化工进展 ›› 2022, Vol. 41 ›› Issue (6): 3089-3102.DOI: 10.16085/j.issn.1000-6613.2021-2614
收稿日期:
2021-12-23
修回日期:
2022-03-01
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
李琛
作者简介:
郑进宝(1997—),男,硕士研究生,研究方向为包装材料与成型技术。E-mail:基金资助:
Received:
2021-12-23
Revised:
2022-03-01
Online:
2022-06-10
Published:
2022-06-21
Contact:
LI Chen
摘要:
淀粉作为非常具有潜力的石油基塑料的替代品,其耐水性差严重限制了淀粉基包装材料的广泛应用。本文详细分析了淀粉单一改性和复合改性的特点,并介绍淀粉与疏水材料复合制备淀粉基疏水包装材料的研究情况。文章指出:提高取代度、降低生产成本、采用无毒无害的绿色溶剂是淀粉疏水改性的研究重点,协同增效的淀粉复合改性成为研究热点;解决亲水淀粉与疏水材料不相容相的界面问题是提高疏水材料共混效果的关键,对淀粉、疏水材料改性或添加增容剂是改善界面相互作用的常用方法;但合成可降解聚酯成本较高,寻找低成本的生物质材料用于改善淀粉基包装材料的疏水性潜力巨大。基于上述分析,本文指出低成本、性能优良和安全环保是未来开发淀粉基疏水包装材料的主要研究方向,对今后制备淀粉基疏水性包装材料具有一定的参考价值。
中图分类号:
郑进宝, 李琛. 淀粉基包装材料疏水性改善研究进展[J]. 化工进展, 2022, 41(6): 3089-3102.
ZHENG Jinbao, LI Chen. Research progress in improving hydrophobicity of starch-based packaging materials[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3089-3102.
类型 | 方法 | 特点 | 存在的问题 |
---|---|---|---|
酯化改性 | 利用淀粉中的羟基与有机酸或无机酸及其衍生物中的羧基结合形成酯基和水,常见的酯化反应物组合有酸酐和醇、酰氯和醇、羧酸和醇等[ | 酯化淀粉不仅具有良好的热塑性和疏水性,还会改变原淀粉的回生特性[ | 取代度低,生产成本较高,部分反应溶剂有毒有害且很难处理 |
乙酰化改性 | 将葡萄糖单体的亲水羟基转化为更多的疏水乙酰基 | 破坏了淀粉的颗粒形态,降低了淀粉的结晶度和糊化焓,提高了热稳定性,具有一定的疏水性能[ | 变性淀粉的生物降解速率随着取代度的增加而降低 |
接枝改性 | 将疏水性聚合物或单体引入到淀粉的分子链上 | 改性后的接枝淀粉共聚物具有聚合物和淀粉的混合特性 | 反应效率低,有机溶剂有毒有害 |
交联改性 | 以共价键形式连接线型或支链型聚合物高分子链形成三维网状结构 | 淀粉分子间的氢键被化学键加强,可以阻止水分子的进入[ | 部分交联剂有毒有害、价格昂贵且交联效率低 |
碱化改性 | 不同碱处理并未使淀粉分子形成新的官能团,而是影响淀粉内的分子链排列,从而导致其晶型以及相对结晶度发生明显变化[ | 淀粉碱化处理的成本较低,不仅可以降低淀粉薄膜的亲水性,还可以降低淀粉的结晶度,在一定程度上抑制淀粉的再回生 | 碱化后的淀粉基包装材料的耐水性与塑料相比仍有不小差距 |
硅烷化处理 | 羟基替换成硅烷等极性较低的基团,以提高淀粉的疏水性[ | 硅烷化处理比其他单一改性更加有效 | 提高淀粉基包装材料的性能有限,而且其降解性是否下降有待进一步研究 |
复合改性 | 物理-物理、化学-化学、酶法-酶法、物理-化学、物理-酶法、化学-酶法等复合改性[ | 多种改性方法结合可以发挥协同增效的作用,不仅可以提高淀粉改性的取代度,还可以提高材料的综合性能 | 工艺复杂,经济成本和环境成本会有所提高 |
表1 几种常见的淀粉疏水改性的方法、特点及存在的问题
类型 | 方法 | 特点 | 存在的问题 |
---|---|---|---|
酯化改性 | 利用淀粉中的羟基与有机酸或无机酸及其衍生物中的羧基结合形成酯基和水,常见的酯化反应物组合有酸酐和醇、酰氯和醇、羧酸和醇等[ | 酯化淀粉不仅具有良好的热塑性和疏水性,还会改变原淀粉的回生特性[ | 取代度低,生产成本较高,部分反应溶剂有毒有害且很难处理 |
乙酰化改性 | 将葡萄糖单体的亲水羟基转化为更多的疏水乙酰基 | 破坏了淀粉的颗粒形态,降低了淀粉的结晶度和糊化焓,提高了热稳定性,具有一定的疏水性能[ | 变性淀粉的生物降解速率随着取代度的增加而降低 |
接枝改性 | 将疏水性聚合物或单体引入到淀粉的分子链上 | 改性后的接枝淀粉共聚物具有聚合物和淀粉的混合特性 | 反应效率低,有机溶剂有毒有害 |
交联改性 | 以共价键形式连接线型或支链型聚合物高分子链形成三维网状结构 | 淀粉分子间的氢键被化学键加强,可以阻止水分子的进入[ | 部分交联剂有毒有害、价格昂贵且交联效率低 |
碱化改性 | 不同碱处理并未使淀粉分子形成新的官能团,而是影响淀粉内的分子链排列,从而导致其晶型以及相对结晶度发生明显变化[ | 淀粉碱化处理的成本较低,不仅可以降低淀粉薄膜的亲水性,还可以降低淀粉的结晶度,在一定程度上抑制淀粉的再回生 | 碱化后的淀粉基包装材料的耐水性与塑料相比仍有不小差距 |
硅烷化处理 | 羟基替换成硅烷等极性较低的基团,以提高淀粉的疏水性[ | 硅烷化处理比其他单一改性更加有效 | 提高淀粉基包装材料的性能有限,而且其降解性是否下降有待进一步研究 |
复合改性 | 物理-物理、化学-化学、酶法-酶法、物理-化学、物理-酶法、化学-酶法等复合改性[ | 多种改性方法结合可以发挥协同增效的作用,不仅可以提高淀粉改性的取代度,还可以提高材料的综合性能 | 工艺复杂,经济成本和环境成本会有所提高 |
1 | NIRANJANA PRABHU T, PRASHANTHA K. A review on present status and future challenges of starch based polymer films and their composites in food packaging applications[J]. Polymer Composites, 2018, 39(7): 2499-2522. |
2 | GADHAVE R V, DAS A, MAHANWAR P A, et al. Starch based bio-plastics: the future of sustainable packaging[J]. Open Journal of Polymer Chemistry, 2018, 8(2): 21-33. |
3 | JIANG Tianyu, DUAN Qingfei, ZHU Jian, et al. Starch-based biodegradable materials: challenges and opportunities[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(1): 8-18. |
4 | WEI Benxi, SUN Binghua, ZHANG Bao, et al. Synthesis, characterization and hydrophobicity of silylated starch nanocrystal[J]. Carbohydrate Polymers, 2016, 136: 1203-1208. |
5 | JIANG Suisui, DAI Lei, QIN Yang, et al. Preparation and characterization of octenyl succinic anhydride modified taro starch nanoparticles[J]. PLoS One, 2016, 11(2): e0150043. |
6 | MA Zhen, BOYE J I. Research advances on structural characterization of resistant starch and its structure-physiological function relationship: a review[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(7): 1059-1083. |
7 | CHENG Hao, CHEN Long, MCCLEMENTS D J, et al. Starch-based biodegradable packaging materials: a review of their preparation, characterization and diverse applications in the food industry[J]. Trends in Food Science & Technology, 2021, 114: 70-82. |
8 | TARIQUE J, SAPUAN S M, KHALINA A, et al. Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: a review[J]. Journal of Materials Research and Technology, 2021, 13: 1191-1219. |
9 | LOPEZ-GIL A, SILVA-BELLUCCI F, VELASCO D, et al. Cellular structure and mechanical properties of starch-based foamed blocks reinforced with natural fibers and produced by microwave heating[J]. Industrial Crops and Products, 2015, 66: 194-205. |
10 | WANG Xiang, HUANG Lixin, ZHANG Caihong, et al. Research advances in chemical modifications of starch for hydrophobicity and its applications: a review[J]. Carbohydrate Polymers, 2020, 240: 116292. |
11 | 游娜, 陈启杰, 梁春艳, 等. 淀粉疏水改性及其应用研究进展[J]. 造纸装备及材料, 2021, 50(6): 51-54. |
YOU Na, CHEN Qijie, LIANG Chunyan, et al. Research progress in hydrophobic modification of starch and its application[J]. Papermaking Equipment & Materials, 2021, 50(6): 51-54. | |
12 | 刘群, 张玉苍. 改性淀粉基生物降解塑料的研究进展[J]. 化工进展, 2020, 39(8): 3124-3134. |
LIU Qun, ZHANG Yucang. Progress of modified starch-based biodegradable plastics[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3124-3134. | |
13 | AKIN-AJANI O D, ITIOLA O A, ODEKU O A. Evaluation of the disintegrant properties of native and modified forms of fonio and sweet potato starches[J]. Starch - Stärke, 2016, 68(1/2): 169-174. |
14 | ADETUNJI O A, KOLAWOLE O. The influence of phosphate modified and pregelatinized plantain (Musa paradisiaca, Family: Musaceae) starches as disintegrants in paracetamol tablet formulations[J]. Nigerian Journal of Pharmaceutical Research, 2018, 14(1): 15-24. |
15 | LI Wei, XU Zhenzhen, WANG Zongqian, et al. Double etherification of corn starch to improve its adhesion to cotton and polyester fibers[J]. International Journal of Adhesion and Adhesives, 2018, 84: 101-107. |
16 | KOU Tingting, GAO Qunyu. New insight in crosslinking degree determination for crosslinked starch[J]. Carbohydrate Research, 2018, 458/459: 13-18. |
17 | PARK E Y, MA J G, KIM J, et al. Effect of dual modification of HMT and crosslinking on physicochemical properties and digestibility of waxy maize starch[J]. Food Hydrocolloids, 2018, 75: 33-40. |
18 | KEDZIOR S A, ZOPPE J O, BERRY R M, et al. Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer grafting[J]. Current Opinion in Solid State and Materials Science, 2019, 23(2): 74-91. |
19 | 郑譞, 侯袁婧, 龚春丽, 等. 耐水型热塑性淀粉基生物降解复合材料的研究进展[J]. 材料导报, 2016, 30(S2): 389-395. |
ZHENG Xuan, HOU Yuanjing, GONG Chunli, et al. Research progress in water proof thermoplastic starch-based biodegradable composites[J]. Materials Review, 2016, 30(S2): 389-395. | |
20 | 于浩强, 张艳梅, 王晓慧, 等. 淀粉疏水改性技术的研究进展[J]. 化学工业与工程技术, 2012, 33(4): 31-34. |
YU Haoqiang, ZHANG Yanmei, WANG Xiaohui, et al. Progress in studies on the technology of hydrophobic modification of starch[J]. Journal of Chemical Industry & Engineering, 2012, 33(4): 31-34. | |
21 | MASINA N, CHOONARA Y E, KUMAR P, et al. A review of the chemical modification techniques of starch[J]. Carbohydrate Polymers, 2017, 157: 1226-1236. |
22 | 李海花, 高玉华, 张利辉, 等. 高取代度醚化淀粉的湿法制备及其絮凝性能研究[J]. 现代化工, 2020, 40(4): 110-114, 118. |
LI Haihua, GAO Yuhua, ZHANG Lihui, et al. Wet-route preparation of etherified starch with high substitution degree and study on its flocculation properties[J]. Modern Chemical Industry, 2020, 40(4): 110-114, 118. | |
23 | XU Jianteng, ANDREWS T D, SHI Yongcheng. Recent advances in the preparation and characterization of intermediately to highly esterified and etherified starches: A review[J]. Starch - Stärke, 2020, 72(3/4): 1900238. |
24 | HAQ F, YU Haojie, WANG Li, et al. Advances in chemical modifications of starches and their applications[J]. Carbohydrate Research, 2019, 476: 12-35. |
25 | OTACHE M A, DURU R U, ACHUGASIM O, et al. Advances in the modification of starch via esterification for enhanced properties[J]. Journal of Polymers and the Environment, 2021, 29(5): 1365-1379. |
26 | 李翠翠, 魏姜勉, 李永丽. 蜡质玉米淀粉改性研究进展[J]. 粮食与油脂, 2020, 33(10): 1-2. |
LI Cuicui, WEI Jiangmian, LI Yongli. Research progress on modified waxy corn starch[J]. Cereals & Oils, 2020, 33(10): 1-2. | |
27 | 罗想平, 柳春, 邓艳, 等. 酯化淀粉研究进展[J]. 大众科技, 2015, 17(7): 37-39, 60. |
LUO Xiangping, LIU Chun, DENG Yan, et al. The research process of esterified starches[J]. Popular Science & Technology, 2015, 17(7): 37-39, 60. | |
28 | GUARÁS M P, LUDUEÑA L N, ALVAREZ V A. Development of biodegradable products from modified starches[M]//Starch-Based Materials in Food Packaging. Amsterdam: Elsevier, 2017: 77-124. |
29 | OLAYINKA O O, ADEBOWALE K O, OLU-OWOLABI I B. Physicochemical properties, morphological and X-ray pattern of chemically modified white Sorghum starch. (Bicolor-Moench)[J]. Journal of Food Science and Technology, 2013, 50(1): 70-77. |
30 | OJOGBO E, OGUNSONA E O, MEKONNEN T H. Chemical and physical modifications of starch for renewable polymeric materials[J]. Materials Today Sustainability, 2020, 7/8: 100028. |
31 | 樊艳叶. 碱/盐处理对木薯淀粉结构的影响[D]. 南宁: 广西民族大学, 2020. |
FAN Yanye. Effect of alkali/salt treatment on the structure of cassava starch[D]. Nanning: Guangxi University for Nationalities, 2020. | |
32 | JARIYASAKOOLROJ P, CHIRACHANCHAI S. Silane modified starch for compatible reactive blend with poly(lactic acid)[J]. Carbohydrate Polymers, 2014, 106: 255-263. |
33 | 杨世雄, 高飞虎, 张雪梅, 等. 复合改性淀粉的研究进展[J]. 农产品加工, 2020(19): 69-71, 76. |
YANG Shixiong, GAO Feihu, ZHANG Xuemei, et al. Research progress of compound modified starch[J]. Farm Products Processing, 2020(19): 69-71, 76. | |
34 | ZARSKI A, BAJER K, ZARSKA S, et al. From high oleic vegetable oils to hydrophobic starch derivatives: Ⅰ. Development and structural studies[J]. Carbohydrate Polymers, 2019, 214: 124-130. |
35 | ZHANG Kairui, CHENG Fei, ZHANG Kang, et al. Synthesis of long-chain fatty acid starch esters in aqueous medium and its characterization[J]. European Polymer Journal, 2019, 119: 136-147. |
36 | NAMAZI H, FATHI F, DADKHAH A. Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles[J]. Scientia Iranica, 2011, 18(3): 439-445. |
37 | HOMAEI A A, SARIRI R, VIANELLO F, et al. Enzyme immobilization: an update[J]. Journal of Chemical Biology, 2013, 6(4): 185-205. |
38 | BISWAS A, KIM S, FERRO FURTADO R, et al. Metal chloride-catalyzed acetylation of starch: Synthesis and characterization[J]. International Journal of Polymer Analysis and Characterization, 2018, 23(6): 577-589. |
39 | 何强, 石海信, 王爱荣, 等. 离子液体介质中OSAS的制备与表征及乳化性质分析[J]. 化工进展, 2020, 39(7): 2802-2809. |
HE Qiang, SHI Haixin, WANG Airong, et al. Preparation and characterization of OSAS in ionic liquid and its emulsification properties[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2802-2809. | |
40 | 杨文涵. 超声辅助制备辛烯基琥珀酸大米淀粉酯及应用研究[D]. 杭州: 浙江大学, 2021. |
YANG Wenhan. Osa rice starch prepared by ultrasound-assist method and its application exploration[D]. Hangzhou: Zhejiang University, 2021. | |
41 | WILPISZEWSKA K, CZECH Z. Citric acid modified potato starch films containing microcrystalline cellulose reinforcement—Properties and application[J]. Starch - Stärke, 2014, 66(7/8): 660-667. |
42 | MISKEEN S, HONG J S, CHOI H D, et al. Fabrication of citric acid-modified starch nanoparticles to improve their thermal stability and hydrophobicity[J]. Carbohydrate Polymers, 2021, 253: 117242. |
43 | PORNSUKSOMBOON K, HOLLÓ B B, SZÉCSÉNYI K M, et al. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends[J]. Carbohydrate Polymers, 2016, 136: 107-112. |
44 | YU Jiugao, WANG Ning, MA Xiaofei. The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol[J]. Starch - Stärke, 2005, 57(10): 494-504. |
45 | MOHAMMADINEJAD R, KARIMI S, IRAVANI S, et al. Plant-derived nanostructures: types and applications[J]. Green Chemistry, 2016, 18(1): 20-52. |
46 | GILET A, QUETTIER C, WIATZ V, et al. Unconventional media and technologies for starch etherification and esterification[J]. Green Chemistry, 2018, 20(6): 1152-1168. |
47 | SÖYLER Z, MEIER M A R. Catalytic transesterification of starch with plant oils: a sustainable and efficient route to fatty acid starch esters[J]. ChemSusChem, 2017, 10(1): 182-188. |
48 | LE P T, NGUYEN K T. Hydrophobizing cellulose surfaces via catalyzed transesterification reaction using soybean oil and starch[J]. Heliyon, 2020, 6(11): e05559. |
49 | ADAK S, BANERJEE R. A green approach for starch modification: esterification by lipase and novel imidazolium surfactant[J]. Carbohydrate Polymers, 2016, 150: 359-368. |
50 | MACHADO C M, BENELLI P, TESSARO I C. Effect of acetylated starch on the development of peanut skin-cassava starch foams[J]. International Journal of Biological Macromolecules, 2020, 165: 1706-1716. |
51 | XU Y X, DZENIS Y, HANNA M A. Water solubility, thermal characteristics and biodegradability of extruded starch acetate foams[J]. Industrial Crops and Products, 2005, 21(3): 361-368. |
52 | BERGEL B F, DIAS OSORIO S, DA LUZ L M, et al. Effects of hydrophobized starches on thermoplastic starch foams made from potato starch[J]. Carbohydrate Polymers, 2018, 200: 106-114. |
53 | BUNKERD R, MOLLOY R, SOMSUNAN R, et al. Synthesis and characterization of chemically-modified cassava starch grafted with poly(2-ethylhexyl acrylate) for blending with poly(lactic acid)[J]. Starch - Stärke, 2018, 70(11/12): 1800093. |
54 | 袁久刚, 向中林, 范雪荣, 等. 离子液体环境下淀粉的酶法疏水化改性[J]. 食品与生物技术学报, 2017, 36(11): 1152-1156. |
YUAN Jiugang, XIANG Zhonglin, FAN Xuerong, et al. Preparation of hydrophobic starch through lipase-catalyzed reaction in ionic liquids[J]. Journal of Food Science and Biotechnology, 2017, 36(11): 1152-1156. | |
55 | 韩梓军, 查东东, 银鹏, 等. 光交联在淀粉塑料中的应用进展[J]. 塑料工业, 2018, 46(1): 1-5. |
HAN Zijun, ZHA Dongdong, YIN Peng, et al. Progress of the application of photocrosslinking in starch plastics[J]. China Plastics Industry, 2018, 46(1): 1-5. | |
56 | 周悦, 董余兵. 交联淀粉基可降解塑料的研究进展[J]. 浙江理工大学学报(自然科学版), 2020, 43(6): 757-765. |
ZHOU Yue, DONG Yubing. Research progress of crosslinked starch-based degradable plastics[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2020, 43(6): 757-765. | |
57 | TILLET G, BOUTEVIN B, AMEDURI B. Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature[J]. Progress in Polymer Science, 2011, 36(2): 191-217. |
58 | NI Shuzhen, WANG Baobin, ZHANG Hui, et al. Glyoxal improved functionalization of starch with AZC enhances the hydrophobicity, strength and UV blocking capacities of co-crosslinked polymer[J]. European Polymer Journal, 2019, 110: 385-393. |
59 | SUKHIJA S, SINGH S, RIAR C S. Development and characterization of biodegradable films from whey protein concentrate, Psyllium husk and oxidized, crosslinked, dual-modified Lotus rhizome starch composite[J]. Journal of the Science of Food and Agriculture, 2019, 99(7): 3398-3409. |
60 | MEHBOOB S, ALI T M, SHEIKH M, et al. Effects of cross linking and/or acetylation on Sorghum starch and film characteristics[J]. International Journal of Biological Macromolecules, 2020, 155: 786-794. |
61 | WU Hejun, LEI Yanlin, LU Junyu, et al. Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films[J]. Food Hydrocolloids, 2019, 97: 105208. |
62 | SAKKARA S, NATARAJ D, VENKATESH K, et al. Effect of pH on the physicochemical properties of starch films[J]. Journal of Applied Polymer Science, 2020, 137(15): 48563. |
63 | BERGEL B F, LEITE ARAUJO L, SANTOS DA SILVA A L DOS, et al. Effects of silylated starch structure on hydrophobization and mechanical properties of thermoplastic starch foams made from potato starch[J]. Carbohydrate Polymers, 2020, 241: 116274. |
64 | CHE Liming, LI Dong, WANG Lijun, et al. Micronization and hydrophobic modification of cassava starch[J]. International Journal of Food Properties, 2007, 10(3): 527-536. |
65 | REN Lili, WANG Qian, YAN Xiaoxia, et al. Dual modification of starch nanocrystals via crosslinking and esterification for enhancing their hydrophobicity[J]. Food Research International, 2016, 87: 180-188. |
66 | TANETRUNGROJ Y, PRACHAYAWARAKORN J. Effect of dual modification on properties of biodegradable crosslinked-oxidized starch and oxidized-crosslinked starch films[J]. International Journal of Biological Macromolecules, 2018, 120: 1240-1246. |
67 | MIAO Chuanwei, HAMAD W Y. Cellulose reinforced polymer composites and nanocomposites: a critical review[J]. Cellulose, 2013, 20(5): 2221-2262. |
68 | OLEYAEI S A, ALMASI H, GHANBARZADEH B, et al. Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: thermal, mechanical and barrier properties[J]. Carbohydrate Polymers, 2016, 152: 253-262. |
69 | RAHMAN P M, ABDUL MUJEEB V M, MURALEEDHARAN K, et al. Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties[J]. Arabian Journal of Chemistry, 2018, 11(1): 120-127. |
70 | JAWAID M, SWAIN S K. Bionanocomposites for packaging applications[M]. Cham: Springer International Publishing, 2018. |
71 | ZHANG Rongfei, WANG Xiangyou, CHENG Meng. Preparation and characterization of potato starch film with various size of nano-SiO₂[J]. Polymers, 2018, 10(10): 1172. |
72 | 徐冰冰, 杨国超, 张求慧. 纸质食品包装材料防水防油改性的研究进展[J]. 包装工程, 2021, 42(3): 107-115. |
XU Bingbing, YANG Guochao, ZHANG Qiuhui. Research progress of water-proof and oil-proof modification of paper food packaging materials[J]. Packaging Engineering, 2021, 42(3): 107-115. | |
73 | 孙旭. 淀粉基生物质材料防水性能及应用技术研究[D]. 济南: 山东大学, 2020. |
SUN Xu. Research on the waterproof properties and application technology of starch-based biomass composites[D]. Jinan: Shandong University, 2020. | |
74 | 章伟伟. 环保型超疏水抗潮功能纸张的研究[D]. 广州: 华南理工大学, 2014. |
ZHANG Weiwei. Environmentally friendly functional paper with superhydrophobic surface and moisture resistance[D]. Guangzhou: South China University of Technology, 2014. | |
75 | 鲍恩泉, 陈劲松, 姜凌云, 等. 仿生超疏水表面的制备与应用研究进展[J]. 材料保护, 2020, 53(6): 127-131, 143. |
BAO Enquan, CHEN Jingsong, JIANG Lingyun, et al. Preparation, application and research progress of biomimetic superhydrophobic surface[J]. Materials Protection, 2020, 53(6): 127-131, 143. | |
76 | 尹晓彤, 王玉铄, 袁鹏园, 等. 微纳米结构超疏水膜层的构建与性能研究进展[J]. 材料保护, 2020, 53(5): 117-122. |
YIN Xiaotong, WANG Yushuo, YUAN Pengyuan, et al. Research progress on construction and properties of superhydrophobic membrane with micro-nano structure[J]. Materials Protection, 2020, 53(5): 117-122. | |
77 | CHEN Ying, LIU Hongsheng, YU Long, et al. Superhydrophobic modification on starch film using PDMS and ball-milled MMT coating[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(28): 10423-10430. |
78 | WANG Fan, QIU Lizhong, TIAN Yaoqi. Super anti-wetting colorimetric starch-based film modified with poly(dimethylsiloxane) and micro-/nano-starch for aquatic-product freshness monitoring[J]. Biomacromolecules, 2021, 22(9): 3769-3779. |
79 | YU Xuepeng, CHEN Long, JIN Zhengyu, et al. Research progress of starch-based biodegradable materials: a review[J]. Journal of Materials Science, 2021, 56(19): 11187-11208. |
80 | MARTINEZ VILLADIEGO K, ARIAS TAPIA M J, USECHE J, et al. Thermoplastic starch (TPS)/polylactic acid (PLA) blending methodologies: a review[J]. Journal of Polymers and the Environment, 2022, 30(1): 75-91. |
81 | XIONG Zhu, MA Songqi, FAN Libo, et al. Surface hydrophobic modification of starch with bio-based epoxy resins to fabricate high-performance polylactide composite materials[J]. Composites Science and Technology, 2014, 94: 16-22. |
82 | 李梁, 李刚, 赵清华. 环氧大豆油对TPS/PLA复合材料性能的影响[J]. 塑料科技, 2021, 49(5): 40-43. |
LI Liang, LI Gang, ZHAO Qinghua. Effect of epoxidized soybean oil on properties of TPS/PLA composites[J]. Plastics Science and Technology, 2021, 49(5): 40-43. | |
83 | SONG R, MURPHY M, LI Chenshuang, et al. Current development of biodegradable polymeric materials for biomedical applications[J]. Drug Design, Development and Therapy, 2018, 12: 3117-3145. |
84 | 吴俊, 谢笔钧. 淀粉/聚己内酯热塑性完全生物降解塑料膜的研制[J]. 塑料工业, 2002, 30(6): 22-24. |
WU Jun, XIE Bijun. Study of starch/PCL thermoplastic full-biodegradable film[J]. China Plastics Industry, 2002, 30(6): 22-24. | |
85 | DE OLIVEIRA GAMA R, BRETAS R E S, ORÉFICE R L. Control of the hydrophilic/hydrophobic behavior of biodegradable natural polymers by decorating surfaces with nano- and micro-components[J]. Advances in Polymer Technology, 2018, 37(3): 654-661. |
86 | BULATOVIĆ V O, MANDIĆ V, KUČIĆ GRGIĆ D, et al. Biodegradable polymer blends based on thermoplastic starch[J]. Journal of Polymers and the Environment, 2021, 29(2): 492-508. |
87 | WENG Fangqing, ZHANG Peirui, GUO Duyu, et al. Preparation and properties of compatible starch-PCL composites: effects of the NCO functionality in compatibilizer[J]. Starch-Stärke, 2020, 72(3/4): 1900239. |
88 | HERNANDEZ J H M. Effect of the incorporation of polycaprolactone (PCL) on the retrogradation of binary blends with cassava thermoplastic starch (TPS)[J]. Polymers, 2020, 13(1): 38. |
89 | NEVORALOVÁ M, KOUTNÝ M, UJČIĆ A, et al. Structure characterization and biodegradation rate of poly(ε-caprolactone)/starch blends[J]. Frontiers in Materials, 2020, 7: 141. |
90 | SHARMA V, SEHGAL R, GUPTA R. Polyhydroxyalkanoate (PHA): properties and modifications[J]. Polymer, 2021, 212: 123161. |
91 | SYAHIRAH W N, AZAMI N A, HUONG K H, et al. Preparation, characterization and biodegradation of blend films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with natural biopolymers[J]. Polymer Bulletin, 2021, 78(7): 3973-3993. |
92 | MADBOULY S A. Bio-based polyhydroxyalkanoates blends and composites[J]. Physical Sciences Reviews, 2021. |
93 | GE Xiaoyan, YU Long, LIU Zengshe, et al. Developing acrylated epoxidized soybean oil coating for improving moisture sensitivity and permeability of starch-based film[J]. International Journal of Biological Macromolecules, 2019, 125: 370-375. |
94 | 阁霄艳. 环氧大豆油丙烯酸酯涂层改善淀粉基膜材防水阻气性能的研究[D]. 广州: 华南理工大学, 2019. |
GE Xiaoyan. Developing acrylated epoxidized soybean oil coating for improving moisture sensitivity and permeability of starch-based film[D]. Guangzhou: South China University of Technology, 2019. | |
95 | MENG Linghan, LI Sheng, YANG Weidong, et al. Improvement of interfacial interaction between hydrophilic starch film and hydrophobic biodegradable coating[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9506-9514. |
96 | 孟令晗. 淀粉基发泡材料的制备与性能及防水性研究[D]. 广州: 华南理工大学, 2019. |
MENG Linghan. Preparation, properties and water resistance of starch-based foams materials[D]. Guangzhou: South China University of Technology, 2019. | |
97 | KASEMSIRI P, DULSANG N, PONGSA U, et al. Optimization of biodegradable foam composites from cassava starch, oil palm fiber, chitosan and palm oil using taguchi method and grey relational analysis[J]. Journal of Polymers and the Environment, 2017, 25(2): 378-390. |
98 | 郑进宝, 李琛. 抗菌空气过滤纸制备关键技术分析[J]. 包装工程, 2021, 42(19): 26-34. |
ZHENG Jinbao, LI Chen. Key technology for preparation of antibacterial air filter paper[J]. Packaging Engineering, 2021, 42(19): 26-34. | |
99 | KAISANGSRI N, KERDCHOECHUEN O, LAOHAKUNJIT N. Biodegradable foam tray from cassava starch blended with natural fiber and chitosan[J]. Industrial Crops and Products, 2012, 37(1): 542-546. |
100 | BANGYEKAN C, AHT-ONG D, SRIKULKIT K. Preparation and properties evaluation of chitosan-coated cassava starch films[J]. Carbohydrate Polymers, 2006, 63(1): 61-71. |
101 | BERGEL B F, DA LUZ L M, SANTANA R M C. Comparative study of the influence of chitosan as coating of thermoplastic starch foam from potato, cassava and corn starch[J]. Progress in Organic Coatings, 2017, 106: 27-32. |
102 | SEDDIQI H, OLIAEI E, HONARKAR H, et al. Cellulose and its derivatives: towards biomedical applications[J]. Cellulose, 2021, 28(4): 1893-1931. |
103 | BANGAR S P, WHITESIDE W S. Nano-cellulose reinforced starch bio composite films—A review on green composites[J]. International Journal of Biological Macromolecules, 2021, 185: 849-860. |
104 | AGO M, FERRER A, ROJAS O J. Starch-based biofoams reinforced with lignocellulose nanofibrils from residual palm empty fruit bunches: water sorption and mechanical strength[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5546-5552. |
105 | 张传伟. 全开放式泡孔结构的生物质复合材料成型工艺及性能研究[D]. 济南: 山东大学, 2020. |
ZHANG Chuanwei. Forming technology and properties of biomass composites with fully open cell structure[D]. Jinan: Shandong University, 2020. | |
106 | CHEN Qifeng, SHI Yinghan, CHEN Guangxue, et al. Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent[J]. International Journal of Biological Macromolecules, 2020, 142: 846-854. |
107 | 陈帅. 生物质缓冲包装材料淀粉改性机理及防水性能研究[D]. 济南: 山东大学, 2019. |
CHEN Shuai. Research on the starch modification mechanism and waterproof performance of biomass buffer packaging materials[D]. Jinan: Shandong University, 2019. | |
108 | KAISANGSRI N, KERDCHOECHUEN O, LAOHAKUNJIT N. Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil[J]. Carbohydrate Polymers, 2014, 110: 70-77. |
109 | SALGADO P R, SCHMIDT V C, MOLINA ORTIZ S E, et al. Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process[J]. Journal of Food Engineering, 2008, 85(3): 435-443. |
110 | TAPIA-BLÁCIDO D R, AGUILAR G J, DE ANDRADE M T, et al. Trends and challenges of starch-based foams for use as food packaging and food container[J]. Trends in Food Science & Technology, 2022: 119: 257-271. |
111 | TAPIA-BLÁCIDO D R, MANIGLIA B C, MARTELLI-TOSI M, et al. Agroindustrial biomass: potential materials for production of biopolymeric films[M]//MASUELLI M A. Biopackaging. Boca Raton, FL: CRC Press, 2017: 192-233. |
112 | HOYOS MIRELES B J, DÍAZ E R C, CASTRO MEDINA R S. Ecological trays based on banana (Musa paradisiaca) and achira (Canna indica) leaf blades: physical, mechanical and chemical characteristics[J]. Agroindustrial Science, 2021, 11(1): 87-96. |
113 | DAVIS J P, DEAN L L. Peanut composition, flavor and nutrition[M]//THOMAS STALKER H, WILSON Richard F. Peanuts. Amsterdam: Elsevier, 2016: 289-345. |
114 | MACHADO C M, BENELLI P, TESSARO I C. Constrained mixture design to optimize formulation and performance of foams based on cassava starch and peanut skin[J]. Journal of Polymers and the Environment, 2019, 27(10): 2224-2238. |
115 | GARCÍA-RENGIFO A R, ROJAS-BRINGAS P M, DE-LA-TORRE G E, et al. Environmental impact of peanut skin-reinforced native starch foams modified by acetylation[J]. Environmental Quality Management, 2022, 31(3): 89-99. |
116 | MACHADO C M, BENELLI P, TESSARO I C. Study of interactions between cassava starch and peanut skin on biodegradable foams[J]. International Journal of Biological Macromolecules, 2020, 147: 1343-1353. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[4] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[5] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[6] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[7] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[8] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[9] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[10] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[11] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[12] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[13] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[14] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[15] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |