化工进展 ›› 2024, Vol. 43 ›› Issue (10): 5517-5526.DOI: 10.16085/j.issn.1000-6613.2024-0476
• 工业催化 • 上一篇
洪学思1,2(), 吴省1, 宋磊1, 缪长喜1, 杨为民1,2()
收稿日期:
2024-03-22
修回日期:
2024-05-05
出版日期:
2024-10-15
发布日期:
2024-10-29
通讯作者:
杨为民
作者简介:
洪学思(1989—),男,博士研究生,研究方向为工业催化。E-mail:hongxs.sshy@sinopec.com。
HONG Xuesi1,2(), WU Xing1, SONG Lei1, MIAO Changxi1, YANG Weimin1,2()
Received:
2024-03-22
Revised:
2024-05-05
Online:
2024-10-15
Published:
2024-10-29
Contact:
YANG Weimin
摘要:
在“双碳”目标的背景下,丙烷直接脱氢制丙烯技术在近年得到迅速推广应用。替代催化剂的开发是丙烷脱氢新型工艺开发的核心问题。分子筛因能将金属团簇封装在孔道内或锚定于骨架上,而成为制备高效、稳定脱氢催化剂的理想载体。本文从不同活性中心的角度出发,系统阐述了铂基、铑基、锌基、钴基等分子筛限域催化剂的合成方法,金属纳米团簇与分子筛骨架间相互作用以及催化作用机制的研究进展,分析了分子筛限域催化剂在高温下关键组分流失、活性中心团聚的不足,提出了强化金属与分子筛相互作用的调控思路。最后指出为早日实现工业替代,分子筛限域催化剂还应从基础科学问题和适应于工业条件的催化剂放大两方面进行深入研究。
中图分类号:
洪学思, 吴省, 宋磊, 缪长喜, 杨为民. 分子筛限域丙烷脱氢催化剂的研究进展[J]. 化工进展, 2024, 43(10): 5517-5526.
HONG Xuesi, WU Xing, SONG Lei, MIAO Changxi, YANG Weimin. Review on zeolite confined catalysts for propane dehydrogenation[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5517-5526.
催化剂 | 反应温度/℃ | 原料组成 | 质量空速/h-1 | 转化率/% | 选择性/% | 反应时间/h | 参考文献 |
---|---|---|---|---|---|---|---|
CrO x /Al2O3 | 575~590 | 工业级丙烷 | — | 45 | 91.9 | 生产周期 | [ |
Pt-Sn/Al2O3 | 580~640 | 工业级丙烷 | — | 35 | 90.7 | 生产周期 | [ |
0.72%Pt1.0%Zn@S-1-H | 550 | C3H8/N2=1/3 | 3.6 | 47.4~40.4 | 93.2~99.2 | 216.7 | [ |
0.45%Pt/1.10%Zn@S-1-Fin | 600 | C3H8 | 12 | 48.3~44.9 | 97.1~96.9 | 80 | [ |
0.19%Pt/2.56%Zn-SPP | 550 | C3H8/He=1:3 | 1350 | 42.5 | >99 | 288 | [ |
0.2%Pt/1.4%Sn@S-1 | 550 | C3H8/N2=1/3 | 3.6 | 35~45 | 97~99 | 300 | [ |
0.26%Pt/0.47%Sn-Si-Beta | 550 | C3H8/N2=1/19 | 1 | 25.2~27.5 | 99.1~99.9 | 24 | [ |
0.092%Pt/0.82%Ga@S-1 | 600 | C3H8/N2=1/19 | 0.65 | 41.5~45.9 | 92~95 | 24 | [ |
0.35%Rh/1.93%In@S-1 | 550 | C3H8 | 8 | 23~25 | 99 | 5500 | [ |
3.28%Zn@MFI-P | 580 | C3H8 | 7.85 | 25~34 | 95 | 4 | [ |
0.98%Co@S-1 | 590 | C3H8/H2/N2=5/4/5 | 3.7 | 30~35 | 93 | 12 | [ |
1.728%Fe/H-ZKD-1 | 600 | C3H8/N2=1/24 | 19.8 | 22.63 | 96 | 12 | [ |
表1 工业应用催化剂与代表性分子筛限域丙烷脱氢性能的比较
催化剂 | 反应温度/℃ | 原料组成 | 质量空速/h-1 | 转化率/% | 选择性/% | 反应时间/h | 参考文献 |
---|---|---|---|---|---|---|---|
CrO x /Al2O3 | 575~590 | 工业级丙烷 | — | 45 | 91.9 | 生产周期 | [ |
Pt-Sn/Al2O3 | 580~640 | 工业级丙烷 | — | 35 | 90.7 | 生产周期 | [ |
0.72%Pt1.0%Zn@S-1-H | 550 | C3H8/N2=1/3 | 3.6 | 47.4~40.4 | 93.2~99.2 | 216.7 | [ |
0.45%Pt/1.10%Zn@S-1-Fin | 600 | C3H8 | 12 | 48.3~44.9 | 97.1~96.9 | 80 | [ |
0.19%Pt/2.56%Zn-SPP | 550 | C3H8/He=1:3 | 1350 | 42.5 | >99 | 288 | [ |
0.2%Pt/1.4%Sn@S-1 | 550 | C3H8/N2=1/3 | 3.6 | 35~45 | 97~99 | 300 | [ |
0.26%Pt/0.47%Sn-Si-Beta | 550 | C3H8/N2=1/19 | 1 | 25.2~27.5 | 99.1~99.9 | 24 | [ |
0.092%Pt/0.82%Ga@S-1 | 600 | C3H8/N2=1/19 | 0.65 | 41.5~45.9 | 92~95 | 24 | [ |
0.35%Rh/1.93%In@S-1 | 550 | C3H8 | 8 | 23~25 | 99 | 5500 | [ |
3.28%Zn@MFI-P | 580 | C3H8 | 7.85 | 25~34 | 95 | 4 | [ |
0.98%Co@S-1 | 590 | C3H8/H2/N2=5/4/5 | 3.7 | 30~35 | 93 | 12 | [ |
1.728%Fe/H-ZKD-1 | 600 | C3H8/N2=1/24 | 19.8 | 22.63 | 96 | 12 | [ |
分类 | 技术方案 | 参考文献 |
---|---|---|
前处理 | 配体保护法 | [ |
多模板剂法 | [ | |
后处理 | 浸渍法 | [ |
脱铝处理法 | [ | |
固相研磨法 | [ | |
重结晶法 | [ |
表2 贵金属分子筛限域催化剂的制备策略
分类 | 技术方案 | 参考文献 |
---|---|---|
前处理 | 配体保护法 | [ |
多模板剂法 | [ | |
后处理 | 浸渍法 | [ |
脱铝处理法 | [ | |
固相研磨法 | [ | |
重结晶法 | [ |
1 | 余长林, 葛庆杰, 徐恒泳, 等. 丙烷脱氢制丙烯研究新进展[J]. 化工进展, 2006, 25(9): 977-982. |
YU Changlin, GE Qingjie, XU Hengyong, et al. New development of dehydrogenation of propane to propylene[J]. Chemical Industry and Engineering Progress, 2006, 25(9): 977-982. | |
2 | 徐志康, 黄佳露, 王廷海, 等. 丙烷脱氢制丙烯催化剂的研究进展[J]. 化工进展, 2021, 40(4): 1893-1916. |
XU Zhikang, HUANG Jialu, WANG Tinghai, et al. Advances in catalysts for propane dehydrogenation to propylene[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1893-1916. | |
3 | 吴建国, 吴登峰, 程道建. 丙烷脱氢制丙烯用单原子催化剂研究进展[J]. 化工进展, 2021, 40(12): 6688-6695. |
WU Jianguo, WU Dengfeng, CHENG Daojian. Advances in single-atom catalysts for dehydrogenation of propane to propylene[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6688-6695. | |
4 | DEROUANE Eric G, Jean-Marie ANDRÉ, LUCAS Amand A. A simple van der waals model for molecule-curved surface interactions in molecular-sized microporous solids[J]. Chemical Physics Letters, 1987, 137(4): 336-340. |
5 | WU Siming, YANG Xiaoyu, JANIAK Christoph. Confinement effects in zeolite-confined noble metals[J]. Angewandte Chemie International Edition, 2019, 58(36): 12340-12354. |
6 | LIU Lichen, CORMA Avelino. Confining isolated atoms and clusters in crystalline porous materials for catalysis[J]. Nature Reviews Materials, 2021, 6: 244-263. |
7 | 马文明. 丙烷脱氢制丙烯技术研究进展[J]. 现代化工, 2023, 43(5): 20-24, 30. |
MA Wenming. Advances on propane dehydrogenation to propylene processes[J]. Modern Chemical Industry, 2023, 43(5): 20-24, 30. | |
8 | LI Chunyi, WANG Guowei. Dehydrogenation of light alkanes to mono-olefins[J]. Chemical Society Reviews, 2021, 50(7): 4359-4381. |
9 | OBENAUS Uts, NEHER Felix, SCHEIBE Matthias, et al. Relationships between the hydrogenation and dehydrogenation properties of Rh-, Ir-, Pd-, and Pt-containing zeolites Y studied by in situ MAS NMR spectroscopy and conventional heterogeneous catalysis[J]. The Journal of Physical Chemistry C, 2016, 120(4): 2284-2291. |
10 | SONG Shaojia, SUN Yuanqing, YANG Kun, et al. Recent progress in metal-molecular sieve catalysts for propane dehydrogenation[J]. ACS Catalysis, 2023, 13(9): 6044-6067. |
11 | LIU Lichen, Urbano DÍAZ, ARENAL Raul, et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D[J]. Nature Materials, 2017, 16(1): 132-138. |
12 | SUN Qiming, WANG Ning, FAN Qiyuan, et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation[J]. Angewandte Chemie (International Ed in English), 2020, 59(44): 19450-19459. |
13 | ZHANG Bofeng, LI Guozhu, ZHAI Ziwei, et al. PtZn intermetallic nanoalloy encapsulated in silicalite-1 for propane dehydrogenation[J]. AIChE Journal, 2021, 67(7): e17295. |
14 | ZHANG Bofeng, LI Guozhu, LIU Sibao, et al. Boosting propane dehydrogenation over PtZn encapsulated in an epitaxial high-crystallized zeolite with a low surface barrier[J]. ACS Catalysis, 2022, 12(2): 1310-1314. |
15 | WANG Ning, SUN Qiming, ZHANG Tianjun, et al. Impregnating subnanometer metallic nanocatalysts into self-pillared zeolite nanosheets[J]. Journal of the American Chemical Society, 2021, 143(18): 6905-6914. |
16 | QI Liang, ZHANG Yanfei, BABUCCI Melike, et al. Dehydrogenation of propane and n-butane catalyzed by isolated PtZn4 sites supported on self-pillared zeolite pentasil nanosheets[J]. ACS Catalysis, 2022, 12(18): 11177-11189. |
17 | SONG Mingxia, ZHANG Bofeng, ZHAI Ziwei, et al. Highly dispersed Pt stabilized by ZnO x -Si on self-pillared zeolite nanosheets for propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2023, 62(9): 3853-3861. |
18 | XIE Linjun, CHAI Yuchao, SUN Lanlan, et al. Optimizing zeolite stabilized Pt-Zn catalysts for propane dehydrogenation[J]. Journal of Energy Chemistry, 2021, 57: 92-98. |
19 | WEI Xueer, CHENG Jiawei, LI Yubing, et al. Bimetallic clusters confined inside silicalite-1 for stable propane dehydrogenation[J]. Nano Research, 2023, 16(8): 10881-10889. |
20 | SATTLER Aaron, PACCAGNINI Michele, LIU Lichen, et al. Assessment of metal-metal interactions and catalytic behavior in platinum-tin bimetallic subnanometric clusters by using reactive characterizations[J]. Journal of Catalysis, 2021, 404: 393-399. |
21 | ZHU Jie, OSUGA Ryota, ISHIKAWA Ryo, et al. Ultrafast encapsulation of metal nanoclusters into MFI zeolite in the course of its crystallization: Catalytic application for propane dehydrogenation[J]. Angewandte Chemie (International Ed in English), 2020, 59(44): 19669-19674. |
22 | WANG Yansu, HU Zhongpan, TIAN Wenwen, et al. Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability[J]. Catalysis Science & Technology, 2019, 9(24): 6993-7002. |
23 | HE Yongsheng, DENG Huihui, ZHANG Ying, et al. Boosting propane dehydrogenation over Sn stabilizing dispersed Pt δ + confined in Silicalite-1 at low temperature[J]. Fuel, 2023, 352: 129044. |
24 | MA Yue, CHEN Xiao, GUAN Yejun, et al. Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within *BEA topology[J]. Journal of Catalysis, 2021, 397: 44-57. |
25 | CHEN Yong, ZHU Xiaoxiao, WANG Xinping, et al. A reliable protocol for fast and facile constructing multi-hollow silicalite-1 and encapsulating metal nanoparticles within the hierarchical zeolite[J]. Chemical Engineering Journal, 2021, 419: 129641. |
26 | WANG Tianlei, XU Zhikang, YUE Yuanyuan, et al. Bimetallic PtSn nanoparticles confined in hierarchical ZSM-5 for propane dehydrogenation[J]. Chinese Journal of Chemical Engineering, 2022, 41: 384-391. |
27 | ZHOU Jie, ZHANG Ying, LIU Hao, et al. Enhanced performance for propane dehydrogenation through Pt clusters alloying with copper in zeolite[J]. Nano Research, 2023, 16(5): 6537-6543. |
28 | WANG Yansu, SUO Yujun, Xianwei LYU, et al. Enhanced performances of bimetallic Ga-Pt nanoclusters confined within silicalite-1 zeolite in propane dehydrogenation[J]. Journal of Colloid and Interface Science, 2021, 593: 304-314. |
29 | ZHOU Jie, LIU Hao, XIONG Chao, et al. Potassium-promoted Pt-In bimetallic clusters encapsulated in silicalite-1 zeolite for efficient propane dehydrogenation[J]. Chemical Engineering Journal, 2023, 455: 139794. |
30 | BIAN Kai, ZHANG Guanghui, WANG Mingrui, et al. Promoting propane dehydrogenation over PtFe bimetallic catalysts by optimizing the state of Fe species[J]. Chemical Engineering Science, 2023, 275: 118748. |
31 | LIU Hao, ZHOU Jie, CHEN Tianxiang, et al. Isolated Pt species anchored by hierarchical-like heteroatomic Fe-silicalite-1 catalyze propane dehydrogenation near the thermodynamic limit[J]. ACS Catalysis, 2023, 13(5): 2928-2936. |
32 | MA Yue, SONG Shaojia, LIU Changcheng, et al. Germanium-enriched double-four-membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation[J]. Nature Catalysis, 2023, 6: 506-518. |
33 | WANG Peng, LIAO Huafei, YANG Hua, et al. Constructing PtCe cluster catalysts by regulating metal-support interaction via Al in zeolite for propane dehydrogenation[J]. Chemical Engineering Science, 2023, 269: 118450. |
34 | RAMAN Narayanan, MAISEL Sven, GRABAU Mathias, et al. Highly effective propane dehydrogenation using Ga-Rh supported catalytically active liquid metal solutions[J]. ACS Catalysis, 2019, 9(10): 9499-9507. |
35 | ZENG Lei, CHENG Kang, SUN Fanfei, et al. Stable anchoring of single rhodium atoms by indium in zeolite alkane dehydrogenation catalysts[J]. Science, 2024, 383(6686): 998-1004. |
36 | XIE Linjun, WANG Rui, CHAI Yuchao, et al. Propane dehydrogenation catalyzed by in-situ partially reduced zinc cations confined in zeolites[J]. Journal of Energy Chemistry, 2021, 30(12): 262-269, I0006. |
37 | SONG Shaojia, YANG Kun, ZHANG Peng, et al. Silicalite-1 stabilizes Zn-hydride species for efficient propane dehydrogenation[J]. ACS Catalysis, 2022, 12(10): 5997-6006. |
38 | LIU Xiangqi, Xintong LYU, SONG Weiyu, et al. Regioselective distribution of zinc hydroxyl within straight channels in MFI zeolite nanosheets for propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2024, 63(1): 121-129. |
39 | SU Xunming, HU Zhongpan, HAN Jingfeng, et al. Biomolecule-inspired synthesis of framework zinc in MFI zeolite for propane dehydrogenation[J]. Microporous and Mesoporous Materials, 2023, 348: 112371. |
40 | YUAN Yong, LOBO Raul F. Zinc speciation and propane dehydrogenation in Zn/H-ZSM-5 catalysts[J]. ACS Catalysis, 2023, 13(7): 4971-4984. |
41 | ZHANG Lichen, MA Xiaosen, ZHENG Jiajun, et al. Active Zn species nest in dealumination zeolite composite for propane dehydrogenation[J]. Catalysis Letters, 2023, 153(11): 3466-3479. |
42 | WU Lizhi, REN Zhuangzhuang, HE Yongsheng, et al. Atomically dispersed Co2+ sites incorporated into a silicalite-1 zeolite framework as a high-performance and coking-resistant catalyst for propane nonoxidative dehydrogenation to propylene[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48934-48948. |
43 | SONG Shaojia, LI Jun, WU Zhijie, et al. In situ encapsulated subnanometric CoO clusters within silicalite-1 zeolite for efficient propane dehydrogenation[J]. AIChE Journal, 2022, 68(2): e17451. |
44 | HU Zhongpan, QIN Gangqiang, HAN Jingfeng, et al. Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenation[J]. Journal of the American Chemical Society, 2022, 144(27): 12127-12137. |
45 | LV Xintong, YANG Min, SONG Shaojia, et al. Boosting propane dehydrogenation by the regioselective distribution of subnanometric CoO clusters in MFI zeolite nanosheets[J]. ACS Applied Materials & Interfaces, 2023: 14250-14260. |
46 | LONG Jiangping, TIAN Suyang, WEI Sheng, et al. Direct dehydrogenation of propane over Co@silicalite-1 zeolite: Steaming-induced restructuring of Co2+ active sites[J]. Applied Surface Science, 2023, 614: 156238. |
47 | GAO Yating, PENG Lilin, LONG Jiangping, et al. Hydrogen pre-reduction determined Co-silica interaction and performance of cobalt catalysts for propane dehydrogenation[J]. Microporous and Mesoporous Materials, 2021, 323: 111187. |
48 | 贾育红, 胡忠攀, 王坤院, 等. S-1分子筛羟基窝锚定钴用于丙烷脱氢制丙烯[J]. 无机盐工业, 2023, 55(5): 121-127. |
JIA Yuhong, HU Zhongpan, WANG Kunyuan, et al. Co anchored on silanol nests of S-1 zeolite for propane dehydrogenation to propylene[J]. Inorganic Chemicals Industry, 2023, 55(5): 121-127. | |
49 | XU Guangyue, ZHANG Xiang, DONG Zhuoya, et al. Ferric single-site catalyst confined in a zeolite framework for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2023, 62(44): e202305915. |
50 | SU Xunming, HU Zhongpan, HAN Jingfeng, et al. Selective incorporation of iron sites into MFI zeolite framework by one-pot synthesis[J]. Crystal Growth & Design, 2023, 23(4): 2644-2651. |
51 | NAKAI Masahiro, MIYAKE Koji, INOUE Reina, et al. Dehydrogenation of propane over high silica *BEA type gallosilicate (Ga-Beta)[J]. Catalysis Science & Technology, 2019, 9(22): 6234-6239. |
52 | YUAN Yong, LOBO Raul F, XU Bingjun. Ga2O2 2+ stabilized by paired framework Al atoms in MFI: A highly reactive site in nonoxidative propane dehydrogenation[J]. ACS Catalysis, 2022, 12(3): 1775-1783. |
53 | YUAN Yong, LEE Jason S, LOBO Raul F. Ga+-chabazite zeolite: A highly selective catalyst for nonoxidative propane dehydrogenation[J]. Journal of the American Chemical Society, 2022, 144(33): 15079-15092. |
54 | YUAN Yong, LOBO Raul F. Propane dehydrogenation over extra-framework In(i) in chabazite zeolites[J]. Chemical Science, 2022, 13(10): 2954-2964. |
55 | HUANG Chengming, HAN Dingmei, GUAN Linjie, et al. Bimetallic Ni-Zn site anchored in siliceous zeolite framework for synergistically boosting propane dehydrogenation[J]. Fuel, 2022, 307: 121790. |
[1] | 廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940. |
[2] | 修浩然, 王云刚, 白彦渊, 刘涛, 张兴邦, 张益嘉. H2O2低温催化氧化法脱硫脱硝中试实验特性[J]. 化工进展, 2024, 43(9): 4941-4950. |
[3] | 付维, 宁淑英, 蔡晨, 陈佳音, 周皞, 苏亚欣. Cu改性MIL-100(Fe)催化剂的SCR-C3H6脱硝特性[J]. 化工进展, 2024, 43(9): 4951-4960. |
[4] | 马红周, 党煜博, 王耀宁, 曾劲阳, 赵小军, 史建伟. 废锌基脱硫剂与铜锌基催化剂协同真空碳热提取锌[J]. 化工进展, 2024, 43(9): 5275-5281. |
[5] | 刘振涛, 梅金林, 王春雅, 段爱军, 巩雁军, 徐春明, 王喜龙. 一步法加氢制生物航煤催化剂研究进展[J]. 化工进展, 2024, 43(9): 4909-4924. |
[6] | 胡婷霞, 赵立欣, 姚宗路, 霍丽丽, 贾吉秀, 谢腾. 双金属催化剂在生物质焦油催化蒸汽重整领域的研究进展[J]. 化工进展, 2024, 43(8): 4354-4365. |
[7] | 张叶素, 权燕红, 丁欣欣, 任军. 链状MFI型分子筛的合成与应用[J]. 化工进展, 2024, 43(8): 4382-4392. |
[8] | 王嘉, 李文翠, 吴凡, 高新芊, 陆安慧. NiMo/Al2O3催化剂活性组分分布调控及其加氢脱硫应用[J]. 化工进展, 2024, 43(8): 4393-4402. |
[9] | 龙涛, 周锋, 张伟, 吴泓, 王建, 陈霖. CO-CO2体系制备氘代甲醇催化剂的合成与改性[J]. 化工进展, 2024, 43(8): 4411-4420. |
[10] | 张子杭, 王树荣. 生物质热解转化与产物低碳利用研究进展[J]. 化工进展, 2024, 43(7): 3692-3708. |
[11] | 龚德成, 沈倩, 朱贤青, 黄云, 夏奡, 张敬苗, 朱恂, 廖强. 微藻超临界水气化制取富氢合成气的研究进展[J]. 化工进展, 2024, 43(7): 3709-3728. |
[12] | 郭鹏, 李红伟, 李贵贤, 季东, 王东亮, 赵新红. 直接甲醇燃料电池阳极催化剂的失活机制及应对策略[J]. 化工进展, 2024, 43(7): 3812-3823. |
[13] | 罗丛佳, 豆义波, 卫敏. 水滑石光催化剂结构调控用于二氧化碳还原的研究进展[J]. 化工进展, 2024, 43(7): 3891-3909. |
[14] | 何弈雪, 秦先超, 马伟芳. 过硫酸盐高级氧化原位修复地下水中卤代烃污染研究进展[J]. 化工进展, 2024, 43(7): 4072-4088. |
[15] | 蓝瑞嵩, 刘丽华, 张倩, 陈博彦, 洪俊明. 硫掺杂石墨烯作为MFC阴极性能和生物毒性检测[J]. 化工进展, 2024, 43(6): 3430-3439. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |