化工进展 ›› 2024, Vol. 43 ›› Issue (7): 3692-3708.DOI: 10.16085/j.issn.1000-6613.2023-2112
• 专栏:热化学反应工程技术 • 上一篇
收稿日期:
2023-12-01
修回日期:
2024-03-13
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
王树荣
作者简介:
张子杭(2000—),男,博士研究生,研究方向为机器学习在生物质和有机固废热解转化中的应用。E-mail:12227022@zju.edu.cn。
基金资助:
ZHANG Zihang(), WANG Shurong()
Received:
2023-12-01
Revised:
2024-03-13
Online:
2024-07-10
Published:
2024-08-14
Contact:
WANG Shurong
摘要:
生物质热解转化可制备炭、气、油等高品位能源产品,具有高效可控、多产物利用等优势。然而,生物质直接热解所得产物品质不高,无法实现高附加值利用,亟需对生物质热解反应进行调控与优化。本文从热解反应的优化策略出发,系统概述了原料选择及预处理、热解参数与反应器类型、催化剂及辅助热解技术的引入对热解转化过程的影响,全面总结了热解反应优化与产物调控方法。从富氢合成气定向制备、烃类液体燃料选择调控、炭结构调变与高值利用三部分综述了热解产物的定向调控,以期实现生物质的绿色、低碳和增值利用。最后总结了生物质热解转化的挑战与发展前景,同时对机器学习方法的引入加速热解领域的发展进行了展望,为生物质高效热解转化提供一定的参考价值。
中图分类号:
张子杭, 王树荣. 生物质热解转化与产物低碳利用研究进展[J]. 化工进展, 2024, 43(7): 3692-3708.
ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708.
催化剂类型 | 优势及特点 | 产物特性 |
---|---|---|
金属盐催化剂 | 反应过程中能提供酸性及活性催化位点,对热解行为及产物分布进行选择调控;通常采用浸渍改性、物理共混或异位催化的方法 | 促进热解反应中呋喃、醛、酮、酸、酚等小分子产物的生成 |
金属氧化物催化剂 | 具备良好的催化还原性、多价性和酸碱性的特点,利于热解形成更稳定的产物;采用物理共混或异位催化的方法 | 显著降低生物油中氧含量,促进烃类化合物生成,提升生物油品质 |
分子筛催化剂 | 具有优异结构性质和丰富酸活性位点,能有效促进裂解、脱氧、低聚化和芳构化等反应;易于掺杂金属进行改性,提升催化性能;采用物理共混或异位催化的方法 | 脱氧效果明显,油中芳烃类物质含量显著增加,如苯、甲苯、二甲苯(BTX)等 |
炭基催化剂 | 具有高比表面积、丰富孔隙结构及表面含氧官能团;前体来源广泛易得、绿色环保;是负载其他活性组分的良好载体;采用物理共混或异位催化的方法 | 定向调控热解产物,选择性生成富氢合成气或高品质生物油(富含BTX或烃类或呋喃类物质等) |
多功能复合催化剂 | 结合多种功能组分,同时具备多种催化活性;催化剂稳定性及反应选择性高;采用物理共混或异位催化的方法 | 选择性断键反应效率高,如C—O键,促进芳烃、呋喃等目标产物形成 |
表1 催化热解常见催化剂的优势特点及产物特性
催化剂类型 | 优势及特点 | 产物特性 |
---|---|---|
金属盐催化剂 | 反应过程中能提供酸性及活性催化位点,对热解行为及产物分布进行选择调控;通常采用浸渍改性、物理共混或异位催化的方法 | 促进热解反应中呋喃、醛、酮、酸、酚等小分子产物的生成 |
金属氧化物催化剂 | 具备良好的催化还原性、多价性和酸碱性的特点,利于热解形成更稳定的产物;采用物理共混或异位催化的方法 | 显著降低生物油中氧含量,促进烃类化合物生成,提升生物油品质 |
分子筛催化剂 | 具有优异结构性质和丰富酸活性位点,能有效促进裂解、脱氧、低聚化和芳构化等反应;易于掺杂金属进行改性,提升催化性能;采用物理共混或异位催化的方法 | 脱氧效果明显,油中芳烃类物质含量显著增加,如苯、甲苯、二甲苯(BTX)等 |
炭基催化剂 | 具有高比表面积、丰富孔隙结构及表面含氧官能团;前体来源广泛易得、绿色环保;是负载其他活性组分的良好载体;采用物理共混或异位催化的方法 | 定向调控热解产物,选择性生成富氢合成气或高品质生物油(富含BTX或烃类或呋喃类物质等) |
多功能复合催化剂 | 结合多种功能组分,同时具备多种催化活性;催化剂稳定性及反应选择性高;采用物理共混或异位催化的方法 | 选择性断键反应效率高,如C—O键,促进芳烃、呋喃等目标产物形成 |
1 | WANG Fang, HARINDINTWALI Jean Damascene, YUAN Zhizhang, et al. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation, 2021, 2(4): 100180. |
2 | BROSOWSKI Andre, KRAUSE Tim, MANTAU Udo, et al. How to measure the impact of biogenic residues, wastes and by-products: Development of a national resource monitoring based on the example of Germany[J]. Biomass & Bioenergy, 2019, 127: 105275. |
3 | Bioenergy, a sustainable solution[R]. IEA Bioenergy, 2020. |
4 | IEA Bioenergy Annual Report 2021[R]. IEA Bioenergy, 2022. |
5 | WANG Yuzhuo, WU Junjie. Thermochemical conversion of biomass: Potential future prospects[J]. Renewable and Sustainable Energy Reviews, 2023, 187: 113754. |
6 | XING Bo, HU Yanjun, XU Dan, et al. Recent advances and perspectives of copyrolysis of biomass and organic solid waste[J]. Energy & Fuels, 2023, 37(7): 4769-4790. |
7 | LI Yunchao, SUN Yangkai, LI Hanming, et al. High nitrogen-oxygen dual-doped three-dimensional hierarchical porous carbon network derived from Eriocheir sinensis for advanced supercapacitors[J]. Energy, 2023, 270: 126942. |
8 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
ZHANG Li, YAO Zonglu, ZHAO Lixin, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
9 | 杨海平, 陈汉平, 王贤华, 等. 生物质热解研究的进展[J]. 煤气与热力, 2006(5): 18-22. |
YANG Haiping, CHEN Hanping, WANG Xianhua, et al. Progress of study on biomass pyrolysis[J]. Gas & Heat, 2006(5): 18-22. | |
10 | 赵廷林, 王鹏, 邓大军, 等. 生物质热解研究现状与展望[J]. 农业工程技术(新能源产业), 2007(5): 54-60. |
ZHAO Tinglin, WANG Peng, DENG Dajun, et al. Research status and prospect of biomass pyrolysis[J]. Agricultural Engineering Technology (New Energy Industry), 2007(5): 54-60. | |
11 | DAI Gongxin, WANG Guanyu, WANG Kaige, et al. Mechanism study of hemicellulose pyrolysis by combining in-situ DRIFT, TGA-PIMS and theoretical calculation[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4241-4249. |
12 | DAI Gongxin, WANG Kaige, WANG Guanyu, et al. Initial pyrolysis mechanism of cellulose revealed by in-situ DRIFT analysis and theoretical calculation[J]. Combustion and Flame, 2019, 208: 273-280. |
13 | KAN Tao, STREZOV Vladimir, EVANS Tim J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1126-1140. |
14 | SHARIFZADEH Mahdi, SADEQZADEH Majid, GUO Miao, et al. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions[J]. Progress in Energy and Combustion Science, 2019, 71: 1-80. |
15 | XU Guangwen, BAI Dingrong, XU Chunming, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2022, 10(9): nwac217. |
16 | GUO Zhancheng, WANG Shiwei, BAI Dingrong. Engineering thermochemistry: The science critical for the paradigm shift toward carbon neutrality[J]. Resources Chemicals and Materials, 2023, 2(4): 331-334. |
17 | HE Mingyuan, ZHANG Kun, GUAN Yejun, et al. Green carbon science: fundamental aspects[J]. National Science Review, 2023, 10(9): nwad046. |
18 | 刘荣厚. 生物质能工程[M]. 北京: 化学工业出版社, 2009: 161. |
LIU Ronghou. Biomass energy engineering[M]. Beijing: Chemical Industry Press, 2009: 161. | |
19 | ASHOKKUMAR Veeramuthu, VENKATKARTHICK Radhakrishnan, JAYASHREE Shanmugam, et al. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts—A critical review[J]. Bioresource Technology, 2022, 344. |
20 | WANG Guanyu, DAI Gongxin, DING Shaoqiu, et al. A new insight into pyrolysis mechanism of three typical actual biomass: The influence of structural differences on pyrolysis process[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105184. |
21 | COLLARD François-Xavier, BLIN Joël. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 594-608. |
22 | WANG Shurong, DAI Gongxin, YANG Haiping, et al. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
23 | YANG Haiping, YAN Rong, CHEN Hanping, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788. |
24 | AKHTAR Javaid, SAIDINA Amin NorAishah. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 5101-5109. |
25 | WANG Guanyu, DAI Yujie, YANG Haiping, et al. A review of recent advances in biomass pyrolysis[J]. Energy & Fuels, 2020, 34(12): 15557-15578. |
26 | FAHMI R, BRIDGWATER A V, DONNISON I, et al. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability[J]. Fuel, 2008, 87(7): 1230-1240. |
27 | WANG Shurong, DAI Gongxin, RU Bin, et al. Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose[J]. Energy, 2017, 120: 864-871. |
28 | SINGH Rickwinder, KUMAR Rajesh, SARANGI Prakash Kumar, et al. Effect of physical and thermal pretreatment of lignocellulosic biomass on biohydrogen production by thermochemical route: A critical review[J]. Bioresource Technology, 2023, 369: 128458. |
29 | XIAO Ruirui, YANG Wei, CONG Xingshun, et al. Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis[J]. Energy, 2020, 201: 117537. |
30 | MOHAMMED Isah Yakub, ABAKR Yousif Abdalla, KAZI Feroz Kabir, et al. Effects of pretreatments of napier grass with deionized water, sulfuric acid and sodium hydroxide on pyrolysis oil characteristics[J]. Waste and Biomass Valorization, 2017, 8(3): 755-773. |
31 | KUMAR R, STREZOV V, WELDEKIDAN H, et al. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels[J]. Renewable and Sustainable Energy Reviews, 2020, 123: 109763. |
32 | WANG Shurong, DAI Gongxin, RU Bin, et al. Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors[J]. Bioresource Technology, 2016, 218: 1106-1114. |
33 | DAI Leilei, WANG Yunpu, LIU Yuhuan, et al. Bridging the relationship between hydrothermal pretreatment and co-pyrolysis: Effect of hydrothermal pretreatment on aromatic production[J]. Energy Conversion and Management, 2019, 180: 36-43. |
34 | 张子杭, 许丹, 胡艳军, 等. 机器学习在有机固废全链条处置中的应用进展[J]. 能源环境保护, 2023, 37(1): 184-193. |
ZHANG Zihang, XU Dan, HU Yanjun, et al. Application progress of machine learning in the whole chain disposal of organic solid waste[J]. Energy and Environmental Protection, 2023, 37(1): 184-193. | |
35 | ZHU Xinzhe, LI Yinan, WANG Xiaonan. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions[J]. Bioresource Technology, 2019, 288: 121527. |
36 | YANG Ke, WU Kai, ZHANG Huiyan. Machine learning prediction of the yield and oxygen content of bio-oil via biomass characteristics and pyrolysis conditions[J]. Energy, 2022, 254: 124320. |
37 | 姬文心, 曾鸣, 丛宏斌, 等. 生物质热解反应装置研究现状及展望[J]. 生物质化学工程, 2019, 53(3): 46-58. |
JI Wenxin, ZENG Ming, CONG Hongbin, et al. Research status and prospects of biomass pyrolysis reactor[J]. Biomass Chemical Engineering, 2019, 53(3): 46-58. | |
38 | 王娜娜, 张玉春, 李永军, 等. 生物质快速热裂解反应器研究进展[J]. 山东理工大学学报(自然科学版), 2022, 36(3): 27-32. |
WANG Nana, ZHANG Yuchun, LI Yongjun, et al. Research progress of biomass fast pyrolysis reactor[J]. Journal of Shandong University of Technology (Natural Science Edition), 2022, 36(3): 27-32. | |
39 | CZERNIK S, BRIDGWATER A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy & Fuels, 2004, 18(2): 590-598. |
40 | QIU Bingbing, TAO Xuedong, WANG Jiahao, et al. Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A review[J]. Energy Conversion and Management, 2022, 261: 115647. |
41 | WANG Kaige, JOHNSTON Patrick A, BROWN Robert C. Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system[J]. Bioresource Technology, 2014, 173: 124-131. |
42 | GRAMS Jacek, RUPPERT Agnieszka M. Catalyst stability — Bottleneck of efficient catalytic pyrolysis[J]. Catalysts, 2021, 11(2): 265. |
43 | 李攀, 王彪, 徐骏浩, 等. 生物质热解催化剂积炭问题的研究进展[J]. 化工进展, 2023, 42(1): 236-246. |
LI Pan, WANG Biao, XU Junhao, et al. Research progress on carbon deposition of catalysts for biomass pyrolysis[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 236-246. | |
44 | ZHOU Jibin, ZHAO Jianping, ZHANG Jinling, et al. Regeneration of catalysts deactivated by coke deposition: A review[J]. Chinese Journal of Catalysis, 2020, 41(7): 1048-1061. |
45 | MAGNOUX P, GUISNET M. Coking, ageing and regeneration of zeolites: Ⅵ. Comparison of the Rates of Coke Oxidation of HY, H-Mordenite and HZSM-5[J]. Applied Catalysis, 1988, 38(2): 341-352. |
46 | LIU Shasha, WU Gang, SYED-HASSAN Syed Shatir A, et al. Catalytic pyrolysis of pine wood over char-supported Fe: Bio-oil upgrading and catalyst regeneration by CO2/H2O[J]. Fuel, 2022, 307: 121778. |
47 | WANG Shaoqing, LI Zhihe, YI Weiming, et al. Renewable aromatic hydrocarbons production from catalytic pyrolysis of lignin with Al-SBA-15 and HZSM-5: Synergistic effect and coke behaviour[J]. Renewable Energy, 2021, 163: 1673-1681. |
48 | 郑志锋, 郑云武, 黄元波, 等. 木质生物质催化热解制备富烃生物油研究进展[J]. 林业工程学报, 2019, 4(2): 1-12. |
ZHENG Zhifeng, ZHENG Yunwu, HUANG Yuanbo, et al. Recent research progress on production of hydrocarbon-rich bio-oil through catalytic pyrolysis of lignocellulosic biomass[J]. Journal of Forestry Engineering, 2019, 4(2): 1-12. | |
49 | 陆强, 张栋, 朱锡锋. 四种金属氯化物对纤维素快速热解的影响(Ⅰ): Py-GC/MS实验[J]. 化工学报, 2010, 61(4): 1018-1024. |
LU Qiang, ZHANG Dong, ZHU Xifeng. Catalytic effects of four metal chlorides on fast pyrolysis of cellulose (Ⅰ): Py-GC/MS experiments[J]. CIESC Journal, 2010, 61(4): 1018-1024. | |
50 | LIU Qian, WANG Shurong, LUO Zhongyang, et al. Catalysis mechanism study of potassium salts on cellulose pyrolysis by using TGA-FTIR analysis[J]. Journal of Chemical Engineering of Japan, 2008, 41(12): 1133-1142. |
51 | 杨海平, 陈汉平, 杜胜磊, 等. 碱金属盐对生物质三组分热解的影响[J]. 中国电机工程学报, 2009, 29(17): 70-75. |
YANG Haiping, CHEN Hanping, DU Shenglei, et al. Influence of alkali salts on the pyrolysis of biomass three components[J]. Proceedings of the CSEE, 2009, 29(17): 70-75. | |
52 | ZHANG Zhibo, LU Qiang, YE Xiaoning, et al. Selective production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass: Comparison of K3PO4, K2HPO4, and KH2PO4 [J]. Bioresources, 2014, 9(3): 4050-4062. |
53 | LIU Changjun, WANG Huamin, KARIM A. M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22): 7594-7623. |
54 | STEFANIDIS S. D, KALOGIANNIS K. G, ILIOPOULOU E. F,et al. In-situ upgrading of biomass pyrolysis vapors: Catalyst screening on a fixed bed reactor[J]. Bioresource Technology, 2011, 102(17): 8261-8267. |
55 | MOCHIZUKI Takehisa, ATONG Duangduen, CHEN Shih-Yuan, et al. Effect of SiO2 pore size on catalytic fast pyrolysis of Jatropha residues by using pyrolyzer-GC/MS[J]. Catalysis Communications, 2013, 36: 1-4. |
56 | WANG Denghui, XIAO Rui, ZHANG Huiyan, et al. Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis, 2010, 89(2): 171-177. |
57 | LU Qiang, ZHANG Zhifei, DONG Changqing, et al. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: An analytical Py-GC/MS study[J]. Energies, 2010, 3(11): 1805-1820. |
58 | MA Zhiqiang, CUSTODIS Victoria, VAN BOKHOVEN Jeroen A. Selective deoxygenation of lignin during catalytic fast pyrolysis[J]. Catalysis science & technology, 2014, 4(3): 766-772. |
59 | LIU Ronghou, SARKER Manobendro, RAHMAN Md Maksudur, et al. Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production—A review[J]. Progress in Energy and Combustion Science, 2020, 80: 100852. |
60 | DAI Gongxin, WANG Shurong, ZOU Qun, et al. Improvement of aromatics production from catalytic pyrolysis of cellulose over metal-modified hierarchical HZSM-5[J]. Fuel Processing Technology, 2018, 179: 319-323. |
61 | HONG Yeojin, LEE Yejin, REZAEI Pouya Sirous, et al. In-situ catalytic copyrolysis of cellulose and polypropylene over desilicated ZSM-5[J]. Catalysis Today, 2017, 293/294: 151-158. |
62 | Bakar Muhammad S ABU, TITILOYE James O. Catalytic pyrolysis of rice husk for bio-oil production[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 362-368. |
63 | Begoña PUÉRTOLAS, VESES Alberto, CALLÉN Maria Soledad, et al. Porosity-acidity interplay in hierarchical ZSM-5 zeolites for pyrolysis oil valorization to aromatics[J]. ChemSusChem, 2015, 8(19): 3283-3293. |
64 | STANTON Alexander R, IISA Kristiina, MUKARAKATE Calvin, et al. Role of biopolymers in the deactivation of ZSM-5 during catalytic fast pyrolysis of biomass[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10030-10038. |
65 | CHE Qingfeng, YANG Minjiao, WANG Xianhua, et al. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis[J]. Bioresource Technology, 2019, 278: 248-254. |
66 | LI Yingkai, NI Shu, YELLEZUOME Dominic, et al. Catalytic pyrolysis of biomass over Fe-modified hierarchical ZSM-5: Insights into mono-aromatics selectivity and pyrolysis behavior using Py-GC/MS and TG-FTIR[J]. Journal of the Energy Institute, 2021, 99: 218-228. |
67 | LI Yingkai, YELLEZUOME Dominic, LIU Ronghou, et al. Investigation of product selectivity and kinetics of poplar sawdust catalytic pyrolysis over bi-metallic Iron-Nickel/ZSM-5 catalyst[J]. Bioresource Technology, 2022, 349: 126838. |
68 | YUAN Xiangzhou, CAO Yang, LI Jie, et al. Recent advancements and challenges in emerging applications of biochar-based catalysts[J]. Biotechnology Advances, 2023, 67: 108181. |
69 | YAO Dingding, HU Qiang, WANG Daqian, et al. Hydrogen production from biomass gasification using biochar as a catalyst/support[J]. Bioresource Technology, 2016, 216: 159-164. |
70 | MANEECHAKR Panya, KARNJANAKOM Surachai. Improving the bio-oil quality via effective pyrolysis/deoxygenation of palm kernel cake over a metal (Cu, Ni, or Fe)-doped carbon catalyst[J]. ACS Omega, 2021, 6(30): 20006-20014. |
71 | ZHENG Anqing, HUANG Zhen, WEI Guoqiang, et al. Controlling deoxygenation pathways in catalytic fast pyrolysis of biomass and its components by using metal-oxide nanocomposites[J]. iScience, 2020, 23(1): 100814. |
72 | ATANDA Luqman, FRAGA Gabriel Luiz Lopes, AHMED Mohamed H. M,et al. Conversion of agricultural waste into stable biocrude using spinel oxide catalysts[J]. Journal of Hazardous materials, 2021, 402: 123539. |
73 | SIDDIQUE Istiaq Jamil, SALEMA Arshad Adam, ANTUNES Elsa, et al. Technical challenges in scaling up the microwave technology for biomass processing[J]. Renewable and Sustainable Energy Reviews, 2022, 153: 111767. |
74 | YU Hejie, QU Junshen, LIU Yang, et al. Co-pyrolysis of biomass and polyvinyl chloride under microwave irradiation: Distribution of chlorine[J]. The Science of the Total Environment, 2022, 806: 150903. |
75 | HADIYA Vishal, POPAT Kartik, VYAS Shaili, et al. Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives[J]. Bioresource Technology, 2022: 355: 127303. |
76 | GE Shengbo, Peter Nai Yuh YEK, CHENG Yoke Wang, et al. Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110148. |
77 | FANG Zhenquan, LIU Feifei, LI Yanlong, et al. Influence of microwave-assisted pyrolysis parameters and additives on phosphorus speciation and transformation in phosphorus-enriched biochar derived from municipal sewage sludge[J]. Journal of Cleaner Production, 2021, 287: 125550. |
78 | HALIM, ABDUL Siti, SWITHENBANK, et al. Characterisation of Malaysian wood pellets and rubberwood using slow pyrolysis and microwave technology[J]. Journal of analytical & applied pyrolysis, 2016. |
79 | SURIAPPARAO Dadi V, VINU R, SHUKLA Arun, et al. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation[J]. Bioresource Technology, 2020, 302: 122775. |
80 | ZHAO Zhiyue, JIANG Zhiwei, XU Hong, et al. Selective production of phenol-rich bio-oil from corn straw waste by direct microwave pyrolysis without extra catalyst[J]. Frontiers in Chemistry, 2021, 9: 700887. |
81 | LIN Jin, CHENG Song, ZHAO Saidan, et al. Comparison of microwave pyrolysis and conventional pyrolysis of Eupatorium adenophorum [J]. Environmental Progress & Sustainable Energy, 2023, 42(2): e13978. |
82 | SHI Kaiqi, YAN Jiefeng, Angel MENÉNDEZ J, et al. Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming[J]. Frontiers in Chemistry, 2020, 8: 3. |
83 | AL-FATESH Ahmed S, AL-GARADI Najib Y A, OSMAN Ahmed I, et al. From plastic waste pyrolysis to fuel: Impact of process parameters and material selection on hydrogen production[J]. Fuel, 2023, 344: 128107. |
84 | 田亚峻, 陈宏刚, 李凡, 等. 煤与等离子体的作用机理探讨[J]. 煤炭转化, 1998(4): 3-8. |
TIAN Yajun, CHEN Honggang, LI Fan, et al. Interaction mechanism of coal with plasma[J]. Coal Conversion, 1998(4): 3-8. | |
85 | DIMITRAKELLIS Panagiotis, DELIKONSTANTIS Evangelos, STEFANIDIS Georgios D, et al. Plasma technology for lignocellulosic biomass conversion toward an electrified biorefinery[J]. Green chemistry, 2022, 24(7): 2680-2721. |
86 | MUDASSIR Muhammad Ahmad, BATOOL Maria, KOUSAR Shazia, et al. Plasma-assisted hydrodeoxygenation of bio-oils[J]. Fuel Processing Technology, 2023, 250: 107872. |
87 | TANG Lan, WANG Huan, HAO Haiqing, et al. Plasma Pyrolysis of biomass for production of gaseous fuel to generate electricity[C]// Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, 2010. |
88 | MUVHIIWA Ralph Farai, SEMPUGA Baraka, HILDEBRANDT Diane, et al. Study of the effects of temperature on syngas composition from pyrolysis of wood pellets using a nitrogen plasma torch reactor[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 159-168. |
89 | SHIE Je-Lueng, TSOU Feng-Ju, LIN Kae-Long, et al. Bioenergy and products from thermal pyrolysis of rice straw using plasma torch[J]. Bioresource Technology, 2010, 101(2): 761-768. |
90 | ZHONG Dian, ZENG Kuo, LI Jun, et al. 3E analysis of a biomass-to-liquids production system based on solar gasification[J]. Energy, 2021, 217: 119408. |
91 | ZHONG Dian, CHANG Zheshao, ZENG Kuo, et al. Solar pyrolysis of biomass-part Ⅰ: Volatile evolution mechanism[J]. Energy Conversion and Management, 2022, 267: 115951. |
92 | ZENG Kuo, GAUTHIER Daniel, SORIA José, et al. Solar pyrolysis of carbonaceous feedstocks: A review[J]. Solar Energy, 2017, 156: 73-92. |
93 | 彭昌盛, 魏茜茜, 赵婷婷, 等. 太阳能热解技术制备生物炭的研究进展[J]. 现代化工, 2022, 42(2): 61-67. |
PENG Changsheng, WEI Xixi, ZHAO Tingting, et al. Advances in production of biochar by solar pyrolysis technology[J]. Modern Chemical Industry, 2022, 42(2): 61-67. | |
94 | NZIHOU Ange, FLAMANT Gilles, STANMORE Brian. Synthetic fuels from biomass using concentrated solar energy—A review[J]. Energy, 2012, 42(1): 121-131. |
95 | LI Rui, ZENG Kuo, SORIA José, et al. Product distribution from solar pyrolysis of agricultural and forestry biomass residues[J]. Renewable Energy, 2016, 89: 27-35. |
96 | RONY Asif Hasan, KONG Lingli, LU Wenyang, et al. Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis[J]. Bioresource Technology, 2019, 284: 466-473. |
97 | CHEN Wei-Hsin, FAROOQ Wasif, SHAHBAZ Muhammad, et al. Current status of biohydrogen production from lignocellulosic biomass, technical challenges and commercial potential through pyrolysis process[J]. Energy, 2021, 226: 120433. |
98 | ARNI Saleh AL. Comparison of slow and fast pyrolysis for converting biomass into fuel[J]. Renewable Energy, 2018, 124: 197-201. |
99 | WEERACHANCHAI Piyarat, TANGSATHITKULCHAI Chaiyot, TANGSATHITKULCHAI Malee. Characterization of products from slow pyrolysis of palm kernel cake and cassava pulp residue[J]. Korean Journal of Chemical Engineering, 2011, 28(12): 2262-2274. |
100 | TANG Qinghui, CHEN Yingquan, YANG Haiping, et al. Machine learning prediction of pyrolytic gas yield and compositions with feature reduction methods: Effects of pyrolysis conditions and biomass characteristics[J]. Bioresource Technology, 2021, 339: 125581. |
101 | YUE Wenchang, MA Xiaoqian, YU Zhaosheng, et al. Ni-CaO bifunctional catalyst for biomass catalytic pyrolysis to produce hydrogen-rich gas[J]. Journal of Analytical and Applied Pyrolysis, 2023, 169: 105872. |
102 | XIA Sunwen, LI Kaixu, XIAO Haoyu, et al. Pyrolysis of Chinese chestnut shells: Effects of temperature and Fe presence on product composition[J]. Bioresource Technology, 2019, 287: 121444. |
103 | Ayhan DEMIRBAŞ. Gaseous products from biomass by pyrolysis and gasification: Effects of catalyst on hydrogen yield[J]. Energy Conversion and Management, 2002, 43(7): 897-909. |
104 | ARREGI Aitor, LOPEZ Gartzen, AMUTIO Maider, et al. Role of operating conditions in the catalyst deactivation in the in-line steam reforming of volatiles from biomass fast pyrolysis[J]. Fuel, 2018, 216: 233-244. |
105 | JAFFAR Mohammad M, NAHIL Mohamad A, WILLIAMS Paul T. Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass[J]. Fuel Processing Technology, 2020, 208: 106515. |
106 | XU Zhicheng, GAO Ningbo, MA Yan, et al. Biomass volatiles reforming by integrated pyrolysis and plasma-catalysis system for H2 production: Understanding roles of temperature and catalyst[J]. Energy Conversion and Management, 2023, 288: 117159. |
107 | CHANG Kenlin, LIN Yuanchung, SHANGDIAR Sumarlin, et al. Hydrogen production from dry spirulina algae with downstream feeding in microwave plasma reactor assisted under atmospheric pressure[J]. Journal of the Energy Institute, 2020, 93(4): 1597-1601. |
108 | LIN Junhao, CUI Chongwei, SUN Shichang, et al. Enhanced combined H2O/CO2 reforming of sludge to produce high-quality syngas via spiral continuous microwave pyrolysis technology: CO2 reforming mechanism and H2/CO directional regulation[J]. Chemical Engineering Journal, 2022, 434: 134628. |
109 | BHOI P R, OUEDRAOGO A S, SOLOIU V, et al. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable Sustainable Energy Rev, 2020, 121: 109676. |
110 | ZHENG Yunwu, WANG Jida, LI Donghua, et al. Highly efficient catalytic pyrolysis of biomass vapors upgraded into jet fuel range hydrocarbon-rich bio-oil over a bimetallic Pt-Ni/γ-Al2O3 catalyst[J]. International Journal of Hydrogen Energy, 2021, 46(55): 27922-27940. |
111 | FAROOQ Abid, SHUING Lam Su, Jungho JAE, et al. Jet fuel-range hydrocarbons generation from the pyrolysis of saw dust over Fe and Mo-loaded HZSM-5(38) catalysts[J]. Fuel, 2023, 333: 126313. |
112 | DUAN Dengle, ZHANG Yayun, WANG Yunpu, et al. Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons[J]. Energy, 2020, 209: 118454. |
113 | SOUZA Márcio C M, MAIA Francisco A D, PINTO Vasco L, et al. Highly porous cobalt and molybdenum-containing ordered silica applied to pyrolysis of sunflower oil into bio-hydrocarbons[J]. Renewable Energy, 2023, 215: 118962. |
114 | PANDEY Satya Prakash, SINGH Satish Kumar, PANDA Achyut K, et al. Catalytic pyrolysis of Argemone mexicana seeds over synthesized TiO2 nanoparticles to produce renewable fuels[J]. Sustainable Energy Technologies and Assessments, 2023, 56: 103091. |
115 | YANG Xiuhua, PENG Yujie, WANG Yunpu, et al. Conversion of soybean soapstock into hydrocarbon fuel by microwave-assisted catalytic fast pyrolysis using MCM-41/HZSM-5 in a downdraft reactor[J]. Chemical Engineering and Processing-Process Intensification, 2020, 156: 108109. |
116 | STUMMANN Magnus Zingler, Martin HØJ, GABRIELSEN Jostein, et al. A perspective on catalytic hydropyrolysis of biomass[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110960. |
117 | HE Yifeng, ZHAO Yingnan, CHAI Meiyun, et al. Comparative study of fast pyrolysis, hydropyrolysis and catalytic hydropyrolysis of poplar sawdust and rice husk in a modified Py-GC/MS microreactor system: Insights into product distribution, quantum description and reaction mechanism[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109604. |
118 | YAN Penghui, KENNEDY Eric M, ZHANG Huiming, et al. Catalytic hydropyrolysis of lignocellulosic biomass to BTX and biofuels over zeolite beta based catalysts[J]. Fuel, 2023, 332: 125946. |
119 | MIAO Feiting, LUO Zhongyang, ZHOU Qingguo, et al. Study on the reaction mechanism of C8+ aliphatic hydrocarbons obtained directly from biomass by hydropyrolysis vapor upgrading[J]. Chemical Engineering Journal, 2023, 464: 142639. |
120 | CHEN Weimin, SHI Shukai, ZHANG Jun, et al. Co-pyrolysis of waste newspaper with high-density polyethylene: Synergistic effect and oil characterization[J]. Energy Conversion and Management, 2016, 112: 41-48. |
121 | DYER Andrew C, NAHIL Mohamad A, WILLIAMS Paul T. Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil[J]. Journal of the Energy Institute, 2021, 97: 27-36. |
122 | LIN Xiaona, CHEN Xiaoyun, FU Peng, et al. Highly efficient production of monocyclic aromatics from catalytic co-pyrolysis of biomass and plastic with nitrogen-doped activated carbon catalyst[J]. Chemical Engineering Journal, 2023, 474: 145783. |
123 | SHAHBEIK Hossein, SHAFIZADEH Alireza, NADIAN Mohammad Hossein, et al. Using evolutionary machine learning to characterize and optimize co-pyrolysis of biomass feedstocks and polymeric wastes[J]. Journal of Cleaner Production, 2023, 387: 135881. |
124 | XU Dan, ZHANG Zihang, HE Zijian, et al. Machine learning-driven prediction and optimization of monoaromatic oil production from catalytic co-pyrolysis of biomass and plastic wastes[J]. Fuel, 2023, 350: 128819. |
125 | GHODAKE Gajanan Sampatrao, SHINDE Surendra Krushna, KADAM Avinash Ashok, et al. Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy[J]. Journal of Cleaner Production, 2021, 297: 126645. |
126 | TOMCZYK Agnieszka, Zofia SOKOŁOWSKA, BOGUTA Patrycja. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(1): 191-215. |
127 | LI Yunchao, XING Bo, DING Yan, et al. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass[J]. Bioresource Technology, 2020, 312: 123614. |
128 | ZHANG Xiaoxiao, ZHANG Peizhen, YUAN Xiangru, et al. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar[J]. Bioresource Technology, 2020, 296: 122318. |
129 | ZENG Kuo, MINH Doan Pham, GAUTHIER Daniel, et al. The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood[J]. Bioresource Technology, 2015, 182: 114-119. |
130 | HODGSON E, LEWYS-JAMES A, RAO Ravella S, et al. Optimisation of slow-pyrolysis process conditions to maximise char yield and heavy metal adsorption of biochar produced from different feedstocks[J]. Bioresource Technology, 2016, 214: 574-581. |
131 | GODLEWSKA Paulina, SIATECKA Anna, Magdalena KOŃCZAK, et al. Adsorption capacity of phenanthrene and pyrene to engineered carbon-based adsorbents produced from sewage sludge or sewage sludge-biomass mixture in various gaseous conditions[J]. Bioresource Technology, 2019, 280: 421-429. |
132 | XIAO Feng, BEDANE Alemayehu H, ZHAO Julia Xiaojun, et al. Thermal air oxidation changes surface and adsorptive properties of black carbon (char/biochar)[J]. Science of the Total Environment, 2018, 618: 276-283. |
133 | XIANG Wei, ZHANG Xueyang, CAO Chengcheng, et al. Microwave-assisted pyrolysis derived biochar for volatile organic compounds treatment: Characteristics and adsorption performance[J]. Bioresource Technology, 2022, 355: 127274. |
134 | QIN Xiaojing, CHENG Song, XING Baolin, et al. Preparation of pyrolysis products by catalytic pyrolysis of poplar: Application of biochar in antibiotic wastewater treatment[J]. Chemosphere, 2023, 338: 139519. |
135 | LI Hailong, AI Zejian, YANG Lihong, et al. Machine learning assisted predicting and engineering specific surface area and total pore volume of biochar[J]. Bioresource Technology, 2023, 369: 128417. |
136 | YUAN Xiangzhou, SUVARNA Manu, Sean LOW, et al. Applied machine learning for prediction of CO2 adsorption on biomass waste-derived porous carbons[J]. Environmental Science & Technology, 2021, 55(17): 11925-11936. |
137 | ZHU Xinzhe, XU Zibo, YOU Siming, et al. Machine learning exploration of the direct and indirect roles of Fe impregnation on Cr(Ⅵ) removal by engineered biochar[J]. Chemical Engineering Journal, 2022, 428: 131967. |
138 | WANG Rupeng, ZHANG Shiyu, CHEN Honglin, et al. Enhancing biochar-based nonradical persulfate activation using data-driven techniques[J]. Environmental Science & Technology, 2023, 57(9): 4050-4059. |
139 | TAO Junyu, LIANG Rui, LI Jian, et al. Fast characterization of biomass and waste by infrared spectra and machine learning models[J]. Journal of Hazardous materials, 2020, 387: 121723. |
140 | QI Yaping, HE Pinjing, LAN Dongying, et al. Rapid determination of moisture content of multi-source solid waste using ATR-FTIR and multiple machine learning methods[J]. Waste Management, 2022, 153: 20-30. |
141 | ZHANG Zihang, XU Dan, HE Zijian, et al. Synergistic interaction for catalytic co-pyrolysis of municipal paper and polyethylene terephthalate wastes coupling with deep learning methodology[J]. Journal of Analytical and Applied Pyrolysis, 2023, 175: 106193. |
142 | SHAHBEIG Hossein, NOSRATI Mohsen. Pyrolysis of biological wastes for bioenergy production: Thermo-kinetic studies with machine-learning method and Py-GC/MS analysis[J]. Fuel, 2020, 269: 117238. |
143 | GAO Wenli, ZHOU Liang, LIU Shengquan, et al. Machine learning prediction of lignin content in poplar with Raman spectroscopy[J]. Bioresource Technology, 2022, 348: 126812. |
144 | YANG Ke, WU Kai, LI Fangzhou, et al. Investigation on the co-pyrolysis of bamboo sawdust and low-density polyethylene via online photoionization mass spectrometry and machine learning methods[J]. Fuel Processing Technology, 2023, 240: 107579. |
145 | WANG Shule, SHI Ziyi, JIN Yanghao, et al. A machine learning model to predict the pyrolytic kinetics of different types of feedstocks[J]. Energy Conversion and Management, 2022, 260: 115613. |
146 | KANG Peilin, SHANG Cheng, LIU Zhipan. Glucose to 5-hydroxymethylfurfural: Origin of Site-selectivity resolved by machine learning based reaction sampling[J]. Journal of the American Chemical Society, 2019, 141(51): 20525-20536. |
147 | HU Bin, ZHANG Wenming, ZHANG Bing, et al. Role of glycosidic bond in initial cellulose pyrolysis: Investigation by machine learning simulation[J]. Applications in Energy and Combustion Science, 2022, 9: 100055. |
148 | HU Bin, ZHANG Wenming, WANG Xiaogang, et al. The formation mechanism of furfural in xylan pyrolysis: A machine learning study based on neural network potential[J]. Fuel Processing Technology, 2023, 247: 107807. |
149 | LENG Erwei, HE Ben, CHEN Jingwei, et al. Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning[J]. Energy, 2021, 236: 121401. |
150 | LI Jie, LI Lanyu, TONG Yen Wah, et al. Understanding and optimizing the gasification of biomass waste with machine learning[J]. Green Chemical Engineering, 2022. |
[1] | 王定友, 陈建, 范汝新, 李大舜. 热裂解烃制炭黑的机理及工程化技术发展历程[J]. 化工进展, 2024, 43(7): 3551-3566. |
[2] | 靳立军, 刘铮铮, 李扬, 杨赫, 胡浩权. 耦合富氢小分子催化活化的煤热解提高焦油产率策略与实践[J]. 化工进展, 2024, 43(7): 3613-3619. |
[3] | 曹景沛, 姚乃瑜, 庞新博, 赵小燕, 赵静平, 蔡士杰, 徐敏, 冯晓博, 伊凤娇. 煤热解研究进展及其发展历程[J]. 化工进展, 2024, 43(7): 3620-3636. |
[4] | 蓝瑞嵩, 刘丽华, 张倩, 陈博彦, 洪俊明. 硫掺杂石墨烯作为MFC阴极性能和生物毒性检测[J]. 化工进展, 2024, 43(6): 3430-3439. |
[5] | 何世坤, 张文豪, 冯君锋, 潘晖. 负载金属型固体酸催化木质纤维生物质定向转化为乙酰丙酸甲酯[J]. 化工进展, 2024, 43(6): 3042-3050. |
[6] | 陈富强, 仲兆平, 戚仁志. 铜基催化剂电还原二氧化碳为甲酸研究进展[J]. 化工进展, 2024, 43(6): 3051-3060. |
[7] | 曾壮, 李柯志, 苑志伟, 杜金涛, 李卓师, 王悦. CO/CO2 加氢制低碳醇改性费托合成催化剂研究进展[J]. 化工进展, 2024, 43(6): 3061-3079. |
[8] | 冯占雄, 张创, 刘德政, 汪云, 马强, 王诚. 不同气氛热处理对连续管道微波技术制备Pt/C催化剂氧还原性能的影响[J]. 化工进展, 2024, 43(6): 3080-3092. |
[9] | 周皞, 王旭瑞, 赵辉爽, 温妮妮, 苏亚欣. CuCe-SAPO-34选择性催化丙烯还原柴油车尾气氮氧化物[J]. 化工进展, 2024, 43(6): 3093-3099. |
[10] | 龚雪梅, 蒋军, 王超, 梅长彤. 纳米纤维素疏水改性及其功能化应用研究进展[J]. 化工进展, 2024, 43(6): 3187-3198. |
[11] | 万成凤, 李志达, 张春月, 路璐. MXene负载CoP纳米棒高效电催化分解水制氢[J]. 化工进展, 2024, 43(6): 3232-3239. |
[12] | 肖自胜, 李金玲, 陈伊睿, 兰支利, 尹笃林. g-C3N4锚定Cu(Ⅰ)高选择性催化CCl4合成2,4,4,4-四氯丁腈[J]. 化工进展, 2024, 43(6): 3293-3300. |
[13] | 闫哲, 刘畅, 王丰旭, 周宏旺, 刘樨, 赵雪冰. 耦合生物质氧化转化的CO2电化学还原[J]. 化工进展, 2024, 43(6): 3310-3321. |
[14] | 李斯文, 雷敏, 刘玉霜, 董兆琪, 薛丽丽, 赵建社. 离子液体多酸在燃油氧化脱硫中的研究进展[J]. 化工进展, 2024, 43(6): 3322-3335. |
[15] | 谢国平, 谭雪松, 刘鹏, 苗长林, 许光文, 庄新姝. 基于生物基衍生有机溶剂的木质纤维素预处理研究进展[J]. 化工进展, 2024, 43(6): 3347-3358. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |