化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6557-6572.DOI: 10.16085/j.issn.1000-6613.2022-0430
收稿日期:
2022-03-21
修回日期:
2022-04-21
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
彭开铭
作者简介:
梁格(1999—),男,硕士研究生,研究方向为油水分离。E-mail:2030555@tongji.edu.cn。
基金资助:
LIANG Ge(), HUANG Xiangfeng, LIU Wanqi, XIONG Yongjiao, PENG Kaiming()
Received:
2022-03-21
Revised:
2022-04-21
Online:
2022-12-20
Published:
2022-12-29
Contact:
PENG Kaiming
摘要:
超疏水三维多孔材料基于润湿性和毛细作用可有效吸附回收水中浮油,近年来在乳化液的油水分离中也得到应用。本文重点从超疏水三维多孔材料的设计制备、对乳化液的油水分离效果、油滴在材料中的分离机制3个方面展开分析与评价。文中指出:材料设计制备方面,以海绵为主的多孔材料主要通过修饰低表面能物质和构建粗糙结构获得超亲油疏水性,疏水改性后的材料具备较高的油吸附容量(31~131g/g)。乳化液油水分离评价方面,超疏水三维多孔材料处理的对象多为O/W模型乳化液,油浓度低、表面活性剂浓度低、液滴粒径为微米级,少见对实际乳化液的处理;应用方式包括基于吸附作用的浸泡处理和吸附协同拦截作用的过滤处理两类;分析发现影响油水分离效果的关键是材料的孔径、表面疏水性和带电性。作用机制方面,疏水多孔材料吸附乳化油的作用过程仍停留在理论推测层面,主要观点为材料通过笼状孔道结构和疏水表面高效捕集和吸附油滴,油滴聚并破乳形成油层而被分离。虽然超疏水三维多孔材料在乳化液油水分离应用研究中取得了一定进展,但仍需探究其对实际废乳化液的适用性,设计开发连续分离设备以实现工程应用;结合原位观测、数值模拟、力学解析等方法解析油滴在多孔材料中的迁移转化规律和关键环节,以揭示其作用机制。
中图分类号:
梁格, 黄翔峰, 刘婉琪, 熊永娇, 彭开铭. 超疏水三维多孔材料在乳化液油水分离中的应用研究进展[J]. 化工进展, 2022, 41(12): 6557-6572.
LIANG Ge, HUANG Xiangfeng, LIU Wanqi, XIONG Yongjiao, PENG Kaiming. A review of superhydrophobic three-dimensional porous materials for oil/water separation of emulsions[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6557-6572.
基底类型 | 修饰材料 | 修饰方法 | 水接触角 /(°) | 吸油效能 | 参考 文献 | |
---|---|---|---|---|---|---|
吸附容量/g·g-1 | 回用次数/次 | |||||
海绵 | ||||||
PU | 硬脂酸锌 | 悬液浸渍 | 175 | 6~81 | — | [ |
Fe3O4颗粒、油酸、氧化石墨烯 | 悬液浸渍 | 158 | 80~150 | 15 | [ | |
MoS2纳米片、4-(十七氟辛基)苯胺 | 共价键连接 | 155 | 25~90 | 10 | [ | |
Fe3O4颗粒、硬脂酸 | 悬液浸渍 | 158 | 23.8~86.7 | 50 | [ | |
乙烯基三乙氧基硅烷、(3-氯丙基)三乙氧基硅烷 | 悬液浸渍 | 155 | 26~71 | 15 | [ | |
MS | MXene纳米片、十四胺 | 悬液浸渍 | 152 | 60~112 | 20 | [ |
PDMS、CuS颗粒 | 原位合成 | 169.3 | 117 | 10 | [ | |
聚多巴胺、聚乙烯亚胺 | 共聚沉淀 | 141.9 | 67.2~178.6 | 10 | [ | |
氧化石墨烯 | 悬液浸渍 | 130.8 | 29.26~76.46 | 50 | [ | |
三氯十八烷基硅烷 | 悬液浸渍 | 153 | 165.9 | 35 | [ | |
Fe3O4颗粒、聚苯并嗪 | 悬液浸渍 | 140 | 65.8~136.2 | 100 | [ | |
PDMS | 石墨烯 | 悬液浸渍 | 130.8 | 4~15 | 15 | [ |
碳氮纳米片 | 悬液浸渍 | 133.2 | 2.2~8 | 10 | [ | |
氧化石墨烯 | 共价键连接 | 138.1 | 5.59~19.55 | 30 | [ | |
气凝胶 | Fe3O4颗粒、小烛树蜡 | 悬液浸渍 | 147.9 | 17.7~43.8 | 10① | [ |
Fe3O4颗粒、硅纤维 | 悬液浸渍 | 150 | 34.2~53.87 | 10 | [ | |
还原氧化石墨烯、十八胺 | 悬液浸渍 | 154 | 36.07~65.09 | — | [ | |
Ag颗粒、三甲基氯硅烷 | 化学气相沉积 | 153.6 | 29.6~62.8 | 10 | [ | |
泡沫 | — | — | 151.3 | 41.2~46.8 | 10 | [ |
— | — | 149 | 7.82~37.29 | 20 | [ | |
生物基 | Fe3O4颗粒 | 悬液浸渍 | 157.0 | 13.63~37.39 | 20① | [ |
棕榈蜡 | 悬液浸渍 | 154 | 7.6~16.1 | 20 | [ |
表1 超/高疏水三维多孔材料基底类型及修饰方法
基底类型 | 修饰材料 | 修饰方法 | 水接触角 /(°) | 吸油效能 | 参考 文献 | |
---|---|---|---|---|---|---|
吸附容量/g·g-1 | 回用次数/次 | |||||
海绵 | ||||||
PU | 硬脂酸锌 | 悬液浸渍 | 175 | 6~81 | — | [ |
Fe3O4颗粒、油酸、氧化石墨烯 | 悬液浸渍 | 158 | 80~150 | 15 | [ | |
MoS2纳米片、4-(十七氟辛基)苯胺 | 共价键连接 | 155 | 25~90 | 10 | [ | |
Fe3O4颗粒、硬脂酸 | 悬液浸渍 | 158 | 23.8~86.7 | 50 | [ | |
乙烯基三乙氧基硅烷、(3-氯丙基)三乙氧基硅烷 | 悬液浸渍 | 155 | 26~71 | 15 | [ | |
MS | MXene纳米片、十四胺 | 悬液浸渍 | 152 | 60~112 | 20 | [ |
PDMS、CuS颗粒 | 原位合成 | 169.3 | 117 | 10 | [ | |
聚多巴胺、聚乙烯亚胺 | 共聚沉淀 | 141.9 | 67.2~178.6 | 10 | [ | |
氧化石墨烯 | 悬液浸渍 | 130.8 | 29.26~76.46 | 50 | [ | |
三氯十八烷基硅烷 | 悬液浸渍 | 153 | 165.9 | 35 | [ | |
Fe3O4颗粒、聚苯并嗪 | 悬液浸渍 | 140 | 65.8~136.2 | 100 | [ | |
PDMS | 石墨烯 | 悬液浸渍 | 130.8 | 4~15 | 15 | [ |
碳氮纳米片 | 悬液浸渍 | 133.2 | 2.2~8 | 10 | [ | |
氧化石墨烯 | 共价键连接 | 138.1 | 5.59~19.55 | 30 | [ | |
气凝胶 | Fe3O4颗粒、小烛树蜡 | 悬液浸渍 | 147.9 | 17.7~43.8 | 10① | [ |
Fe3O4颗粒、硅纤维 | 悬液浸渍 | 150 | 34.2~53.87 | 10 | [ | |
还原氧化石墨烯、十八胺 | 悬液浸渍 | 154 | 36.07~65.09 | — | [ | |
Ag颗粒、三甲基氯硅烷 | 化学气相沉积 | 153.6 | 29.6~62.8 | 10 | [ | |
泡沫 | — | — | 151.3 | 41.2~46.8 | 10 | [ |
— | — | 149 | 7.82~37.29 | 20 | [ | |
生物基 | Fe3O4颗粒 | 悬液浸渍 | 157.0 | 13.63~37.39 | 20① | [ |
棕榈蜡 | 悬液浸渍 | 154 | 7.6~16.1 | 20 | [ |
材料缩写 | 乳化液特征 | 处理方式 | 分离率 /% | 参考 文献 | ||||
---|---|---|---|---|---|---|---|---|
乳化液 类型 | 油水体积比 | 液滴粒径 /μm | 表面活性剂 种类 | 表面活性剂浓度 /g·L-1 | ||||
植酸(PA)@聚乙烯亚胺(PEI)-海绵 | O/W、W/O | 1/250, 100/1 | 0.7~4① | SDS | 0.2 | 加泵过滤 | 99.7 | [ |
MS-聚酰胺薄膜(PAF)-埃洛石纳米管(HNTs)/SiO2 | O/W | 1/9 | 0.2~2① | SDBS | 0.1 | — | 99.58 | [ |
十八烷基膦酸和TiO2-MS | O/W | 1/100 | — | Tween 80 | 2.5 | 静置浸泡 | 澄清 | [ |
聚多巴胺(PDA)/碳纳米管(CNT)-PDMS海绵 | O/W | 1/99 | — | CTAB | 0.1%(质量分数) | 搅拌浸泡 | 澄清 | [ |
ZnCl2@纤维素海绵(CS) | O/W | 1/100 | 5~25① | Tween 80 | 0.1%(质量分数) | 重力过滤 | 99.2 | [ |
PDMS/铜对苯二酸酯(CuTPA)/PU | O/W | 1/1000 | 2~27① | Span 80 | 0.1%(质量分数) | 搅拌浸泡 | >92 | [ |
十四胺(TDA)-Mxene@MS | W/O | 40/1 | 2~30① | Span 80 | 1.25 | 重力过滤 | 97.1 | [ |
共轭微孔聚合物(CMP)@海绵 | O/W | 1/20 | — | 无 | 无 | 静置浸泡 | 澄清 | [ |
超疏水(SHP)-三聚氰胺树脂海绵(MRSs) | W/O | 100/1 | 0.5~1.3 | Span 80 | 2 | 重力过滤 | 98.7 | [ |
棕榈蜡(CW)@柚皮海绵(PPS)-80 | W/O | 99/1 | 0.4~8 | Span 80 | 0.15 | 重力过滤 | 澄清 | [ |
非晶碳球(ACS)-PU | O/W | 1/100 | 50~300 | SDS | — | 加泵过滤 | 澄清 | [ |
PTOS-Fe3O4@PDA/MS | W/O | 99/1 | 0.2~0.8 | Span 80 | 1 | 重力过滤 | 澄清 | [ |
MS@多巴胺和聚乙烯亚胺(DP) | O/W | 1/99 | 5~40 | SDBS | 1 | 加泵过滤 | 82.2 | [ |
反式 | W/O | 112/1 | 2~9① | Span 80 | 3.54 | 重力过滤 | 澄清 | [ |
PDMS海绵-多壁碳纳米管(MWCNT) | O/W | 1/4 | — | SDS | 0.04 | 静置浸泡 | 澄清 | [ |
聚乳酸(PLA)-Fe3O4-PDA-多重网状壳聚糖海绵(HLCS) | O/W | 1/57 | 10~50 | Tween 80 | 6 | 重力过滤 | 澄清 | [ |
纤维素微纤维(CNF)/烷基化修饰壳聚糖(NCS)/聚乙烯醇(PVA)海绵 | W/O | 114/1 | — | Span 80 | 3~4.35 | 加泵过滤 | 澄清 | [ |
Mn0.01Co0.90Fe3O4(MCFO)/还原氧化石墨烯(RGO)/PU | O/W | 1/9 | 15~70① | Pluronic F-127 | 0.1 | 静置浸泡 | 99.9 | [ |
聚苯并嗪(PBZ)MS | W/O | 49/1 | 0.5~4① | Span 80 | 3 | 加泵过滤 | 澄清 | [ |
碳化三聚氰胺海绵(CMS)/rGO/PFDT | W/O | 99/1 | — | Tween 80 | 3 | 重力过滤 | 92~95 | [ |
rGO@三聚氰胺甲醛树脂(MF) | O/W | (1/100)~(3/100) | 0.23~0.74 | 无 | 无 | 搅拌浸泡 | 92~98 | [ |
CNF Janus复合海绵 | O/W | — | 1~10① | — | — | 重力过滤 | 53~100 | [ |
十六烷基三甲氧基硅烷(HDTMS)/rGO-MF | O/W | — | 0.5~10① | 无 | 无 | 搅拌浸泡 | 澄清 | [ |
氧化石墨烯和聚四氟乙烯(GP)MS | O/W | 1/25 | — | 无 | 无 | 加泵过滤 | 98 | [ |
功能化-MoS2-PU | O/W | 1/19 | 5~20 | Pluronic F-127 | 0.1 | 静置浸泡 | >96 | [ |
磁性超疏水超亲油(MSS)-PU | O/W | 1/9 | 5~20 | Pluronic F-127 | 0.1 | 静置浸泡 | 98.2 | [ |
十二烷基苯磺酸钠修饰的氢氧化镁(S-MH)@MS | O/W | — | 1~8① | CTAB、SDS | — | 加泵过滤 | 澄清 | [ |
月桂酸(LA)-3D-红毛丹(RB)-β-NiOOH@PU | W/O | 4/1 | — | Span 60 | 0.33 | 重力过滤 | 94.3 | [ |
乙酰乙酸纤维素酯海绵(CAAS) | O/W、W/O | 1/99 | 2~30① | — | 0.2%(质量分数) | 重力过滤 | 99.5 | [ |
SA@Fe3O4@PU | O/W | 1/20 | — | Span 80 | — | 静置浸泡 | >90 | [ |
聚二甲基硅氧烷和石墨烯(PG)-MS | O/W | (1/20)~(1/200) | 3~10① | 无 | 无 | 加泵过滤 | 99.8 | [ |
PU-(CF3)2-Fe纳米颗粒(NPs)-(CF3)2 | W/O | 1/99 | 2~10 | Pluronic F-127 | 0.1 | 静置浸泡 | 99 | [ |
碳氮(CN)@PDMS海绵 | O/W | 1/99 | — | Tween 20 | 0.05%(质量分数) | 静置浸泡 | 澄清 | [ |
表2 超/高疏水三维多孔材料处理乳化液的研究
材料缩写 | 乳化液特征 | 处理方式 | 分离率 /% | 参考 文献 | ||||
---|---|---|---|---|---|---|---|---|
乳化液 类型 | 油水体积比 | 液滴粒径 /μm | 表面活性剂 种类 | 表面活性剂浓度 /g·L-1 | ||||
植酸(PA)@聚乙烯亚胺(PEI)-海绵 | O/W、W/O | 1/250, 100/1 | 0.7~4① | SDS | 0.2 | 加泵过滤 | 99.7 | [ |
MS-聚酰胺薄膜(PAF)-埃洛石纳米管(HNTs)/SiO2 | O/W | 1/9 | 0.2~2① | SDBS | 0.1 | — | 99.58 | [ |
十八烷基膦酸和TiO2-MS | O/W | 1/100 | — | Tween 80 | 2.5 | 静置浸泡 | 澄清 | [ |
聚多巴胺(PDA)/碳纳米管(CNT)-PDMS海绵 | O/W | 1/99 | — | CTAB | 0.1%(质量分数) | 搅拌浸泡 | 澄清 | [ |
ZnCl2@纤维素海绵(CS) | O/W | 1/100 | 5~25① | Tween 80 | 0.1%(质量分数) | 重力过滤 | 99.2 | [ |
PDMS/铜对苯二酸酯(CuTPA)/PU | O/W | 1/1000 | 2~27① | Span 80 | 0.1%(质量分数) | 搅拌浸泡 | >92 | [ |
十四胺(TDA)-Mxene@MS | W/O | 40/1 | 2~30① | Span 80 | 1.25 | 重力过滤 | 97.1 | [ |
共轭微孔聚合物(CMP)@海绵 | O/W | 1/20 | — | 无 | 无 | 静置浸泡 | 澄清 | [ |
超疏水(SHP)-三聚氰胺树脂海绵(MRSs) | W/O | 100/1 | 0.5~1.3 | Span 80 | 2 | 重力过滤 | 98.7 | [ |
棕榈蜡(CW)@柚皮海绵(PPS)-80 | W/O | 99/1 | 0.4~8 | Span 80 | 0.15 | 重力过滤 | 澄清 | [ |
非晶碳球(ACS)-PU | O/W | 1/100 | 50~300 | SDS | — | 加泵过滤 | 澄清 | [ |
PTOS-Fe3O4@PDA/MS | W/O | 99/1 | 0.2~0.8 | Span 80 | 1 | 重力过滤 | 澄清 | [ |
MS@多巴胺和聚乙烯亚胺(DP) | O/W | 1/99 | 5~40 | SDBS | 1 | 加泵过滤 | 82.2 | [ |
反式 | W/O | 112/1 | 2~9① | Span 80 | 3.54 | 重力过滤 | 澄清 | [ |
PDMS海绵-多壁碳纳米管(MWCNT) | O/W | 1/4 | — | SDS | 0.04 | 静置浸泡 | 澄清 | [ |
聚乳酸(PLA)-Fe3O4-PDA-多重网状壳聚糖海绵(HLCS) | O/W | 1/57 | 10~50 | Tween 80 | 6 | 重力过滤 | 澄清 | [ |
纤维素微纤维(CNF)/烷基化修饰壳聚糖(NCS)/聚乙烯醇(PVA)海绵 | W/O | 114/1 | — | Span 80 | 3~4.35 | 加泵过滤 | 澄清 | [ |
Mn0.01Co0.90Fe3O4(MCFO)/还原氧化石墨烯(RGO)/PU | O/W | 1/9 | 15~70① | Pluronic F-127 | 0.1 | 静置浸泡 | 99.9 | [ |
聚苯并嗪(PBZ)MS | W/O | 49/1 | 0.5~4① | Span 80 | 3 | 加泵过滤 | 澄清 | [ |
碳化三聚氰胺海绵(CMS)/rGO/PFDT | W/O | 99/1 | — | Tween 80 | 3 | 重力过滤 | 92~95 | [ |
rGO@三聚氰胺甲醛树脂(MF) | O/W | (1/100)~(3/100) | 0.23~0.74 | 无 | 无 | 搅拌浸泡 | 92~98 | [ |
CNF Janus复合海绵 | O/W | — | 1~10① | — | — | 重力过滤 | 53~100 | [ |
十六烷基三甲氧基硅烷(HDTMS)/rGO-MF | O/W | — | 0.5~10① | 无 | 无 | 搅拌浸泡 | 澄清 | [ |
氧化石墨烯和聚四氟乙烯(GP)MS | O/W | 1/25 | — | 无 | 无 | 加泵过滤 | 98 | [ |
功能化-MoS2-PU | O/W | 1/19 | 5~20 | Pluronic F-127 | 0.1 | 静置浸泡 | >96 | [ |
磁性超疏水超亲油(MSS)-PU | O/W | 1/9 | 5~20 | Pluronic F-127 | 0.1 | 静置浸泡 | 98.2 | [ |
十二烷基苯磺酸钠修饰的氢氧化镁(S-MH)@MS | O/W | — | 1~8① | CTAB、SDS | — | 加泵过滤 | 澄清 | [ |
月桂酸(LA)-3D-红毛丹(RB)-β-NiOOH@PU | W/O | 4/1 | — | Span 60 | 0.33 | 重力过滤 | 94.3 | [ |
乙酰乙酸纤维素酯海绵(CAAS) | O/W、W/O | 1/99 | 2~30① | — | 0.2%(质量分数) | 重力过滤 | 99.5 | [ |
SA@Fe3O4@PU | O/W | 1/20 | — | Span 80 | — | 静置浸泡 | >90 | [ |
聚二甲基硅氧烷和石墨烯(PG)-MS | O/W | (1/20)~(1/200) | 3~10① | 无 | 无 | 加泵过滤 | 99.8 | [ |
PU-(CF3)2-Fe纳米颗粒(NPs)-(CF3)2 | W/O | 1/99 | 2~10 | Pluronic F-127 | 0.1 | 静置浸泡 | 99 | [ |
碳氮(CN)@PDMS海绵 | O/W | 1/99 | — | Tween 20 | 0.05%(质量分数) | 静置浸泡 | 澄清 | [ |
55 | BAIG N, SALEH T A. Novel hydrophobic macroporous polypropylene monoliths for efficient separation of hydrocarbons[J]. Composites Part B: Engineering, 2019, 173: 106805. |
56 | LIN Kun Yi A, CHANG Hsuan Ang, CHEN Bo Jau. Multi-functional MOF-derived magnetic carbon sponge[J]. Journal of Materials Chemistry A, 2016, 4(35): 13611-13625. |
57 | CAO Mengjue, FENG Yi, CHEN Qian, et al. Flexible Co-ZIF-L@melamine sponge with underwater superoleophobicity for water/oil separation[J]. Materials Chemistry and Physics, 2020, 241: 122385. |
58 | LI Jing, YANG Yixin, MA Wende, et al. One-pot room-temperature synthesis of covalent organic framework-coated superhydrophobic sponges for highly efficient oil-water separation[J]. Journal of Hazardous Materials, 2021, 411: 125190. |
59 | 刘帅卓, 张骞, 刘宁, 等. 三聚氰胺海绵的一步式协同超疏水改性及在油水分离中的应用[J]. 高等学校化学学报, 2020, 41(3): 521-529. |
LIU Shuaizhuo, ZHANG Qian, LIU Ning, et al. One-step synergistic hydrophobic modification of melamine sponge and its application[J]. Chemical Journal of Chinese Universities, 2020, 41(3): 521-529. | |
60 | LI Haoyu, MU Peng, LI Jian, et al. Inverse desert beetle-like ZIF-8/PAN composite nanofibrous membrane for highly efficient separation of oil-in-water emulsions[J]. Journal of Materials Chemistry A, 2021, 9(7): 4167-4175. |
61 | KONG Yan, ZHANG Shumei, GAO Yue, et al. Low-temperature carbonization synthesis of carbon-based super-hydrophobic foam for efficient multi-state oil/water separation[J]. Journal of Hazardous Materials, 2022, 423: 127064. |
62 | WANG Mengke, ZHU Jun, ZI You, et al. 3D MXene sponge: facile synthesis, excellent hydrophobicity, and high photothermal efficiency for waste oil collection and purification[J]. ACS Applied Materials & Interfaces, 2021, 13(39): 47302-47312. |
63 | PENG Huili, WANG Hao, WU Jianning, et al. Preparation of superhydrophobic magnetic cellulose sponge for removing oil from water[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 832-838. |
64 | GE Bo, ZHU Xiaotao, LI Yong, et al. Versatile fabrication of magnetic superhydrophobic foams and application for oil-water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482: 687-692. |
65 | NAGAPPAN S, HA C S. Emerging trends in superhydrophobic surface based magnetic materials: fabrications and their potential applications[J]. Journal of Materials Chemistry A, 2015, 3(7): 3224-3251. |
66 | ZHANG Liang, LI Lili, DANG Zhimin. Bio-inspired durable, superhydrophobic magnetic particles for oil/water separation[J]. Journal of Colloid and Interface Science, 2016, 463: 266-271. |
67 | BESHKAR F, KHOJASTEH H, SALAVATI-NIASARI M. Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil/water separation[J]. Journal of Colloid and Interface Science, 2017, 497: 57-65. |
68 | LI Minxuan, XU Xu, ZHANG Lei. Fabricated superhydrophobic three-dimensional rambutan-like-β-NiOOH @sponge skeletons for multitasking oil-water separation[J]. Journal of Industrial and Engineering Chemistry, 2020, 84: 340-348. |
69 | XUE Jinwei, ZHU Lei, ZHU Xu, et al. Hierarchical superhydrophobic polydimethylsiloxane/copper terephthalate/polyurethane sponge for highly efficient oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127635. |
70 | LIANG Fengyan, HOU Tingting, LI Sidong, et al. Elastic, super-hydrophobic and biodegradable chitosan sponges fabricated for oil/water separation[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106027. |
71 | LU Yeqiang, WANG Yue, LIU Lejing, et al. Environmental-friendly and magnetic/silanized ethyl cellulose sponges as effective and recyclable oil-absorption materials[J]. Carbohydrate Polymers, 2017, 173: 422-430. |
72 | ZHOU Jia, GUO Jiahong, YAN Hui, et al. Reversible wettability switching of melamine sponges for oil/water separation[J]. Materials Chemistry and Physics, 2021, 257: 123772. |
73 | YU Tianlong, HALOUANE F, MATHIAS D, et al. Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: separation of oil/water mixture and demulsification[J]. Chemical Engineering Journal, 2020, 384: 123339. |
74 | SONG Qiangqiang, ZHU Junyong, NIU Xinpu, et al. Interfacial assembly of micro/nanoscale nanotube/silica achieves superhydrophobic melamine sponge for water/oil separation[J]. Separation and Purification Technology, 2022, 280: 119920. |
75 | PANICKAR R, SOBHAN C B, CHAKRAVORTI S. Highly efficient amorphous carbon sphere-based superhydrophobic and superoleophilic sponges for oil/water separation[J]. Langmuir, 2021, 37(42): 12501-12511. |
76 | 王长青, 张西华, 宁朋歌, 等. 含油废水处理工艺研究进展及展望[J]. 化工进展, 2021, 40(1): 451-462. |
WANG Changqing, ZHANG Xihua, NING Pengge, et al. Research advances and perspective on treatment processes for oily wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 451-462. | |
77 | YANG Sudong, CHEN Lin, LIU Shuai, et al. Facile and sustainable fabrication of high-performance cellulose sponge from cotton for oil-in-water emulsion separation[J]. Journal of Hazardous Materials, 2021, 408: 124408. |
78 | LIU Yingying, WANG Xin, FENG Shengyu. Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation[J]. Advanced Functional Materials, 2019, 29(29): 1902488. |
79 | XU Liang, ZANG Yu, XIAO Jiajun, et al. Superhydrophobic conjugated microporous polymer-coated sponges: synthesis and application for highly efficient oil/water separation and the recovery of palladium ions[J]. Separation and Purification Technology, 2021, 261: 118291. |
80 | LIU Shuaizhuo, ZHANG Qian, FAN Leiyi, et al. 3D superhydrophobic sponge coated with magnesium hydroxide for effective oil/water mixture and emulsion separation[J]. Industrial & Engineering Chemistry Research, 2020, 59(25): 11713-11722. |
81 | 刘鹏昌, 来华, 成中军, 等. 超浸润形状记忆海绵的制备及油-水分离性能[J]. 高等学校化学学报, 2021, 42(3): 894-901. |
LIU Pengchang, LAI Hua, CHENG Zhongjun, et al. Fabrication of superwetting porous shape memory sponge and its application in oil-water separation[J]. Chemical Journal of Chinese Universities, 2021, 42(3): 894-901. | |
82 | LIU Haifeng, SUN Yifeng, CHEN Zhonghui. One-pot facile synthesis of PDMS/PDMAEMA hybrid sponges for surfactant stabilized O/W emulsion separation[J]. Soft Matter, 2021, 17(41): 9363-9370. |
83 | DUMAN O, DIKER C Ö, TUNÇ S. Development of highly hydrophobic and superoleophilic fluoro organothiol-coated carbonized melamine sponge/rGO composite absorbent material for the efficient and selective absorption of oily substances from aqueous environments[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105093. |
84 | AHMED R M G, ANIS B, KHALIL A S G. Facile surface treatment and decoration of graphene-based 3D polymeric sponges for high performance separation of heavy oil-in-water emulsions[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105087. |
85 | AGABA A, MARRIAM I, TEBYETEKERWA M, et al. Janus hybrid sustainable all-cellulose nanofiber sponge for oil-water separation[J]. International Journal of Biological Macromolecules, 2021, 185: 997-1004. |
86 | LI Lijie, RONG Liduo, XU Zhangting, et al. Cellulosic sponges with pH responsive wettability for efficient oil-water separation[J]. Carbohydrate Polymers, 2020, 237: 116133. |
87 | HE Jinmei, ZHANG Yi, WANG Jiaxin, et al. Eco-friendly, magnetic-driven, superhydrophobic sponge for oil/water separation and emulsion purification[J]. Journal of Materials Science, 2020, 55(15): 6708-6720. |
1 | 张辛铖, 何林, 隋红, 等. 重质油包水乳液破乳过程及降黏强化机制[J]. 化工进展, 2022, 41(7): 3534-3544. |
ZHANG Xincheng, HE Lin, SUI Hong, et al. Demulsification process and enhancement by viscosity reduction for water-inheavy oil emulsions[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3534-3544. | |
2 | 吴宝强, 黄翔峰, 熊永娇, 等. 江苏某地区机械电子加工废乳化液污染特征分析[J]. 工业水处理, 2021, 41(3): 57-62. |
WU Baoqiang, HUANG Xiangfeng, XIONG Yongjiao, et al. Contaminant properties analysis of waste emulsion from mechanical electronic processing industry in Jiangsu district[J]. Industrial Water Treatment, 2021, 41(3): 57-62. | |
3 | 贺梦凡, 黄翔峰, 刘婉琪, 等. 船舶油污水水质水量特征及其原位处理技术[J]. 船舶工程, 2021, 43(6): 114-122, 142. |
HE Mengfan, HUANG Xiangfeng, LIU Wanqi, et al. Water quality and quantity characteristics of shipboard oily wastewater and its in situ treatment technology[J]. Ship Engineering, 2021, 43(6): 114-122, 142. | |
4 | GE Jin, ZHAO Haoyu, ZHU Hongwu, et al. Advanced sorbents for oil-spill cleanup: recent advances and future perspectives[J]. Advanced Materials, 2016, 28(47): 10459-10490. |
5 | GOH P S. Applications of emerging nanomaterials for oily wastewater treatment[M]//ONG C S, NG B C, AHMAD F I. Nanotechnology in water and wastewater treatment: theory and applications. Amsterdam: Ahsan A & Ismail AF, 2019: 101-113. |
6 | 陶宇, 傅可晶, 李轶, 等. 乳化油废水处理技术研究进展[J]. 山东化工, 2017, 46(9): 36-37, 43. |
TAO Yu, FU Kejing, LI Yi, et al. Progress in research of emulsified oil wastewater treatment[J]. Shandong Chemical Industry, 2017, 46(9): 36-37, 43. | |
7 | ZENG Xinjuan, CAI Weicheng, FU Shuyi, et al. A novel Janus sponge fabricated by a green strategy for simultaneous separation of oil/water emulsions and dye contaminants[J]. Journal of Hazardous Materials, 2022, 424: 127543. |
8 | EJETA D D, WANG C F, LIN C H, et al. Preparation of a main-chain-type polybenzoxazine-modified melamine sponge via non-solvent-induced phase inversion for oil absorption and very-high-flux separation of water-in-oil emulsions[J]. Separation and Purification Technology, 2021, 263: 118387. |
88 | HAN Longxiang, BI Hengchang, XIE Xiao, et al. Superhydrophobic graphene-coated sponge with microcavities for high efficiency oil-in-water emulsion separation[J]. Nanoscale, 2020, 12(34): 17812-17820. |
89 | SHA Di, ZHENG Run, WANG Baolong, et al. Superhydrophilic polyvinyl alcohol-formaldehyde composite sponges with hierachical pore structure for oil/water emulsion separation[J]. Reactive and Functional Polymers, 2021, 165: 104975. |
90 | LU Jingwei, ZHU Xiaotao, MIAO Xiao, et al. An unusual superhydrophilic/superoleophobic sponge for oil-water separation[J]. Frontiers of Materials Science, 2020, 14(3): 341-350. |
91 | ZUO Jihao, CHEN Zehao, ZHOU Yi, et al. Superwetting charged copper foams with long permeation channels for ultrafast emulsion separation and surfactant removal[J]. Journal of Materials Chemistry A, 2021, 9(22): 13170-13181. |
92 | ZHANG Yanqiu, YANG Xiaobin, WANG Zhenxing, et al. Designing multifunctional 3D magnetic foam for effective insoluble oil separation and rapid selective dye removal for use in wastewater remediation[J]. Journal of Materials Chemistry A, 2017, 5(16): 7316-7325. |
93 | 戴国琛, 张泽天, 高文伟, 等. 油水乳液分离吸附材料的分离原理、构建方法和分离性能[J]. 化工进展, 2019, 38(4): 1785-1793. |
DAI Guochen, ZHANG Zetian, GAO Wenwei, et al. Separation principle, fabrication strategies and performance of sorbents for oil-water emulsions[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1785-1793. | |
94 | WANG Jintao, WANG Hongfei, GENG Guihong. Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route[J]. Marine Pollution Bulletin, 2018, 127: 108-116. |
95 | EZZATNESHAN E, GOHARIMEHR R. Study of spontaneous mobility and imbibition of a liquid droplet in contact with fibrous porous media considering wettability effects[J]. Physics of Fluids, 2020, 32(11): 113303. |
96 | CUI Ying, WANG Yujie, SHAO Ziyu, et al. Smart sponge for fast liquid absorption and thermal responsive self-squeezing[J]. Advanced Materials, 2020, 32(14): e1908249. |
97 | CHAN Tak Shing, YANG Fan, CARLSON A. Directional spreading of a viscous droplet on a conical fibre[J]. Journal of Fluid Mechanics, 2020, 894: A26. |
98 | MEHDIZADEH S N, PASDAR A M, CHASE G G. Correlations between air drag and movement of water droplets in fibrous media[J]. Separation and Purification Technology, 2021, 267: 118602. |
9 | SUN Haodong, LIU Zhongming, LIU Keyin, et al. Lignin-based superhydrophobic melamine resin sponges and their application in oil/water separation[J]. Industrial Crops and Products, 2021, 170: 113798. |
10 | PARSAIE A, TAMSILIAN Y, PORDANJANI M R, et al. Novel approach for rapid oil/water separation through superhydrophobic/superoleophilic zinc stearate coated polyurethane sponges[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618: 126395. |
11 | KHALILIFARD M, JAVADIAN S. Magnetic superhydrophobic polyurethane sponge loaded with Fe3O4@oleic acid@graphene oxide as high performance adsorbent oil from water[J]. Chemical Engineering Journal, 2021, 408: 127369. |
12 | YU Tianlong, MATHIAS D, LU Shixiang, et al. Functionalized MoS2/polyurethane sponge: an efficient scavenger for oil in water[J]. Separation and Purification Technology, 2020, 238: 116420. |
13 | ZHANG Xuemei, FU Feng, GAO Xiaoming, et al. Magnetically driven superhydrophobic polyurethane sponge for high efficiency oil/water mixtures separation[J]. Journal of Bionic Engineering, 2019, 16(1): 38-46. |
14 | PANG Yao, YU Zongxue, CHEN Legang, et al. Superhydrophobic polyurethane sponges modified by sepiolite for efficient oil-water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127175. |
15 | XUE Jinwei, ZHU Lei, ZHU Xu, et al. Tetradecylamine-MXene functionalized melamine sponge for effective oil/water separation and selective oil adsorption[J]. Separation and Purification Technology, 2021, 259: 118106. |
16 | NIU Haifeng, LI Jianbo, WANG Xuefang, et al. Solar-assisted, fast, and in situ recovery of crude oil spill by a superhydrophobic and photothermal sponge[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21175-21185. |
17 | LIU Wanqi, HUANG Xiangfeng, PENG Kaiming, et al. PDA-PEI copolymerized highly hydrophobic sponge for oil-in-water emulsion separation via oil adsorption and water filtration[J]. Surface and Coatings Technology, 2021, 406: 126743. |
18 | ZHOU Jian, ZHANG Yan, YANG Yongqiang, et al. Silk fibroin-graphene oxide functionalized melamine sponge for efficient oil absorption and oil/water separation[J]. Applied Surface Science, 2019, 497: 143762. |
19 | WANG Jiaqi, CHEN Yan, XU Qinyao, et al. Highly efficient reusable superhydrophobic sponge prepared by a facile, simple and cost effective biomimetic bonding method for oil absorption[J]. Scientific Reports, 2021, 11: 11960. |
20 | ZHU Yongfei, DU Yonggang, SU Junming, et al. Durable superhydrophobic melamine sponge based on polybenzoxazine and Fe3O4 for oil/water separation[J]. Separation and Purification Technology, 2021, 275: 119130. |
21 | PAN Zihe, GUAN Yihao, LIU Yanhong, et al. Facile fabrication of hydrophobic and underwater superoleophilic elastic and mechanical robust graphene/PDMS sponge for oil/water separation[J]. Separation and Purification Technology, 2021, 261: 118273. |
22 | ABDELHAFEEZ I A, ZHOU Xuefei, YAO Quifang, et al. Multifunctional edge-activated carbon nitride nanosheet-wrapped polydimethylsiloxane sponge skeleton for selective oil absorption and photocatalysis[J]. ACS Omega, 2020, 5(8): 4181-4190. |
23 | MO Siqi, MEI Jinfeng, LIANG Qian, et al. Repeatable oil-water separation with a highly-elastic and tough amino-terminated polydimethylsiloxane-based sponge synthesized using a self-foaming method[J]. Chemosphere, 2021, 271: 129827. |
24 | YIN Zichao, SUN Xiaojun, BAO Mutai, et al. Construction of a hydrophobic magnetic aerogel based on chitosan for oil/water separation applications[J]. International Journal of Biological Macromolecules, 2020, 165: 1869-1880. |
25 | MI Haoyang, LI Heng, JING Xin, et al. Superhydrophobic cellulose nanofibril/silica fiber/Fe3O4 nanocomposite aerogel for magnetically driven selective oil absorption[J]. Cellulose, 2020, 27(15): 8909-8922. |
26 | MA Wenjing, JIANG Zhicheng, LU Tao, et al. Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing[J]. Chemical Engineering Journal, 2022, 430: 132989. |
27 | TIAN Na, WU Shaohua, HAN Guangting, et al. Biomass-derived oriented neurovascular network-like superhydrophobic aerogel as robust and recyclable oil droplets captor for versatile oil/water separation[J]. Journal of Hazardous Materials, 2022, 424: 127393. |
28 | ZHAO Jinchuan, HUANG Yifeng, WANG Guilong, et al. Fabrication of outstanding thermal-insulating, mechanical robust and superhydrophobic PP/CNT/sorbitol derivative nanocomposite foams for efficient oil/water separation[J]. Journal of Hazardous Materials, 2021, 418: 126295. |
29 | YAN Jianpan, CAO Jinfeng, XUE Lei, et al. Thiol oxidative coupling synthesis of silicone foams for oil/water separation[J]. ACS Applied Polymer Materials, 2020, 2(4): 1634-1643. |
30 | YIN Zichao, PAN Yaping, BAO Mutai, et al. Superhydrophobic magnetic cotton fabricated under low carbonization temperature for effective oil/water separation[J]. Separation and Purification Technology, 2021, 266: 118535. |
31 | SU Xiaojing, YANG Weihua, LI Kunquan, et al. Fully organic and biodegradable superhydrophobic sponges derived from natural resources for efficient removal of oil from water[J]. Separation and Purification Technology, 2021, 277: 119411. |
32 | HADJI E M, FU Bo, ABEBE A, et al. Sponge-based materials for oil spill cleanups: a review[J]. Frontiers of Chemical Science and Engineering, 2020, 14(5): 749-762. |
33 | WU Mingming, SHI Guogui, LIU Weimin, et al. A universal strategy for the preparation of dual superlyophobic surfaces in oil-water systems[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14759-14767. |
34 | ZHANG Yana, ZHANG Ning, ZHOU Shuai, et al. Facile preparation of ZIF-67 coated melamine sponge for efficient oil/water separation[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17380-17388. |
35 | LU Junfeng, LIU Xiang, ZHANG Tian C, et al. Magnetic superhydrophobic polyurethane sponge modified with bioinspired stearic acid@Fe3O4@PDA nanocomposites for oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126794. |
36 | ZHANG Wen, WANG Juanjuan, HAN Xue, et al. Carbon nanotubes and polydopamine modified poly(dimethylsiloxane) sponges for efficient oil-water separation[J]. Materials, 2021, 14(9): 2431. |
37 | SHI Guogui, WU Mingming, ZHONG Qi, et al. Superhydrophobic waste cardboard aerogels as effective and reusable oil absorbents[J]. Langmuir, 2021, 37(25): 7843-7850. |
38 | SUN Ruikun, HE Lei, SHANG Qingtong, et al. Hydrophobic magnetic porous material of Eichhornia crassipes for highly efficient oil adsorption and separation[J]. ACS Omega, 2020, 5(17): 9920-9928. |
39 | JAMSAZ A, GOHARSHADI E K, BARRAS A, et al. Magnetically driven superhydrophobic/superoleophilic graphene-based polyurethane sponge for highly efficient oil/water separation and demulsification[J]. Separation and Purification Technology, 2021, 274: 118931. |
40 | LI Mengya, LIU Hui, LIU Jie, et al. Hydrophobic and self-recoverable cellulose nanofibrils/N-alkylated chitosan/poly(vinyl alcohol) sponge for selective and versatile oil/water separation[J]. International Journal of Biological Macromolecules, 2021, 192: 169-179. |
41 | RUAN Xuewei, XU Tiancheng, CHEN Dingjiang, et al. Superhydrophobic paper with mussel-inspired polydimethylsiloxane-silica nanoparticle coatings for effective oil/water separation[J]. RSC Advances, 2020, 10(14): 8008-8015. |
42 | LIU Zhiyong, QIN Zipeng, ZHAO Gang, et al. High-efficiency oil/water absorbent using hydrophobic silane-modified plant fiber sponges[J]. Composites Communications, 2021, 25: 100763. |
43 | 张颖, 张骞, 张瑞阳, 等. 超疏水复合海绵材料的制备及在油水分离的应用[J]. 无机材料学报, 2020, 35(4): 475-481. |
ZHANG Ying, ZHANG Qian, ZHANG Ruiyang, et al. Preparation of superhydrophobic composites sponge and its application in oil-water separation[J]. Journal of Inorganic Materials, 2020, 35(4): 475-481. | |
44 | MA Wen, WANG Hong. Magnetically driven motile superhydrophobic sponges for efficient oil removal[J]. Applied Materials Today, 2019, 15: 263-266. |
45 | SHI Yutao, WANG Bo, YE Shihang, et al. Magnetic, superelastic and superhydrophobic porous thermoplastic polyurethane monolith with nano-Fe3O4 coating for highly selective and easy-recycling oil/water separation[J]. Applied Surface Science, 2021, 535: 147690. |
46 | LI Zengtian, LIN Bo, JIANG Liwang, et al. Effective preparation of magnetic superhydrophobic Fe3O4/PU sponge for oil-water separation[J]. Applied Surface Science, 2018, 427: 56-64. |
47 | NIU Haifeng, QIANG Zhe, REN Jie. Durable, magnetic-responsive melamine sponge composite for high efficiency, in situ oil-water separation[J]. Nanotechnology, 2021, 32(27): 275705. |
48 | JIANG Peng, LI Kun, CHEN Xiquan, et al. Magnetic and hydrophobic composite polyurethane sponge for oil-water separation[J]. Applied Sciences, 2020, 10(4): 1453. |
49 | 邱丽娟, 张颖, 刘帅卓, 等. 超疏水、高强度石墨烯油水分离材料的制备及应用[J]. 高等学校化学学报, 2018, 39(12): 2758-2766. |
QIU Lijuan, ZHANG Ying, LIU Shuaizhuo, et al. Preparation and application of superhydrophobic and robust graphene composites oil/water separation material[J]. Chemical Journal of Chinese Universities, 2018, 39(12): 2758-2766. | |
50 | ZHAO Pinhui, YAO Qian, ZHOU Guizhong, et al. Green preparation of nonflammable carbonized asphalt-melamine sponges as recyclable oil absorbents[J]. Materials Chemistry and Physics, 2019, 226: 235-243. |
51 | ZHANG Ziyan, LIU Hai, QIAO Weichuan. Reduced graphene-based superhydrophobic sponges modified by hexadecyltrimethoxysilane for oil adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589: 124433. |
52 | GUSELNIKOVA O, BARRAS A, ADDAD A, et al. Magnetic polyurethane sponge for efficient oil adsorption and separation of oil from oil-in-water emulsions[J]. Separation and Purification Technology, 2020, 240: 116627. |
53 | ZHAO Caimei, CHEN Lei, YU Chuanming, et al. Fabrication of hydrophobic NiFe2O4@poly(DVB-LMA) sponge via a Pickering emulsion template method for oil/water separation[J]. Soft Matter, 2021, 17(8): 2327-2339. |
54 | 闫茜, 谢谚, 盛学佳, 等. 超疏水纳米海绵制备及其二甲苯吸附性能[J]. 化工进展, 2020, 39(10): 4095-4101. |
YAN Xi, XIE Yan, SHENG Xuejia, et al. Preparation of superhydrophobic sponge and its adsorption performance for xylene[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4095-4101. | |
99 | UEDA M, FUKASAWA T, ISHIGAMI T, et al. Effect of surface wettability on droplet coalescence and pressure drop in a fibrous filter: direct numerical simulation coordinated with X-ray computed tomography images[J]. Industrial & Engineering Chemistry Research, 2021, 60(10): 4168-4179. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[4] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[9] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[10] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[11] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[12] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[13] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[14] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[15] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |