化工进展 ›› 2022, Vol. 41 ›› Issue (6): 3077-3088.DOI: 10.16085/j.issn.1000-6613.2021-1557
姚亚丽(), 马利利, 王嘉鑫, 朱雪丹, 彭磊, 何金梅, 李侃社(), 屈孟男()
收稿日期:
2021-07-21
修回日期:
2021-10-18
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
李侃社,屈孟男
作者简介:
姚亚丽(1990—),女,博士研究生,研究方向为煤基炭复合材料。E-mail:基金资助:
YAO Yali(), MA Lili, WANG Jiaxin, ZHU Xuedan, PENG Lei, HE Jinmei, LI Kanshe(), QU Mengnan()
Received:
2021-07-21
Revised:
2021-10-18
Online:
2022-06-10
Published:
2022-06-21
Contact:
LI Kanshe,QU Mengnan
摘要:
石墨烯及复合材料具有比表面积大、电导率高、导热性能和力学性能良好等优点,在电极材料、传感器、储氢材料等领域具有广泛的应用。但以高碳含量的天然资源煤为前体制备煤基石墨烯及复合材料达到煤炭清洁高效利用的研究目前报道有限,尤其是将其作为电极材料应用到储能领域的研究较少。本文重点总结了以不同煤质及衍生物为原料构建不同形貌和结构的煤基石墨烯及复合材料的方法以及存在的问题,详细介绍了煤基石墨烯及复合材料在储能领域,尤其是超级电容器、锂离子电池及钠离子电池领域的应用研究现状,最后提出了当前煤基石墨烯及复合材料的主要研究方向。该综述旨在为煤基新型石墨烯及复合材料的制备开发以及在储能领域的应用提供一定的思路。
中图分类号:
姚亚丽, 马利利, 王嘉鑫, 朱雪丹, 彭磊, 何金梅, 李侃社, 屈孟男. 煤基石墨烯及复合材料在储能领域的应用[J]. 化工进展, 2022, 41(6): 3077-3088.
YAO Yali, MA Lili, WANG Jiaxin, ZHU Xuedan, PENG Lei, HE Jinmei, LI Kanshe, QU Mengnan. Research on the application of coal-based graphene and composites in the field of energy storage[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3077-3088.
1 | OLABI A G, ABDELKAREEM M A, WILBERFORCE T, et al. Application of graphene in energy storage device—A review[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110026. |
2 | LI K K, LIU G Y, ZHENG L S, et al. Coal-derived carbon nanomaterials for sustainable energy storage applications[J]. New Carbon Materials, 2021, 36(1): 133-154. |
3 | LU Y, GOLDSMITH B R, KYBERT N J, et al. DNA-decorated graphene chemical sensors[J]. Applied Physics Letters, 2010, 97(8): 083107. |
4 | SHAO Y L, EL-KADY M F, WANG L J, et al. Graphene-based materials for flexible supercapacitors[J]. Chemical Society Reviews, 2015, 44(11): 3639-3665. |
5 | YIN Z Y, ZHU J X, HE Q Y, et al. Graphene-based materials for solar cell applications[J]. Advanced Energy Materials, 2014, 4(1): 1300574. |
6 | 甘云燕, 张凯亮, 姚海鹏. 内蒙古鄂尔多斯地区煤系气资源及其合勘共采潜力探讨[J]. 煤炭学报, 2018, 43(6): 1661-1668. |
GAN Yunyan, ZHANG Kailiang, YAO Haipeng. Discussion on potential joint mining of coal measures gases resources in Ordos area, Inner Mongolia[J]. Journal of China Coal Society, 2018, 43(6): 1661-1668. | |
7 | 任瑞晨, 张乾伟, 石倩倩, 等. 高变质无烟煤伴生微晶石墨鉴定与分析[J]. 煤炭学报, 2016, 41(5): 1294-1300. |
REN Ruichen, ZHANG Qianwei, SHI Qianqian, et al. Identification and analysis of amorphous graphite associated with high metamorphosed anthracite[J]. Journal of China Coal Society, 2016, 41(5): 1294-1300. | |
8 | 李可可. 煤基石墨烯宏观体材料制备及其光催化还原CO2性能研究[D]. 西安: 西安科技大学, 2018. |
LI Keke. Preparation of coal-based graphene composites and their photocatalytic CO2 reduction performance[D]. Xi’an: Xi’an University of Science and Technology, 2018. | |
9 | VIJAPUR S H, WANG D, BOTTE G G. Raw coal derived large area and transparent graphene films[J]. ECS Solid State Letters, 2013, 2(7): M45-M47. |
10 | VIJAPUR S H, WANG D, INGRAM D C, et al. An investigation of growth mechanism of coal derived graphene films[J]. Materials Today Communications, 2017, 11: 147-155. |
11 | OFFICE P E, Erratum, Wang D, VIJAPUR S H, BOTTE G G. Coal char derived few-layer graphene anodes for lithium ion batteries[J]. Photonics, 2014, 1, 251-259. |
12 | YU C L, SHEN W Z, YAN J W, et al. Growing large-area multilayer graphene sheets on molten cerium via anthracite as carbon source[J]. Inorganic Chemistry Communications, 2020, 112: 107729. |
13 | WU D, WANG M C, ZENG J W, et al. Preparation and characterization of graphene from refined benzene extracted from low-rank coal: based on the CVD technology[J]. Molecules, 2021, 26(7): 1900. |
14 | ZANDER M, COLLIN G. A review of the significance of polycyclic aromatic chemistry for pitch science[J]. Fuel, 1993, 72(9): 1281-1285. |
15 | FOGEL Y, ZHI L J, ROUHANIPOUR A, et al. Graphitic nanoribbons with dibenzo[e, l]pyrene repeat units: synthesis and self-assembly[J]. Macromolecules, 2009, 42(18): 6878-6884. |
16 | XU H, LIN Q L, ZHOU T H, et al. Facile preparation of graphene nanosheets by pyrolysis of coal-tar pitch with the presence of aluminum[J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 481-485. |
17 | WANG K, ZHANG X L, ZHANG X Q, et al. Preparation of fluffy graphene nanosheets from coal-tar pitch with nano-Al2O3 as filler[J]. Journal of Analytical and Applied Pyrolysis, 2016, 117: 354-356. |
18 | PUENTE-SILLER D M, GARCÍA-CASTILLO A E, LÓPEZ-CORPUS J A, et al. Evolution in the formation of graphene nanocapsules from coal tar pitch[J]. International Journal of Coal Science & Technology, 2020, 7(4): 816-824. |
19 | HE X J, LI X J, WANG J X, et al. From diverse polycyclic aromatic molecules to interconnected graphene nanocapsules for supercapacitors[J]. Microporous and Mesoporous Materials, 2017, 245: 73-81. |
20 | 唐跃刚, 徐靖杰, 郇璇, 等. 云南小发路无烟煤基石墨烯制备与谱学表征[J]. 煤炭学报, 2020, 45(2): 740-748. |
TANG Yuegang, XU Jingjie, HUAN Xuan, et al. Preparation and spectroscopic characterization of coal-based graphene from anthracite in Xiaofalu, Yunnan, China[J]. Journal of China Coal Society, 2020, 45(2): 740-748. | |
21 | XING B L, ZENG H H, HUANG G X, et al. Porous graphene prepared from anthracite as high performance anode materials for lithium-ion battery applications[J]. Journal of Alloys and Compounds, 2019, 779: 202-211. |
22 | LEANDRO A P M, SEAS M A, VAP K, et al. Evolution of structural and electrical properties in coal-derived graphene oxide nanomaterials during high-temperature annealing[J]. Diamond and Related Materials, 2021, 112: 108244. |
23 | ZHOU Q, ZHAO Z B, ZHANG Y T, et al. Graphene sheets from graphitized anthracite coal: preparation, decoration, and application[J]. Energy & Fuels, 2012, 26(8): 5186-5192. |
24 | LYU Y, XING B L, ZHENG M K, et al. Hydrothermal synthesis of ultra-light coal-based graphene oxide aerogel for efficient removal of dyes from aqueous solutions[J]. Nanomaterials, 2018, 8(9): 670. |
25 | WU Y P, MA Y F, WANG Y, et al. Efficient and large scale synthesis of graphene from coal and its film electrical properties studies[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(2): 929-932. |
26 | MARQUES M, SUÁREZ-RUIZ I, FLORES D, et al. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite[J]. International Journal of Coal Geology, 2009, 77(3/4): 377-382. |
27 | 王路, 董业绩, 张鹤, 等. 煤成石墨化作用的影响因素及其实验验证[J]. 矿业科学学报, 2018, 3(1): 9-19. |
WANG Lu, DONG Yeji, ZHANG He, et al. Factors affecting graphitization of coal and the experimental validation[J]. Journal of Mining Science and Technology, 2018, 3(1): 9-19. | |
28 | CAO D Y, ZHANG H, DONG Y J, et al. Nanoscale microscopic features and evolution sequence of coal-based graphite[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6276-6283. |
29 | WANG L, ZHANG H, LI Y. On the difference of characterization and supercapacitive performance of graphene nanosheets from precursors of inertinite- and vitrinite-rich coal[J]. Journal of Alloys and Compounds, 2020, 815: 152502. |
30 | FERNÁNDEZ-GARCÍA L, ÁLVAREZ P, PÉREZ-MAS A M, et al. Peculiarities of the production of graphene oxides with controlled properties from industrial coal liquids[J]. Fuel, 2017, 203: 253-260. |
31 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
32 | FRANCO C, MORENO J, GIRALDO L, et al. Obtaining high-rank coal dust as raw material for graphene materials synthesis[EB/OL].. |
33 | ZHAMU A, JANG B Z. Direct ultrasonication production of graphene sheets from coke or coal: US10427941[P]. 2019-10-01. |
34 | BALACHANDRAN M. Extraction of preformed mixed phase graphene sheets from graphitized coal by fungal leaching[M]//Handbook of Research on Inventive Bioremediation Techniques. IGI Global, 2017: 287-299. |
35 | AWASTHI S, AWASTHI K, GHOSH A K, et al. Formation of single and multi-walled carbon nanotubes and graphene from Indian bituminous coal[J]. Fuel, 2015, 147: 35-42. |
36 | SASIKALA S P, HENRY L, YESILBAG TONGA G, et al. High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids[J]. ACS Nano, 2016, 10(5): 5293-5303. |
37 | ZHANG C, XIE Y C, ZHANG C, et al. Upgrading coal to multifunctional graphene-based materials by direct laser scribing[J]. Carbon, 2019, 153: 585-591. |
38 | LYU Y, XING B L, YI G Y, et al. Synthesis of oxygen-rich TiO2/coal-based graphene aerogel for enhanced photocatalytic activities[J]. Materials Science in Semiconductor Processing, 2020, 117: 105169. |
39 | 曾会会, 仪桂云, 邢宝林, 等. 煤基石墨烯/TiO2复合材料的制备及光催化性能[J]. 化工进展, 2017, 36(7): 2568-2576. |
ZENG Huihui, YI Guiyun, XING Baolin, et al. Preparation of coal-based graphene/TiO2 composites and their photocatalytic activity[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2568-2576. | |
40 | ZHANG Y, DANG Y, QIU J, et al. Self-assembled TiO2 coal-based graphene macro porous aerogels for photocatalytic conversion of carbon dioxide[C]// 2016 The World Conference on Carbon, Pennsylvania USA, 2016. |
41 | XU B, MAIMAITI H, WANG S X, et al. Preparation of coal-based graphene oxide/SiO2 nanosheet and loading ZnO nanorod for photocatalytic Fenton-like reaction[J]. Applied Surface Science, 2019, 498: 143835. |
42 | ZHANG Y T, LI J K, LIU G Y, et al. Preparation of MnO2/coal-based graphene composites for supercapacitors[J]. Carbon, 2017, 114: 754. |
43 | GAO F, QU J Y, ZHAO Z B, et al. A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application[J]. Carbon, 2014, 80: 640-650. |
44 | ZHANG Y T, ZHANG K B, REN S Z, et al. 3D nanoflower-like composite anode of α-Fe2O3/coal-based graphene for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 792: 828-834. |
45 | 张亚婷, 李可可, 任绍昭, 等. 煤基石墨烯/Fe2O3自支撑电极的制备及其储锂性能[J]. 煤炭学报, 2021, 46(4): 1173-1181. |
ZHANG Yating, LI Keke, REN Shaozhao, et al. Coal-based graphene/Fe2O3 nanostructures grow on nickel foams as an enhanced free-standing anode for lithium-ion batteries[J]. Journal of China Coal Society, 2021, 46(4): 1173-1181. | |
46 | 曲江英, 田硕, 丁言伟, 等. 煤沥青基类石墨烯碳/Fe3O4复合物的制备及其锂电性能研究[J]. 辽宁师范大学学报(自然科学版), 2018, 41(1): 54-61. |
QU Jiangying, TIAN Shuo, DING Yanwei, et al. Synthesis of coal tar pitch based graphene-like carbon/Fe3O4 composites as the anode electrode for lithium-ion battery[J]. Journal of Liaoning Normal University (Natural Science Edition), 2018, 41(1): 54-61. | |
47 | WANG J M, WANG C W. Watermelon-like metallic co/graphene-like nanohybrids from electrochemical exfoliation of anthracite coal as superior oxygen reduction reaction electrocatalyst[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12457–12463. |
48 | SINGH A, OJHA A K. Coal derived graphene as an efficient supercapacitor electrode material[J]. Chemical Physics, 2020, 530: 110607. |
49 | 张亚婷, 付世启, 蔡江涛, 等. 煤基石墨烯/炭纳米纤维复合材料的制备及其电化学性能[J]. 炭素技术, 2016, 35(6): 12-16. |
ZHANG Yating, FU Shiqi, CAI Jiangtao, et al. Preparation and electrochemical performance of carbon nanofiber/coal based graphene composites[J]. Carbon Techniques, 2016, 35(6): 12-16. | |
50 | 张亚婷, 任绍昭, 李景凯, 等. PANI/煤基石墨烯宏观体复合材料的制备及其电化学性能[J]. 化工学报, 2017, 68(11): 4316-4322. |
ZHANG Yating, REN Shaozhao, LI Jingkai, et al. Fabrication and electrochemical capacitive performance of PANI/coal-based three-dimensional graphene[J]. CIESC Journal, 2017, 68(11): 4316-4322. | |
51 | KANG M M, ZHAO H Q, YE J Q, et al. Adsorption dominant sodium storage in three-dimensional coal-based graphite microcrystal/graphene composites[J]. Journal of Materials Chemistry A, 2019, 7(13): 7565-7572. |
52 | ZHANG J X, CAO H Q, TANG X L, et al. Graphite/graphene oxide composite as high capacity and binder-free anode material for lithium ion batteries[J]. Journal of Power Sources, 2013, 241: 619-626. |
53 | LUO B, ZHI L J. Design and construction of three dimensional graphene-based composites for lithium ion battery applications[J]. Energy and Environmental Science, 2015, 8(2): 456-477. |
54 | WANG J, YANG T, ZENG Z L, et al. Facilely prepared, N, O-codoped nanosheet derived from pre-functionalized polymer as supercapacitor electrodes[J]. Chemical Physics, 2018, 506: 17-25. |
55 | CHEN T, DAI L M. Carbon nanomaterials for high-performance supercapacitors[J]. Materials Today, 2013, 16(7/8): 272-280. |
56 | PALADINI V, DONATEO T, DE RISI A, et al. Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy development[J]. Energy Conversion and Management, 2007, 48(11): 3001-3008. |
57 | ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531. |
58 | MAI L Q, MINHAS-KHAN A, TIAN X C, et al. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance[J]. Nature Communications, 2013, 4: 2923. |
59 | XIONG G P, HE P G, LYU Z P, et al. Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors[J]. Nature Communications, 2018, 9: 790. |
60 | YE Z Q, WANG F J, JIA C, et al. Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors[J]. Journal of Materials Science, 2018, 53(17): 12374-12387. |
61 | DAI S G, LIU Z, ZHAO B T, et al. A high-performance supercapacitor electrode based on N-doped porous graphene[J]. Journal of Power Sources, 2018, 387: 43-48. |
62 | HE X J, ZHANG N, SHAO X L, et al. A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors[J]. Chemical Engineering Journal, 2016, 297: 121-127. |
63 | WANG Y, WU Y P, HUANG Y, et al. Preventing graphene sheets from restacking for high-capacitance performance[J]. The Journal of Physical Chemistry C, 2011, 115(46): 23192-23197. |
64 | SRIDHAR V, KIM H J, JUNG J H, et al. Defect-engineered three-dimensional graphene-nanotube-palladium nanostructures with ultrahigh capacitance[J]. ACS Nano, 2012, 6(12): 10562-10570. |
65 | FAN Z J, YAN J, ZHI L J, et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Advanced Materials, 2010, 22(33): 3723-3728. |
66 | SUN L L, ZHAO Z B, SUN Y, et al. Activated coal-based graphene with hierarchical porous structures for ultra-high energy density supercapacitors[J]. Diamond and Related Materials, 2020, 106: 107827. |
67 | 张亚婷, 任绍昭, 党永强, 等. 煤基三维石墨烯基电极在不同电解液中的电化学性能[J]. 材料导报, 2017, 31(16): 1-5. |
ZHANG Yating, REN Shaozhao, DANG Yongqiang, et al. Electrochemical capacitive properties of coal-based three-dimensional graphene electrode in different electrolytes[J]. Materials Review, 2017, 31(16): 1-5. | |
68 | 赵春宝, 刘振. 煤基石墨烯制备及电化学性能研究[J]. 化学工程师, 2017, 31(10): 14-16, 22. |
ZHAO Chunbao, LIU Zhen. Preparation of coal-based graphene for supercapacitors[J]. Chemical Engineer, 2017, 31(10): 14-16, 22. | |
69 | HE X J, LI X J, MA H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. Journal of Power Sources, 2017, 340: 183-191. |
70 | HE X J, ZHANG H B, ZHANG H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(46): 19633-19640. |
71 | LI H, WANG Z X, CHEN L Q, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials, 2009, 21(45): 4593-4607. |
72 | YAN J W, ZHONG M, YU C L, et al. Multilayer graphene sheets converted directly from anthracite in the presence of molten iron and their applications as anode for lithium ion batteries[J]. Synthetic Metals, 2020, 263: 116364. |
73 | ZHONG M, YAN J W, WU H X, et al. Multilayer graphene spheres generated from anthracite and semi-coke as anode materials for lithium-ion batteries[J]. Fuel Processing Technology, 2020, 198: 106241. |
74 | 熊东彬. 功能化石墨烯的可控合成及其在锂离子电池正极材料中的应用[D]. 天津: 天津师范大学,2016. |
XIONG Dongbin. Controllable synthesis of functionalized graphene and its application in lithium-ion battery cathode materials[D]. Tianjin: Tianjin Normal University, 2016. | |
75 | 徐丽, 盛鹏, 韩钰, 等. 一种多孔石墨烯锂离子电池正极材料的制备方法:CN105439128A[P]. 2016-03-30. |
XU Li, SHENG Peng, HAN Yu, et al. A preparation method of porous graphene Li-ion battery cathode material: CN105439128A[P]. 2016-03-30 | |
76 | 安祥飞. 石墨烯基纳米复合材料制备及其在锂离子电池中的应用[D]. 北京: 北京交通大学, 2014. |
AN Xiangfei. Preparation of graphene-based nanocomposites and their application in Li-ion battery[D]. Beijing: Beijing Jiaotong University, 2014. | |
77 | 邓凌峰, 连晓辉, 张淑娴, 等. 锂离子电池用LiMn2O4/石墨烯复合材料的性能[J]. 电池, 2019, 49(2): 125-128. |
DENG Lingfeng, LIAN Xiaohui, ZHANG Shuxian, et al. Performance of LiMn2O4/graphene composite material for Li-ion battery[J]. Battery Bimonthly, 2019, 49(2): 125-128. | |
78 | 庄志恒. 煤基碳材料的制备及其储钠性能研究[D]. 徐州: 中国矿业大学, 2019. |
ZHUANG Zhiheng. Synthesis and sodium storage properties of coal-based carbon[D]. Xuzhou: China University of Mining and Technology, 2019. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[5] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[6] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[7] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[8] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[11] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[12] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[13] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[14] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[15] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |