化工进展 ›› 2022, Vol. 41 ›› Issue (6): 3063-3076.DOI: 10.16085/j.issn.1000-6613.2021-1462
马宏鹏1(), 张鑫1, 秦文博1, 郭斌1,2,3(), 李盘欣2,3
收稿日期:
2021-07-12
修回日期:
2021-08-12
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
郭斌
作者简介:
马宏鹏(1998—),男,硕士研究生,研究方向为天然高分子材料。E-mail:基金资助:
MA Hongpeng1(), ZHANG Xin1, QIN Wenbo1, GUO Bin1,2,3(), LI Panxin2,3
Received:
2021-07-12
Revised:
2021-08-12
Online:
2022-06-10
Published:
2022-06-21
Contact:
GUO Bin
摘要:
聚乙烯醇纤维具有耐酸碱、耐磨、可降解、水溶、耐腐耐候和防霉防虫等突出的优点,但存在应用范围较窄的问题。近三十年来,聚乙烯醇纤维的发展经历了服用纤维到产业用纤维的深刻转变,对聚乙烯醇纤维进行功能化改性,是提高其性能并拓宽其应用领域的有效方法。本文以聚乙烯醇纺丝成纤前后两个阶段为重点,系统介绍了纺丝液共混改性和纤维表面修饰两种典型方法。其中,共混改性分为高分子和小分子共混改性,而表面修饰按照其不同的机理则分为表面化学反应改性、表面接枝改性、物理改性等。此外,文中通过对各种改性方法优缺点的分析,阐述了共混改性和表面修饰与性能之间的关系,为选择合适的方法制备特定功能的聚乙烯醇纤维提供一定的借鉴和参考。基于现有聚乙烯醇纤维的改性方法及应用范围,提出了在深度和广度两个层次上不断加强聚乙烯醇纤维的改性研究,赋予其新的性能或满足更高要求的发展趋势。
中图分类号:
马宏鹏, 张鑫, 秦文博, 郭斌, 李盘欣. 聚乙烯醇纤维成纤前后改性方法的研究进展[J]. 化工进展, 2022, 41(6): 3063-3076.
MA Hongpeng, ZHANG Xin, QIN Wenbo, GUO Bin, LI Panxin. Research progress of different modification methods of polyvinyl alcohol fiber before and after fiber formation[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3063-3076.
改性方法 | 疏水性 | 亲水性 | 力学性能 | 热稳定性 | 抗菌性 | 吸附性 | 乳化分散 | 界面结合 |
---|---|---|---|---|---|---|---|---|
共混改性 | ||||||||
高分子 | √ | √ | √ | √ | ||||
小分子 | √ | √ | √ | √ | √ | |||
表面改性 | ||||||||
化学法 | ||||||||
酯化 | √ | √ | √ | |||||
醚化 | √ | √ | ||||||
磺化 | √ | √ | √ | |||||
缩醛化 | √ | √ | √ | |||||
交联 | √ | √ | √ | √ | ||||
接枝 | √ | √ | √ | |||||
物理法 | ||||||||
涂层 | √ | √ | √ | √ | ||||
预辐照 | √ | √ | √ | √ | ||||
等离子体 | √ | √ | √ | √ |
表1 聚乙烯醇成纤前后共混和表面改性与性能之间的关系
改性方法 | 疏水性 | 亲水性 | 力学性能 | 热稳定性 | 抗菌性 | 吸附性 | 乳化分散 | 界面结合 |
---|---|---|---|---|---|---|---|---|
共混改性 | ||||||||
高分子 | √ | √ | √ | √ | ||||
小分子 | √ | √ | √ | √ | √ | |||
表面改性 | ||||||||
化学法 | ||||||||
酯化 | √ | √ | √ | |||||
醚化 | √ | √ | ||||||
磺化 | √ | √ | √ | |||||
缩醛化 | √ | √ | √ | |||||
交联 | √ | √ | √ | √ | ||||
接枝 | √ | √ | √ | |||||
物理法 | ||||||||
涂层 | √ | √ | √ | √ | ||||
预辐照 | √ | √ | √ | √ | ||||
等离子体 | √ | √ | √ | √ |
1 | XIAO M, CHERY J, FREY M W. Functionalization of electrospun poly(vinyl alcohol) (PVA) nanofiber membranes for selective chemical capture[J]. ACS Applied Nano Materials, 2018, 1(2): 722-729. |
2 | PAKRAVAN H R, JAMSHIDI M, LATIFI M. The effect of hydrophilic (polyvinyl alcohol) fiber content on the flexural behavior of engineered cementitious composites (ECC)[J]. The Journal of the Textile Institute, 2018, 109(1): 79-84. |
3 | OLIVEIRA A M, SILVA F D A, FAIRBAIRN E D M R, et al. Coupled temperature and moisture effects on the tensile behavior of strain hardening cementitious composites (SHCC) reinforced with PVA fibers[J]. Materials and Structures, 2018, 51(3): 1-13. |
4 | SI W, CAO M L, Li L. Establishment of fiber factor for rheological and mechanical performance of polyvinyl alcohol (PVA) fiber reinforced mortar[J]. Construction and Building Materials, 2020, 265: 120347. |
5 | EL-AZIZ A M ABD, EL-MAGHRABY A, TAHA N A. Comparison between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn2+ ions from wastewater[J]. Arabian Journal of Chemistry, 2017, 10(8): 1052-1060. |
6 | SHARMA D, SATAPATHY B K. Optimally controlled morphology and physico-mechanical properties of inclusion complex loaded electrospun polyvinyl alcohol based nanofibrous mats for therapeutic applications[J]. Journal of Biomaterials Science: Polymer Edition, 2021, 32(9): 1182-1202. |
7 | GÁMEZ F, HURTADO P, HORTAL A R, et al. Cations in a molecular funnel: vibrational spectroscopy of isolated cyclodextrin complexes with alkali metals[J]. ChemPhysChem, 2013, 14(2): 400-407. |
8 | HOSSEINI H, SHAHRAKY M K, AMANI A, et al. Electrospinning of polyvinyl alcohol/chitosan/hyaluronic acid nanofiber containing growth hormone and its release investigations[J]. Polymers for Advanced Technologies, 2021, 32(2): 574-581. |
9 | QAVAMNIA S S, RAD L R, IRANI M. Incorporation of hydroxyapatite/doxorubicin into the chitosan/polyvinyl alcohol/polyurethane nanofibers for controlled release of doxurubicin and its anticancer property[J]. Fibers and Polymers, 2020, 21(8): 1634-1642. |
10 | DE ARAÚJO ETCHEPARE M, BARIN J S, CICHOSKI A J, et al. Microencapsulation of probiotics using sodium alginate[J]. Ciência Rural, 2015, 45(7): 1319-1326. |
11 | SHI J F, ZHANG H, YU Y, et al. Dynamic formation of calcium alginate/polyethylene glycol acrylate dual network fibers enhanced by polyvinyl alcohol microcrystalline cross-linking[J]. New Journal of Chemistry, 2020, 44(40): 17431-17441. |
12 | ZHANG X L, TANG K Y, ZHENG X J. Electrospinning and rheological behavior of poly(vinyl alcohol)/collagen blended solutions[J]. Journal of Wuhan University of Technology: Mater. Sci. Ed., 2015, 30(4): 840-846. |
67 | 黄鹤, 李建宗, 程时远. 我国聚乙烯醇改性技术进展[J]. 合成纤维工业, 1993, 16(2): 43-47. |
HUANG He, LI Jianzong, CHENG Shiyuan. The internal advances of PVA modification technology[J]. Synthetic Fiber Industry, 1993, 16(2): 43-47. | |
68 | 张丽娟, 程原. 酯化改性聚乙烯醇的研究[J]. 胶体与聚合物, 2008, 26(1): 15-17. |
ZHANG Lijuan, CHENG Yuan. Study on modification for polyvinyl alcohol by esterifying agent[J]. Chinese Journal of Colloid & Polymer, 2008, 26(1): 15-17. | |
13 | DUTTA S D, PATEL D K, LIM K T. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering[J]. Journal of Biological Engineering, 2019, 13: 55. |
14 | WEI W H, CHU Y Q, WANG R Z, et al. Quantifying non-covalent binding affinity using mass spectrometry: a systematic study on complexes of cyclodextrins with alkali metal cations[J]. Rapid Communications in Mass Spectrometry, 2015, 29(10): 927-936. |
15 | CHEN Y, LIU Y. Construction and functions of cyclodextrin-based 1D supramolecular strands and their secondary assemblies[J]. Advanced Materials, 2015, 27(36): 5403-5409. |
16 | XU X Y, SHANG H, ZHANG T, et al. A stimuli-responsive insulin delivery system based on reversible phenylboronate modified cyclodextrin with glucose triggered host-guest interaction[J]. International Journal of Pharmaceutics, 2018, 548(1): 649-658. |
17 | ZHAO J P, KHAN I A, FRONCZEK F R. Gallic acid[J]. Acta Crystallographica Section E: Structure Reports Online, 2011, 67(2): o316-o317. |
18 | NARDINI M, CIRILLO E, NATELLA F, et al. Absorption of phenolic acids in humans after coffee consumption[J]. Journal of Agricultural and Food Chemistry, 2002, 50(20): 5735-5741. |
19 | BOZ H. Ferulic acid in cereals —A review[J]. Czech Journal of Food Sciences, 2016, 33(1): 1-7. |
20 | RANJBAR-MOHAMMADI M, BAHRAMI S H. Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application[J]. International Journal of Biological Macromolecules, 2016, 84: 448-456. |
21 | NARAYANAN V, MANI M K, THAMBUSAMY S. Electrospinning preparation and spectral characterizations of the inclusion complex of ferulic acid and γ-cyclodextrin with encapsulation into polyvinyl alcohol electrospun nanofibers[J]. Journal of Molecular Structure, 2020, 1221: 128767. |
22 | NARAYANAN V, ALAM M, AHMAD N, et al. Electrospun poly(vinyl alcohol) nanofibers incorporating caffeic acid/cyclodextrins through the supramolecular assembly for antibacterial activity[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 249: 119308. |
23 | XING C Y, ZENG S L, QI S K, et al. Poly(vinyl alcohol)/β-cyclodextrin composite fiber with good flame retardant and super-smoke suppression properties[J]. Polymers, 2020, 12(5): 1078. |
24 | ZENG Z W, MO X M. Rapid in situ cross-linking of hydrogel adhesives based on thiol-grafted bio-inspired catechol-conjugated chitosan[J]. Journal of Biomaterials Applications, 2017, 32(5): 612-621. |
25 | KALANTARI K, AFIFI A M, JAHANGIRIAN H, et al. Biomedical applications of chitosan electrospun nanofibers as a green polymer - Review[J]. Carbohydrate Polymers, 2019, 207: 588-600. |
26 | AFSHAR S, RASHEDI S, NAZOCKDAST H, et al. Preparation and characterization of electrospun poly(lactic acid)-chitosan core-shell nanofibers with a new solvent system[J]. International Journal of Biological Macromolecules, 2019, 138: 1130-1137. |
27 | WANG S Y, YAN F, REN P, et al. Incorporation of metal-organic frameworks into electrospun chitosan/poly(vinyl alcohol) nanofibrous membrane with enhanced antibacterial activity for wound dressing application[J]. International Journal of Biological Macromolecules, 2020, 158: 9-17. |
28 | LAMARRA J, CALIENNI M N, RIVERO S, et al. Electrospun nanofibers of poly(vinyl alcohol) and chitosan-based emulsions functionalized with cabreuva essential oil[J]. International Journal of Biological Macromolecules, 2020, 160: 307-318. |
29 | MOKHAMES Z, REZAIE Z, ARDESHIRYLAJIMI A, et al. Efficient smooth muscle cell differentiation of iPS cells on curcumin-incorporated chitosan/collagen/polyvinyl-alcohol nanofibers[J]. In Vitro Cellular & Developmental Biology: Animal, 2020, 56(4): 313-321. |
30 | DURU KAMACI U, PEKSEL A. Fabrication of PVA-chitosan-based nanofibers for phytase immobilization to enhance enzymatic activity[J]. International Journal of Biological Macromolecules, 2020, 164: 3315-3322. |
31 | MA Y X, LI X, SHAO W J, et al. Fabrication of 3D porous polyvinyl alcohol/sodium alginate/graphene oxide spherical composites for the adsorption of methylene blue[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(4): 2205-2213. |
32 | YI Y, XU W, WANG H X, et al. Natural polysaccharides experience physiochemical and functional changes during preparation: a review[J]. Carbohydrate Polymers, 2020, 234: 115896. |
33 | DURU KAMACI U, PEKSEL A. Enhanced catalytic activity of immobilized phytase into polyvinyl alcohol-sodium alginate based electrospun nanofibers[J]. Catalysis Letters, 2021, 151(3): 821-831. |
34 | REZAEI M, NIKKHAH M, MOHAMMADI S, et al. Nano-curcumin/graphene platelets loaded on sodium alginate/polyvinyl alcohol fibers as potential wound dressing[J]. Journal of Applied Polymer Science, 2021, 138(35): 50884. |
35 | WANG Q Q, LIU J, ZHANG L, et al. Preparation and characterization of polyvinyl alcohol/sodium alginate/pyrovatex CP composite fibers[J]. Ferroelectrics, 2020, 562(1): 125. |
36 | CHEN Z G, WANG P W, WEI B, et al. Electrospun collagen-chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell[J]. Acta Biomaterialia, 2010, 6(2): 372-382. |
37 | RAHIM LABBAFZADEH M, VAKILI M H. Application of magnetic electrospun polyvinyl alcohol/collagen nanofibres for drug delivery systems[J]. Molecular Simulation, 2022, 48(1): 1-7. |
38 | PARIN F N, TERZIOĞLU P, SICAK Y, et al. Pine honey-loaded electrospun poly(vinyl alcohol)/gelatin nanofibers with antioxidant properties[J]. The Journal of the Textile Institute, 2021, 112(4): 628-635. |
39 | YADAV B K N, PATEL G C. Fabrication and characterization of coblended methyl cellulose with polyvinyl alcohol electrospun nanofibers as a carrier for drug delivery system[J]. Polymer Bulletin, 2022, 79(6): 4069-4097. |
40 | KHANZADA H, SALAM A, QADIR M B, et al. Fabrication of promising antimicrobial aloe vera/PVA electrospun nanofibers for protective clothing[J]. Materials, 2020, 13(17): 3884. |
41 | RANJBAR-MOHAMMADI M, RABBANI S, BAHRAMI S H, et al. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers[J]. Materials Science and Engineering: C, 2016, 69: 1183-1191. |
42 | YAN E Y, JIANG J Y, REN X H, et al. Polycaprolactone/polyvinyl alcohol core-shell nanofibers as a pH-responsive drug carrier for the potential application in chemotherapy against colon cancer[J]. Materials Letters, 2021, 291: 129516. |
43 | AGARWAL Y, RAJINIKANTH P S, RANJAN S, et al. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: an in-vitro and in-vivo studies[J]. International Journal of Biological Macromolecules, 2021, 176: 376-386. |
44 | BACKES E H, PIRES L D N, BEATRICE C A G, et al. Fabrication of biocompatible composites of poly(lactic acid)/hydroxyapatite envisioning medical applications[J]. Polymer Engineering & Science, 2020, 60(3): 636-644. |
45 | ZHANG Q M, WANG Y L, ZHANG W K, et al. In situ assembly of well-dispersed Ag nanoparticles on the surface of polylactic acid-Au@polydopamine nanofibers for antimicrobial applications[J]. Colloids and Surfaces B: Biointerfaces, 2019, 184: 110506. |
46 | GRITSCH L, CONOSCENTI G, CARRUBBA V LA, et al. Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules[J]. Materials Science and Engineering C, 2019, 94: 1083-1101. |
47 | MALEKI H, MATHUR S, KLEIN A. Antibacterial Ag containing core-shell polyvinyl alcohol-poly (lactic acid) nanofibers for biomedical applications[J]. Polymer Engineering & Science, 2020, 60(6): 1221-1230. |
48 | JIN X, HSIEH Y L. pH-responsive swelling behavior of poly(vinyl alcohol)/poly(acrylic acid) bi-component fibrous hydrogel membranes[J]. Polymer, 2005, 46(14): 5149-5160. |
49 | JIANG Y, MA D H, JI T T, et al. Long-term antibacterial effect of electrospun polyvinyl alcohol/polyacrylate sodium nanofiber containing nisin-loaded nanoparticles[J]. Nanomaterials, 2020, 10(9): 1803. |
50 | TAZEHKAND M N. The investigation of anti-bacterial activity of Reactive Red-120[EB/OL]. . |
51 | LI L, JIA Z, PENG Y H, et al. forces and disease: electrostatic force differences caused by mutations in kinesin motor domains can distinguish between disease-causing and non-disease-causing mutations[J]. Scientific Reports, 2017, 7: 8237. |
52 | BRAHMI F, ABDENOUR A, BRUNO M, et al. Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of Mentha pulegium L. and Mentha rotundifolia (L.) Huds growing in Algeria[J]. Industrial Crops and Products, 2016, 88: 96-105. |
53 | FADIL F, ADLI F A, AFFANDI N D N, et al. Dope-dyeing of polyvinyl alcohol (PVA) nanofibres with remazol yellow FG[J]. Polymers, 2020, 12(12): 3043. |
54 | GÖKSEN G, FABRA M J, PÉREZ-CATALUÑA A, et al. Biodegradable active food packaging structures based on hybrid cross-linked electrospun polyvinyl alcohol fibers containing essential oils and their application in the preservation of chicken breast fillets[J]. Food Packaging and Shelf Life, 2021, 27: 100613. |
55 | RAJA K, PRABHU C, SUBRAMANIAN K S, et al. Electrospun polyvinyl alcohol (PVA) nanofibers as carriers for hormones (IAA and GA_3) delivery in seed invigoration for enhancing germination and seedling vigor of agricultural crops (groundnut and black gram)[J]. Polymer Bulletin, 2020: 1-12. |
56 | ZHOU L, SHI F, LIU G J, et al. Fabrication and characterization of in situ cross-linked electrospun poly(vinyl alcohol)/phase change material nanofibers[J]. Solar Energy, 2021, 213: 339-349. |
57 | LIU Z L, LI H F, GU J Y, et al. Performances of an epoxy-amine network after introducing the MWCNTs: rheology, thermal and electrical conductivity, mechanical properties[J]. Journal of Adhesion Science and Technology, 2019, 33(4): 382-394. |
58 | SIOCHI E J, HARRISON J S. Structural nanocomposites for aerospace applications[J]. MRS Bulletin, 2015, 40(10): 829-835. |
59 | YıLDıRıM F, ATABERK N, EKREM M. Mechanical and thermal properties of a nanocomposite material which epoxy based and reinforced with polyvinyl alcohol nano fibers contained multiwalled carbon nanotube[J]. Journal of Composite Materials, 2021, 55(10): 1339-1347. |
60 | CHEN Z C, CHANG T L, SU K W, et al. Application of self-heating graphene reinforced polyvinyl alcohol nanowires to high-sensitivity humidity detection[J]. Sensors and Actuators B: Chemical, 2021, 327: 128934. |
61 | WANG C Y, WANG J, ZENG L D, et al. Fabrication of electrospun polymer nanofibers with diverse morphologies[J]. Molecules, 2019, 24(5): 834. |
62 | VANITHAKUMARI S C, ATHULYA V, GEORGE R P, et al. Fabrication of superhydrophobic and self cleaning PVA-silica fiber coating on 304L SS surfaces by electrospinning[J]. Journal of Applied Polymer Science, 2021, 138(13): 50118. |
63 | SUNARYONO S, RACHMAWATI A, YOGIHATI C I, et al. The effect of Ag nanoparticles in Ag/polyvinyl alcohol nanofiber composites[J]. Polymer Bulletin, 2022, 79(1): 555-568. |
64 | XIAO Y C, MA H, FANG X, et al. Surface modification of electrospun polyethylenimine/polyvinyl alcohol nanofibers immobilized with silver nanoparticles for potential antibacterial applications[J]. Current Nanoscience, 2021, 17(2): 279-286. |
65 | LIU Z T, GU C G, BIAN Y R, et al. Enhanced debromination of decabrominated diphenyl ether in aqueous solution by attapulgite supported Fe/Ni bimetallic nanoparticles: kinetics and pathways[J]. Materials Research Express, 2017, 4(8): 085009. |
66 | HONG X Q, ZOU L M, XU Y J, et al. Preparation and study of polyvinyl alcohol/attapulgite nanocomposite fibers with high strength and high Young’s modulus by gel spinning[J]. Materials Research Express, 2020, 7(6): 065303. |
69 | 章倩. 酞菁铁的合成及其在PVA纤维改性中的应用[D]. 上海: 东华大学, 2008. |
ZHANG Qian. Synthesis of iron-phthalocyanine and its applications in modification of PVA fiber[D]. Shanghai: Donghua University, 2008. | |
70 | 赵丹丹, 张恩风, 莫丹, 等. 金属酞菁-血清白蛋白杂化酶的合成及其性质的研究[J]. 应用化工, 2020, 49(3): 645-650. |
ZHAO Dandan, ZHANG Enfeng, MO Dan, et al. Synthesis and characterization of meter phthalocyanines and hybrid proteins[J]. Applied Chemical Industry, 2020, 49(3): 645-650. | |
71 | 王礼建. 功能化PVA微球与纤维对热塑性淀粉性能的影响[D]. 南京: 南京林业大学, 2016. |
WANG Lijian. Effect of functional PVA microspheres and fiber on the properties of thermoplastic starch[D]. Nanjing: Nanjing Forestry University, 2016. | |
72 | 高伟超. 聚乙烯醇醚化改性及影响因素研究[J]. 上海化工, 2016, 41(2): 4-7. |
GAO Weichao. Etherifying modification of polyvinyl alcohol and factors to influence it[J]. Shanghai Chemical Industry, 2016, 41(2): 4-7. | |
73 | 王昭晖, 沈一丁, 费贵强, 等. 环氧氯丙烷对水溶性聚乙烯醇纤维的表面改性及增强机理[J]. 功能材料, 2012, 43(20): 2785-2789. |
WANG Zhaohui, SHEN Yiding, FEI Guiqiang, et al. Surface modification of PVA fiber with epoxy chloropropane and its mechanism of curing reinforcement[J]. Journal of Functional Materials, 2012, 43(20): 2785-2789. | |
74 | 纪明辉. 聚乙烯醇共聚改性[D]. 上海: 东华大学, 2003. |
JI Minghui. Modification of polyvinyl alcohol by copolymerization[D]. Shanghai: Donghua University, 2003. | |
75 | 冯长根, 杨海燕, 曾庆轩. 聚乙烯醇纤维的改性与应用[J]. 化工进展, 2004, 23(1): 80-83. |
FENG Changgen, YANG Haiyan, ZENG Qingxuan. Preparation, structure and properities of modified PVA fiber[J]. Chemical Industry and Engineering Progress, 2004, 23(1): 80-83. | |
76 | 逯阳, 张华. 高强聚乙烯醇离子交换纤维的制备和应用[J]. 天津工业大学学报, 2004, 23(6): 5-8. |
LU Yang, ZHANG Hua. Preparation and application of high strength polyvinyl alcohol ion exchange fibers[J]. Journal of Tianjin Institute of Textile Science and Technology, 2004, 23(6): 5-8. | |
77 | 丁一晋. 缩醛交联、增速改性以及丙烯酰氯接枝改性聚乙烯醇的制备及其性能研究[D]. 北京: 北京化工大学, 2009. |
DING Yijin. Preparation and characteristics of acetal formation modified, plasticizer modified and acrylyl chloride graft modified polyvinyl alcohol[D]. Beijing: Beijing University of Chemical Technology, 2009. | |
78 | 韦啸, 叶光斗, 徐建军, 等. 胶原蛋白/聚乙烯醇复合纤维酸性染料染色研究[J]. 合成纤维工业, 2011, 34(6): 1-5. |
WEI Xiao, YE Guangdou, XU Jianjun, et al. Study on acid dyeing of collagen/polyvinyl alcohol composite fiber[J]. China Synthetic Fiber Industry, 2011, 34(6): 1-5. | |
79 | SHTYAGINA L M, VAINBURG V M, VINOGRADOVA L E. Acetalization of polyvinyl alcohol fiber with aldehyde-containing polyvinyl alcohol fiber[J]. Russian Journal of Applied Chemistry, 2001, 74(8): 1408-1409. |
80 | DRECHSLER A, FRENZEL R, CASPARI A, et al. Surface modification of poly(vinyl alcohol) fibers to control the fiber-matrix interaction in composites[J]. Colloid and Polymer Science, 2019, 297(7/8): 1079-1093. |
81 | GRUBB D T, KEARNEY F R. Modification of gel-drawn poly(vinyl alcohol) fibers with formaldehyde[J]. Journal of Applied Polymer Science, 1990, 39(3): 695-705. |
82 | 赵祥森, 严翔, 沈亚平, 等. 高耐热水性聚乙烯醇纤维的制备与结构性能研究[J]. 合成纤维工业, 2016, 39(1): 6-9, 14. |
ZHAO Xiangsen, YAN Xiang, SHEN Yaping, et al. Preparation and structural property of polyvinyl alcohol fiber with high hot water resistance[J]. China Synthetic Fiber Industry, 2016, 39(1): 6-9, 14. | |
83 | CUROSU I, LIEBSCHER M, ALSOUS G, et al. Tailoring the crack-bridging behavior of strain-hardening cement-based composites (SHCC) by chemical surface modification of poly(vinyl alcohol) (PVA) fibers[J]. Cement and Concrete Composites, 2020, 114: 103722. |
84 | 周闯, 李普旺, 屈云慧, 等. 聚乙烯醇膜耐水改性的研究进展[J]. 高分子通报, 2021(2): 9-17. |
ZHOU Chuang, LI Puwang, QU Yunhui, et al. Research progress of water resistance modification of polyvinyl alcohol film[J]. Polymer Bulletin, 2021(2): 9-17. | |
85 | CAO M, WANG C Y, XIA R, et al. Preparation and performance of the modified high-strength/high-modulus polyvinyl alcohol fiber/polyurethane grouting materials[J]. Construction and Building Materials, 2018, 168: 482-489. |
86 | VARMA D S, NEDUNGADI C. Modification of poly(vinyl alcohol) fibers by hexamethylene diisocyanate[J]. Journal of Applied Polymer Science, 1976, 20(3): 681-688. |
87 | YIN P, DONG X, ZHOU W, et al. A novel method to produce sustainable biocomposites based on thermoplastic corn-starch reinforced by polyvinyl alcohol fibers[J]. RSC Advances, 2020, 10(40): 23632-23643. |
88 | MITTAL A, GARG S, BAJPAI S. Thermal decomposition kinetics and properties of grafted barley husk reinforced PVA/starch composite films for packaging applications[J]. Carbohydrate Polymers, 2020, 240: 116225. |
89 | 郭新风, 王斌. 聚乙烯醇的改性及应用[J]. 辽宁化工, 2018, 47(11): 1144-1145, 1148. |
GUO Xinfeng, WANG Bin. Modification and application of polyvinyl alcohol film[J]. Liaoning Chemical Industry, 2018, 47(11): 1144-1145, 1148. | |
90 | CHIROWODZA H, SANDERSON R D. Surface modification of poly(vinyl alcohol) fibers[J]. Macromolecular Materials and Engineering, 2010, 295(11): 1009-1016. |
91 | 王海花, 李凯斌, 沈一丁, 等. 阳离子型反应活性聚乙烯醇纤维的制备及其增强机理[J]. 功能材料, 2014, 45(16): 16090-16095. |
WANG Haihua, LI Kaibin, SHEN Yiding, et al. Preparation of cationic PVA fibers with reaction activity and its strengthening mechanism[J]. Journal of Functional Materials, 2014, 45(16): 16090-16095. | |
92 | 柯勇, 沈一丁, 费贵强, 等. 甲基丙烯酸缩水甘油酯对水溶性聚乙烯醇纤维的表面改性及增强机理[J]. 高分子材料科学与工程, 2013, 29(12): 103-106, 111. |
KE Yong, SHEN Yiding, FEI Guiqiang, et al. Surface modification of water soluble polyvinyl alcohol fiber with glycidyl methacrylate and its strengthening mechanism[J]. Polymer Materials Science & Engineering, 2013, 29(12): 103-106, 111. | |
93 | ZHANG W, ZOU X S, WEI F Y, et al. Grafting SiO2 nanoparticles on polyvinyl alcohol fibers to enhance the interfacial bonding strength with cement[J]. Composites Part B: Engineering, 2019, 162: 500-507. |
94 | YAO X P, SHAMSAEI E, CHEN S J, et al. Graphene oxide-coated poly(vinyl alcohol) fibers for enhanced fiber-reinforced cementitious composites[J]. Composites Part B: Engineering, 2019, 174: 107010. |
95 | SUN M, CHEN Y Z, ZHU J Q, et al. Effect of modified polyvinyl alcohol fibers on the mechanical behavior of engineered cementitious composites[J]. Materials, 2018, 12(1): 37. |
96 | 王贺. 国产高强高模聚乙烯醇纤维的表面改性及其复合材料的界面调控[D]. 杭州: 浙江理工大学, 2017. |
WANG He. Surface modification of domestic high strength and high modulus polyvinyl alcohol fiber and interfacial modification of its composites[D]. Hangzhou: Zhejiang Sci-Tech University, 2017. | |
97 | KIM K W, YU C, HAN J W, et al. Strength and durability of rapid set PVA fiber reinforced LMC for pavement repair[J]. Polymers and Polymer Composites, 2019, 27(4): 179-188. |
98 | ARAIN M F, WANG M X, CHEN J Y, et al. Experimental and numerical study on tensile behavior of surface modified PVA fiber reinforced strain-hardening cementitious composites (PVA-SHCC)[J]. Construction and Building Materials, 2019, 217: 403-415. |
99 | ARAIN M F, WANG M X, CHEN J Y, et al. Study on PVA fiber surface modification for strain-hardening cementitious composites (PVA-SHCC)[J]. Construction and Building Materials, 2019, 197: 107-116. |
100 | 丁聪, 郭丽萍, 陈波, 等. 高强高模PVA纤维表面改性及耐碱性能[J]. 硅酸盐学报, 2019, 47(2): 228-235. |
DING Cong, GUO Liping, CHEN Bo, et al. Alkali resistance and surface modification of high strength and high modulus PVA fibers[J]. Journal of the Chinese Ceramic Society, 2019, 47(2): 228-235. | |
101 | 庞利娟. 聚乙烯纤维(无纺布)辐射改性及其对金属离子的吸附研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2018. |
PANG Lijuan. Irradiation grafting modification of polyethylene fiber/fabric for adsorption of metalions[D]. Shanghai: University of Chinese Academy of Sciences(Shanghai Institute of Applied Physics Chinese Academy of Sciences), 2018. | |
102 | 张万喜, 张长春, 孙国恩, 等. 预辐照聚乙烯醇纤维与N, N’-亚甲基双丙烯酸酰胺的接枝、交联[J]. 应用化学, 2002, 19(1): 61-65. |
ZHANG Wanxi, ZHANG Changchun, SUN Guoen, et al. Graft polymerization of N,N'-methylenebisacrylamide and crosslinking with preirradiated PVA fiber[J]. Chinese Journal of Applied Chemistry, 2002, 19(1): 61-65. | |
103 | CHI F T, WANG X L, XIONG J, et al. Polyvinyl alcohol fibers with functional phosphonic acid group: synthesis and adsorption of uranyl ( Ⅵ ) ions in aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 296(3): 1331-1340. |
104 | 姚占海, 饶蕾, 杨慧丽, 等. 聚乙烯醇纤维辐射接枝丙烯腈的研究[J]. 高分子材料科学与工程, 1998, 14(4): 43-45. |
YAO Zhanhai, RAO Lei, YANG Huili, et al. Study on radiation graft of acrylonitrile onto polyvinyl alcohol fiber[J]. Polymeric Materials Science & Cngineering, 1998, 14(4): 43-45. | |
105 | 王德松, 罗青枝, 马劲松, 等. 电子束预辐照聚乙烯醇纤维接枝丙烯酰胺的研究[J]. 高分子材料科学与工程, 2000, 16(2): 115-117. |
WANG Desong, LUO Qingzhi, MA Jinsong, et al. Study on grafting acrylamide onto polyvinyl alcohol fibers preirradiated by electron beam[J]. Polymeric Materials Science & Cngineering, 2000, 16(2): 115-117. | |
106 | 刘汉洲, 李林繁, 蒋海青, 等. 预辐射引发气相接枝法制备PE-g-PAN材料[J]. 辐射研究与辐射工艺学报, 2018, 36(1): 39-44. |
LIU Hanzhou, LI Linfan, JIANG Haiqing, et al. Pre-irradiation-induced vapor phase graft polymerization of acrylonitrile onto polyethylene nonwoven fabric[J]. Journal of Radiation Research and Radiation Processing, 2018, 36(1): 39-44. | |
107 | 何卫锋, 李榕凯, 罗思海. 复合材料用碳纤维等离子体表面改性技术进展[J]. 表面技术, 2020, 49(7): 76-89. |
HE Weifeng, LI Rongkai, LUO Sihai. Progress in plasma surface treatment on carbon fiber for composite material[J]. Surface Technology, 2020, 49(7): 76-89. | |
108 | ĎUREJE J, PROŠEK Z, TREJBAL J, et al. Plasma modification of polyvinyl alcohol microfibers to improve cohesion with cement matrix[J]. Acta Polytechnica CTU Proceedings, 2019, 21: 1-4. |
109 | 张伟, 邹学书, 魏发云, 等. 等离子体处理高强高模聚乙烯醇纤维及其染色性能研究[J]. 纺织导报, 2018(12): 43-46. |
ZHANG Wei, ZOU Xueshu, WEI Fayun, et al. Study on plasma treatment of high-strength and high-modulus polyvinyl alcohol fibers and its dyeing properties[J]. China Textile Leader, 2018(12): 43-46. | |
110 | 杜晓冬, 林芳兵, 蒋金华, 等. 氧等离子体改性对聚酰亚胺纤维表面性能的影响[J]. 纺织学报, 2019, 40(9): 22-27. |
DU Xiaodong, LIN Fangbing, JIANG Jinhua, et al. Influence of oxygen plasma modification on surface properties of polyimide fiber[J]. Journal of Textile Research, 2019, 40(9): 22-27. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[5] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[6] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[7] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[8] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[9] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[10] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[11] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[12] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[13] | 吕程远, 张函, 杨明旺, 杜健军, 樊江莉. 生物成像用二氧杂环丁烷余辉发光体系的研究进展[J]. 化工进展, 2023, 42(8): 4108-4122. |
[14] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[15] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |