0.96 | 1.29 |
wd-NC | 82.69 | 5.1 | 10.32 | — | 1.06 |
表2 wd-NSC和wd-NC中各元素的原子分数
材料 | wC/% | wN/% | wO/% | wS/% | wCo/% |
---|---|---|---|---|---|
wd-NSC | 72.68 | 8.07 | 15.96 | 0.96 | 1.29 |
wd-NC | 82.69 | 5.1 | 10.32 | — | 1.06 |
材料 | 电流密度 /mA·cm-2 | 放电比容量 /mA·h·cm-2 | 循环寿命 /次 | 参考文献 |
---|---|---|---|---|
N-HMACs-RuO2 | — | 5.36 | 215 | [ |
CA-wood/Ru | 0.1 | 8.58 | 100 | [ |
wd-NC | 0.08 | 1.86 | 20 | [ |
RuO2/WD-C | 0.1 | 8.38 | 200 | [ |
Wood-D/Co3O4/C | 0.1 | 6 | — | [ |
SCC-N | 0.05 | — | 61 | [ |
NiFeP/BC | 0.05 | 10.9 | 90 | [ |
本文 | 0.05 | 12.83 | 125 | — |
表3 以生物质衍生三维自支撑材料为正极的Li-O2电池性能
材料 | 电流密度 /mA·cm-2 | 放电比容量 /mA·h·cm-2 | 循环寿命 /次 | 参考文献 |
---|---|---|---|---|
N-HMACs-RuO2 | — | 5.36 | 215 | [ |
CA-wood/Ru | 0.1 | 8.58 | 100 | [ |
wd-NC | 0.08 | 1.86 | 20 | [ |
RuO2/WD-C | 0.1 | 8.38 | 200 | [ |
Wood-D/Co3O4/C | 0.1 | 6 | — | [ |
SCC-N | 0.05 | — | 61 | [ |
NiFeP/BC | 0.05 | 10.9 | 90 | [ |
本文 | 0.05 | 12.83 | 125 | — |
1 | ZHANG P, DING M J, LI X X, et al. Challenges and strategy on parasitic reaction for high-performance nonaqueous lithium-oxygen batteries[J]. Advanced Energy Materials, 2020, 10(40): 2001789. |
2 | 吴爱明, 夏国锋, 沈水云, 等. 非水体系锂-空气电池研究进展[J]. 物理化学学报, 2016, 32(8): 1866-1879. |
WU Aiming, XIA Guofeng, SHEN Shuiyun, et al. Recent progress in non-aqueous lithium-air batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1866-1879. | |
3 | LIU T, VIVEK J P, ZHAO E W, et al. Current challenges and routes forward for nonaqueous lithium-air batteries[J]. Chemical Reviews, 2020, 120(14): 6558-6625. |
4 | KWAK W J, ROSY, SHARON D, et al. Lithium-oxygen batteries and related systems: potential, status, and future[J]. Chemical Reviews, 2020, 120(14): 6626-6683. |
5 | WANG T J, WANG Y W, CHEN Y H, et al. Developing practical lithium-air batteries by avoiding negative effects of CO2 [J]. Acta Physico Chimica Sinica, DOI: 10.3866/PKU.WHXB202009071 . |
6 | WANG H F, WANG X X, LI M L, et al. Porous materials applied in nonaqueous Li-O2 batteries: status and perspectives[J]. Advanced Materials, 2020, 32(44): 2002559. |
7 | 王朕, 吴刚, 董鹏, 等. 锂-二氧化碳电池阴极催化剂的研究进展[J]. 化工进展, 2020, 39(9): 3677-3684. |
WANG Zhen, WU Gang, DONG Peng, et al. Research progress of cathode catalysts for Li-CO2 batteries[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3677-3684. | |
8 | 张英杰, 章艳佳, 曾晓苑, 等. 掺杂碳材料在锂空气电池中的应用研究进展[J]. 化工进展, 2018, 37(3): 1047-1053. |
ZHANG Yingjie, ZHANG Yanjia, ZENG Xiaoyuan, et al. Review on recent progress of doped carbon materials for Li-air batteries[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1047-1053. | |
9 | 李妍慧, 银凤翔, 何小波, 等. 锂/空气电池非贵金属催化剂研究进展[J]. 化工进展, 2015, 34(11): 3926-3932. |
LI Yanhui, YIN Fengxiang, HE Xiaobo, et al. Recent progress in non-precious metal catalysts for lithium-air batteries[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3926-3932. | |
10 | JUNG J W, CHO S H, NAM J S, et al. Current and future cathode materials for non-aqueous Li-air (O2) battery technology—A focused review[J]. Energy Storage Materials, 2020, 24: 512-528. |
11 | ZHU X B, WU Y G, WAN W H, et al. CNF-grafted carbon fibers as a binder-free cathode for lithium-oxygen batteries with a superior performance[J]. International Journal of Hydrogen Energy, 2018, 43(2): 739-747. |
12 | SONG K F, YUAN L F, LI Z X, et al. Tuning MnCo2O4 nanowire arrays on carbon cloth as an efficient cathode catalyst for Li-O2 batteries[J]. Electrochimica Acta, 2020, 353: 136572. |
13 | HOU Z Q, SHU C Z, HEI P, et al. Configuration of gradient-porous ultrathin FeCo2S4 nanosheets vertically aligned on Ni foam as a noncarbonaceous freestanding oxygen electrode for lithium-oxygen batteries[J]. Nanoscale, 2020, 12(3): 1864-1874. |
14 | DENG J, LI M M, WANG Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion[J]. Green Chemistry, 2016, 18(18): 4824-4854. |
15 | BORGHEI M, LEHTONEN J, LIU L, et al. Advanced biomass-derived electrocatalysts for the oxygen reduction reaction[J]. Advanced Materials, 2018, 30(24): 1703691. |
16 | ZHAO X, ZHU J B, LIANG L, et al. Biomass-derived N-doped carbon and its application in electrocatalysis[J]. Applied Catalysis B: Environmental, 2014, 154/155: 177-182. |
17 | ZENG X Y, LENG L M, LIU F F, et al. Enhanced Li-O2 battery performance, using graphene-like nori-derived carbon as the cathode and adding LiI in the electrolyte as a promoter[J]. Electrochimica Acta, 2016, 200: 231-238. |
18 | ZHU X D, SHANG Y, LU Y C, et al. A free-standing biomass-derived RuO2/N-doped porous carbon cathode towards highly performance lithium-oxygen batteries[J]. Journal of Power Sources, 2020, 471: 228444. |
19 | XU S M, CHEN C J, KUANG Y D, et al. Flexible lithium-CO2 battery with ultrahigh capacity and stable cycling[J]. Energy & Environmental Science, 2018, 11(11): 3231-3237. |
20 | SONG H Y, XU S M, LI Y J, et al. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries[J]. Advanced Energy Materials, 2018, 8(4): 1701203. |
21 | QIAO Y, XU S M, LIU Y, et al. Transient, in situ synthesis of ultrafine ruthenium nanoparticles for a high-rate Li-CO2 battery[J]. Energy & Environmental Science, 2019, 12(3): 1100-1107. |
22 | ZHU Y S, ZHANG B S. Nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions[J]. Journal of Energy Chemistry, 2021, 58: 610-628. |
23 | LIANG H G, JIA L H, CHEN F. Three-dimensional self-standing Co@NC octahedron/biochar cathode for non-aqueous Li-O2 batteries: efficient catalysis for reversible formation and decomposition of LiOH[J]. Journal of Materials Science, 2020, 55(18): 7792-7804. |
24 | LIANG H G, ZHANG Y L, CHEN F, et al. A novel NiFe@NC-functionalized N-doped carbon microtubule network derived from biomass as a highly efficient 3D free-standing cathode for Li-CO2 batteries[J]. Applied Catalysis B: Environmental, 2019, 244: 559-567. |
25 | JING S Y, ZHANG Y L, CHEN F, et al. Novel and highly efficient cathodes for Li-O2 batteries: 3D self-standing NiFe@NC-functionalized N-doped carbon nanonet derived from Prussian blue analogues/biomass composites[J]. Applied Catalysis B: Environmental, 2019, 245: 721-732. |
26 | LIANG H G, CHEN F, ZHANG M S, et al. Highly performing free standing cathodic electrocatalysts for Li-O2 batteries: CoNiO2 nanoneedle arrays supported on N-doped carbon nanonet[J]. Applied Catalysis A: General, 2019, 574: 114-121. |
27 | LIANG H G, GONG X, JIA L H, et al. Highly efficient Li-O2 batteries based on self-standing NiFeP@NC/BC cathode derived from biochar supported Prussian blue analogues[J]. Journal of Electroanalytical Chemistry, 2020, 867: 114124. |
28 | JING S Y, ZHANG M S, LIANG H G, et al. Facile synthesis of 3D binder-free N-doped carbon nanonet derived from silkworm cocoon for Li-O2 battery[J]. Journal of Materials Science, 2018, 53(6): 4395-4405. |
29 | LI Y P, CI S Q, CAI P W, et al. Thermally stable cobalt amide cyanide as high-activity and durable bifunctional electrocatalyst toward O2 and CO2 reduction[J]. Electrochimica Acta, 2020, 353: 136605. |
30 | YU H, SUN X Y, TANG D H, et al. Molten salt strategy to synthesize alkali metal-doped Co9S8 nanoparticles embedded, N, S co-doped mesoporous carbon as hydrogen evolution electrocatalyst[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6006-6014. |
31 | PERAZZOLO V, DURANTE C, PILOT R, et al. Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide[J]. Carbon, 2015, 95: 949-963. |
32 | ZHANG J, CHEN J W, LUO Y, et al. A defect-driven atomically dispersed Fe-N-C electrocatalyst for bifunctional oxygen electrocatalytic activity in Zn-air batteries[J]. Journal of Materials Chemistry A, 2021, 9(9): 5556-5565. |
33 | WU Y, YANG Y, GAO T T, et al. Ligand regulation to prepare an Fe, N, S tri-codoped hollow carbon electrocatalyst for enhanced ORR performance and Zn-air batteries[J]. Sustainable Energy & Fuels, 2020, 4(8): 4117-4125. |
34 | ZOU J, WANG B, ZHU B, et al. Fe, N, S-codoped carbon frameworks derived from nanocrystal superlattices towards enhanced oxygen reduction activity[J]. Nano Convergence, 2019, 6(1): 4. |
35 | GAO J, LIU S, ZHU P, et al. Fe-N4 engineering of S and N co-doped hierarchical porous carbon-based electrocatalysts for enhanced oxygen reduction in Zn-air batteries[J]. Dalton Transactions, 2020, 49(42): 14847-14853. |
36 | AL-SHAHAT EISSA A, KIM N H, LEE J H. Rational design of a highly mesoporous Fe-N-C/Fe3C/C-S-C nanohybrid with dense active sites for superb electrocatalysis of oxygen reduction[J]. Journal of Materials Chemistry A, 2020, 8(44): 23436-23454. |
37 | FENG M J, ZHANG Q, SUN S G, et al. In-situ synthesis of Fe, N, S co-doped graphene-like nanosheets around carbon nanoparticles with dual-nitrogen-source as efficient electrocatalyst for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2021, 46(11): 8002-8013. |
38 | SONG S Q, WU M M, CHEN J W, et al. An Fe-N/S-C hybrid electrocatalyst derived from bimetal-organic framework for efficiently electrocatalyzing oxygen reduction reaction in acidic media[J]. Journal of Energy Chemistry, 2021, 52: 291-300. |
39 | DAI P, XUE Y, ZHANG S, et al. Paper-derived flexible 3D interconnected carbon microfiber networks with controllable pore sizes for supercapacitors[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37046-37056. |
40 | SHEN H J, GRACIA-ESPINO E, MA J Y, et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media[J]. Angewandte Chemie International Edition, 2017, 129(44): 13988-13992. |
41 | SABHAPATHY P, SHOWN I, SABBAH A, et al. Electronic structure modulation of isolated Co-N4 electrocatalyst by sulfur for improved pH-universal hydrogen evolution reaction[J]. Nano Energy, 2021, 80: 105544. |
42 | NI B X, CHEN R, WU L M, et al. Optimized enhancement effect of sulfur in Fe-N-S codoped carbon nanosheets for efficient oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 23995-24006. |
43 | ZHONG J P, HOU C, LI L, et al. A novel strategy for synthesizing Fe, N, and S tridoped graphene-supported Pt nanodendrites toward highly efficient methanol oxidation[J]. Journal of Catalysis, 2020, 381: 275-284. |
44 | NAVEEN M H, SHIM K, HOSSAIN M S A, et al. Template free preparation of heteroatoms doped carbon spheres with trace Fe for efficient oxygen reduction reaction and supercapacitor[J]. Advanced Energy Materials, 2017, 7(5): 1602002. |
45 | HUO S L, NI W, ZHAO Y F, et al. Highly efficient atomically dispersed Co-N active sites in porous carbon for high-performance capacitive desalination of brackish water[J]. Journal of Materials Chemistry A, 2021, 9(5): 3066-3076. |
46 | LIANG Z Z, KONG N N, YANG C X, et al. Highly curved nanostructure-coated Co, N-doped carbon materials for oxygen electrocatalysis[J]. Angewandte Chemie International Edition, 2021, 60(23): 12759-12764. |
47 | HUANG K X, LI J, SUN M L, et al. PEDOT functionalized ZIF-67 derived Co-N-S triple-doped porous carbon for high-efficiency oxygen reduction[J]. Applied Surface Science, 2021, 535: 147659. |
48 | ZHANG W M, CHU J J, LI S F, et al. CoN x C active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs as efficient multifunctional electrocatalyst for rechargeable Zn-air batteries[J]. Journal of Energy Chemistry, 2020, 51: 323-332. |
49 | SHEN J R, WU H T, SUN W, et al. In-situ nitrogen-doped hierarchical porous hollow carbon spheres anchored with iridium nanoparticles as efficient cathode catalysts for reversible lithium-oxygen batteries[J]. Chemical Engineering Journal, 2019, 358: 340-350. |
50 | YUAN M W, ZHANG S T, LIN L, et al. Manganese carbodiimide nanoparticles modified with N-doping carbon: a bifunctional cathode electrocatalyst for aprotic Li-O2 battery[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17464-17473. |
51 | YUAN L F, SONG K F, LIU Z Y, et al. Fe2O3 nanorods decorated with ultrafine CeO2 as binder-free cathode to improve the performance of Li-O2 batteries[J]. Electrochimica Acta, 2021, 368: 137645. |
52 | TOMON C, KRITTAYAVATHANANON A, SARAWUTANUKUL S, et al. Enhancing bifunctional electrocatalysts of hollow Co3O4 nanorods with oxygen vacancies towards ORR and OER for Li-O2 batteries[J]. Electrochimica Acta, 2021, 367: 137490. |
53 | MONACO S, SOAVI F, MASTRAGOSTINO M. Role of oxygen mass transport in rechargeable Li/O2 batteries operating with ionic liquids[J]. The Journal of Physical Chemistry Letters, 2013, 4(9): 1379-1382. |
54 | LUO J R, YAO X H, YANG L, et al. Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications[J]. Nano Research, 2017, 10(12): 4318-4326. |
55 | ZHU C L, DU L, LUO J M, et al. A renewable wood-derived cathode for Li-O2 batteries[J]. Journal of Materials Chemistry A, 2018, 6(29): 14291-14298. |
56 | ZHAO G Y, LIU Y F, TANG L, et al. Capacitive behavior based on the ultrafast mass transport in a self-supported lithium oxygen battery cathode[J]. ACS Applied Energy Materials, 2019, 2(3): 2113-2121. |
57 | FAN X P, HUANG Y G, WANG H Q, et al. Efficacious nitrogen introduction into MoS2 as bifunctional electrocatalysts for long-life Li-O2 batteries[J]. Electrochimica Acta, 2021, 369: 137653. |
58 | ZHANG G Z, YAO Y, ZHAO T, et al. From black liquor to green energy resource: positive electrode materials for Li-O2 battery with high capacity and long cycle life[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16521-16530. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[6] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[7] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[8] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[11] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[12] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[13] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[14] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[15] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |