化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3080-3092.DOI: 10.16085/j.issn.1000-6613.2023-0729
• 工业催化 • 上一篇
冯占雄1(), 张创1,2(), 刘德政1, 汪云1, 马强1, 王诚2()
收稿日期:
2023-05-04
修回日期:
2023-08-28
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
张创,王诚
作者简介:
冯占雄(1995—),女,硕士研究生,研究方向为催化剂的制备及电化学。E-mail: zhanxiongfeng@hbuas.edu.cn。
基金资助:
FENG Zhanxiong1(), ZHANG Chuang1,2(), LIU Dezheng1, WANG Yun1, MA Qiang1, WANG Cheng2()
Received:
2023-05-04
Revised:
2023-08-28
Online:
2024-06-15
Published:
2024-07-02
Contact:
ZHANG Chuang, WANG Cheng
摘要:
车用质子交换膜燃料电池作为解决能源危机和环境恶化问题的重要能源转换装置,成本高、阴极氧还原反应动力学慢和长时间运行阴极催化剂稳定性差等问题成为制约其发展的主要原因。为解决质子交换膜燃料电池阴极催化剂长期稳定性差的问题,运用连续管道微波制备技术,制备铂载量为50%(质量分数)的催化剂,并分别采用氮氢混合气(20%H2)和空气两种不同气氛对Pt/C催化剂进行退火处理,通过表征和测试研究两种气氛热处理对其氧还原性能的影响。制备的Pt/C-300(20% H2)催化剂30000圈衰减测试后仍能保持71.4m2/g和243mA/mg的高活性,实现了兼具高活性和高耐久性,为高氧还原性能催化剂的生产提供了一条有效可行的途径。
中图分类号:
冯占雄, 张创, 刘德政, 汪云, 马强, 王诚. 不同气氛热处理对连续管道微波技术制备Pt/C催化剂氧还原性能的影响[J]. 化工进展, 2024, 43(6): 3080-3092.
FENG Zhanxiong, ZHANG Chuang, LIU Dezheng, WANG Yun, MA Qiang, WANG Cheng. Effect of different atmosphere heat treatment on the oxygen reduction performance of Pt/C catalysts prepared by continuous pipeline microwave technology[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3080-3092.
检测样品 | 检测元素 | 质量分数/% |
---|---|---|
Pt/C-200(20% H2) | Pt | 48.5 |
Pt/C-300(20% H2) | Pt | 47.3 |
Pt/C-400(20% H2) | Pt | 46.5 |
表1 N2-H2(20% H2)气氛热处理50% Pt/C催化剂Pt含量测试
检测样品 | 检测元素 | 质量分数/% |
---|---|---|
Pt/C-200(20% H2) | Pt | 48.5 |
Pt/C-300(20% H2) | Pt | 47.3 |
Pt/C-400(20% H2) | Pt | 46.5 |
检测样品 | 检测元素 | 质量分数/% |
---|---|---|
Pt/C-200(Air) | Pt | 49.2 |
Pt/C-300(Air) | Pt | 48.7 |
Pt/C-400(Air) | Pt | 48.1 |
表2 空气气氛热处理50% Pt/C催化剂Pt含量测试
检测样品 | 检测元素 | 质量分数/% |
---|---|---|
Pt/C-200(Air) | Pt | 49.2 |
Pt/C-300(Air) | Pt | 48.7 |
Pt/C-400(Air) | Pt | 48.1 |
1 | 孙世刚. 电催化纳米材料[M]. 北京: 化学工业出版社, 2018. |
SUN Shigang. Nanostructured electrocatalysts[M]. Beijing: Chemical Industry Press, 2018. | |
2 | KAMEL A A, REZK H, ABDELKAREEM M A. Enhancing the operation of fuel cell-photovoltaic-battery-supercapacitor renewable system through a hybrid energy management strategy[J]. International Journal of Hydrogen Energy, 2021, 46(8): 6061-6075. |
3 | 高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. |
GAO Weitao, LEI Yijie, ZHANG Xun, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. | |
4 | CHEN C, KANG Y J, HUO Z Y, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343. |
5 | CUI C H, GAN L, HEGGEN M, et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis[J]. Nature Materials, 2013, 12(8): 765-771. |
6 | 侯明, 衣宝廉. 燃料电池的关键技术[J]. 科技导报, 2016, 34(6): 52-61. |
HOU Ming, YI Baolian. Fuel cell technologies for vehicle applications[J]. Science & Technology Review, 2016, 34(6): 52-61. | |
7 | ISLAM J, KIM S K, KIM K H, et al. Enhanced durability of Pt/C catalyst by coating carbon black with silica for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2021, 46(1): 1133-1143. |
8 | MOHIDEEN M M, LIU Y, RAMAKRISHNA S. Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation[J]. Applied Energy, 2020, 257: 114027. |
9 | RAVICHANDRAN S, BHUVANENDRAN N, ZHANG W, et al. Comprehensive studies on the effect of reducing agents on electrocatalytic activity and durability of platinum supported on carbon support for oxygen reduction reaction[J]. Journal of Electrochemical Energy Conversion and Storage, 2020, 17(3): 031012. |
10 | NOSRATABADI S M, HEMMATI R, BORNAPOUR M, et al. Economic evaluation and energy/exergy analysis of PV/Wind/PEMFC energy resources employment based on capacity, type of source and government incentive policies: Case study in Iran[J]. Sustainable Energy Technologies and Assessments, 2021, 43: 100963. |
11 | SHARMA R, ANDERSEN S M. An opinion on catalyst degradation mechanisms during catalyst support focused accelerated stress test (AST) for proton exchange membrane fuel cells (PEMFCs)[J]. Applied Catalysis B-Environmental, 2018, 239: 636-643. |
12 | AO Y J, CHEN K, LAGHROUCHE S, et al. Proton exchange membrane fuel cell degradation model based on catalyst transformation theory[J]. Fuel Cells, 2021, 21(3): 254-268. |
13 | LI B, WAN K C, XIE M, et al. Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack[J]. Applied Energy, 2022, 314: 119020. |
14 | KAKAEI K, ESRAFILI M D, EHSANI A. Oxygen reduction reaction[M]//Graphene surfaces: particles and catalysts. San Diego: Elsevier Academic Press Inc, 2019: 203-252. |
15 | 张创, 王诚, 汪云, 等. 一维/二维混合负载Pt催化剂的电化学性能[J]. 化工进展, 2017, 36(2): 573-580. |
ZHANG Chuang, WANG Cheng, WANG Yun, et al. High performance Pt electrocatalyst based on 1D-2D mixed materials[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 573-580. | |
16 | 杜泽学. 车用燃料电池关键材料技术研发应用进展[J]. 化工进展, 2021, 40(1): 6-20. |
DU Zexue. Application advances of manufacturing technology for key materials of vehicle fuel cell stack[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 6-20. | |
17 | CHEREVKO S, KULYK N, MAYRHOFER K J J. Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum[J]. Nano Energy, 2016, 29: 275-298. |
18 | MEIER J C, GALEANO C, KATSOUNAROS I, et al. Design criteria for stable Pt/C fuel cell catalysts[J]. Beilstein Journal of Nanotechnology, 2014, 5: 44-67. |
19 | 王晓冉. 铂基三元催化剂的制备及催化氧还原性能研究[D]. 北京: 北京化工大学, 2020. |
WANG Xiaoran. Preparation and catalytic oxygen reduction performance of platinum based ternary catalysts[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
20 | DAUDT N F, POOZHIKUNNATH A, YU H, et al. Nano-sized Pt-NbO x supported on TiN as cost-effective electrocatalyst for oxygen reduction reaction[J]. Materials for Renewable and Sustainable Energy, 2020, 9(3): 1-17. |
21 | GHASEMI M, CHOI J, JU H. Performance analysis of Pt/TiO2/C catalyst using a multi-scale and two-phase proton exchange membrane fuel cell model[J]. Electrochimica Acta, 2021, 366: 137484. |
22 | PARK C, LEE E, LEE G, et al. Superior durability and stability of Pt electrocatalyst on N-doped graphene-TiO2 hybrid material for oxygen reduction reaction and polymer electrolyte membrane fuel cells [J]. Applied Catalysis B: Environmental, 2020, 268: 118414. |
23 | BAVISKAR V S, SALUNKHE D B, PATIL G P, et al. Effect of deposition time on photoelectrochemical performance of chemically grown Bi2Se3-sensitized TiO2 nanostructure solar cells[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(20): 17440-17450. |
24 | 冯占雄, 汪云, 马强, 等. 连续管道微波技术制备Pt/C催化剂及其氧还原性能[J] 化工进展, 2022, 41(12): 6377-6384. |
FENG Zhanxiong, WANG Yun, MA Qiang, et al. Preparation of Pt/C catalyst by continuous pipeline microwave technology and its oxygen reduction performance[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6377-6384. | |
25 | MARDLE P, JI X, WU J, et al. Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells[J]. Applied Catalysis B: Environmental, 2020, 260: 118031. |
26 | MOGHADAMESFAHANI R A, VANKOVA S K, EASTON E B, et al. A hybrid Pt/NbO/CNTs catalyst with high activity and durability for oxygen reduction reaction in PEMFC[J]. Renewable Energy, 2020, 154: 913-924. |
27 | VERMA S, SINHA-RAY S, SINHA-RAY S. Electrospun CNF supported ceramics as electrochemical catalysts for water splitting and fuel cell: A review[J]. Polymers, 2020, 12(1): 238. |
28 | WANG R R, CHANG Z, FANG Z W, et al. Pt nanowire/Ti3C2T x -CNT hybrids catalysts for the high performance oxygen reduction reaction for high temperature PEMFC[J]. International Journal of Hydrogen Energy, 2020, 45(52): 28190-28195. |
29 | JEN-HUI H, TSUNG-KUANG Y, MEI-YA W. Preparation of unique flower-like Pt-Ni alloy catalysts as the cathode of a PEMFC by electrodeposition technique[J]. ECS Transactions, 2020, 97(7): 627-638. |
30 | LETEBA G M, WANG Y C, SLATER T J A, et al. Oleylamine aging of PtNi nanoparticles giving enhanced functionality for the oxygen reduction reaction[J]. Nano Letters, 2021, 21(9): 3989-3996. |
31 | LIN R, CHE L, SHEN D, et al. High durability of Pt-Ni-Ir/C ternary catalyst of PEMFC by stepwise reduction synthesis[J]. Electrochimica Acta, 2020, 330: 135251. |
32 | LIN R, SUN Y, CAI X, et al. Embedding Pt-Ni octahedral nanoparticles in the 3D nitrogen-doped porous graphene for enhanced oxygen reduction activity[J]. Electrochimica Acta, 2021, 391: 138956. |
33 | CHENG Q, YANG S, FU C, et al. High-loaded sub-6 nm Pt1Co1 intermetallic compounds with highly efficient performance expression in PEMFCs[J]. Energy & Environmental Science, 2022, 15(1): 278-286. |
34 | LIU Z, YIN Y, YANG D, et al. Efficient synthesis of Pt-Co nanowires as cathode catalysts for proton exchange membrane fuel cells[J]. RSC Advances, 2020, 10(11): 6287-6296. |
35 | LITKOHI H R, BAHARI A, GATABI M P. Improved oxygen reduction reaction in PEMFCs by functionalized CNTs supported Pt-M (M = Fe, Ni, Fe-Ni) bi- and tri-metallic nanoparticles as efficient electrocatalyst[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23543-23556. |
36 | YANG X, ZHANG G, DU L, et al. PGM-free Fe/N/C and ultralow loading Pt/C hybrid cathode catalysts with enhanced stability and activity in PEM fuel cells[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13739-13749. |
37 | DING C, MAO Z, LIANG J S, et al. Aqueous phase approach to Au-modified Pt-Co/C toward efficient and durable cathode catalyst of PEMFCs[J]. The Journal of Physical Chemistry C, 2021, 125(43): 23821-23829. |
38 | PARK Y M, KIM H J. Dataset on electrochemical stability and activity of Au-decorated Pt surface for oxygen reduction reaction in acidic media[J]. Data in Brief, 2020, 28: 104897. |
39 | RONDIYA S R, JADHAV C D, CHAVAN P G, et al. Enhanced field emission properties of Au/SnSe nano-heterostructure: A combined experimental and theoretical investigation[J]. Scientific Reports, 2020, 10(1): 1-10. |
[1] | 何世坤, 张文豪, 冯君锋, 潘晖. 负载金属型固体酸催化木质纤维生物质定向转化为乙酰丙酸甲酯[J]. 化工进展, 2024, 43(6): 3042-3050. |
[2] | 陈富强, 仲兆平, 戚仁志. 铜基催化剂电还原二氧化碳为甲酸研究进展[J]. 化工进展, 2024, 43(6): 3051-3060. |
[3] | 曾壮, 李柯志, 苑志伟, 杜金涛, 李卓师, 王悦. CO/CO2 加氢制低碳醇改性费托合成催化剂研究进展[J]. 化工进展, 2024, 43(6): 3061-3079. |
[4] | 冯勇强, 王洁茹, 王超娴, 李芳, 苏婉婷, 孙宇, 赵彬然. γ-Al2O3 负载的Ni、Fe、Cu对介质阻挡放电等离子体转化CO2/CH4的影响[J]. 化工进展, 2024, 43(5): 2705-2713. |
[5] | 周运桃, 王洪星, 李新刚, 崔丽凤. CeO2载体在CO2加氢制甲醇中的应用和研究进展[J]. 化工进展, 2024, 43(5): 2723-2738. |
[6] | 黄澎, 邹颖, 王宝焕, 王逍妍, 赵勇, 梁鑫, 胡迪. 二氧化碳电催化还原反应制合成气催化剂研究进展[J]. 化工进展, 2024, 43(5): 2760-2775. |
[7] | 卢欣欣, 蔡东仁, 詹国武. 基于固体前体构建集成催化剂及CO2加氢研究进展[J]. 化工进展, 2024, 43(5): 2786-2802. |
[8] | 李海鹏, 吴桐, 王琪, 郜时旺, 王晓龙, 李旭, 高新华, 年佩, 魏逸彬. 透水NaA分子筛膜强化的CO2加氢高效制甲醇[J]. 化工进展, 2024, 43(5): 2834-2842. |
[9] | 吴达, 蒋淑娇, 魏强, 袁胜华, 杨刚, 张成. 能源转型中渣油高效利用技术的研究进展[J]. 化工进展, 2024, 43(5): 2343-2353. |
[10] | 桂鑫, 陈汇勇, 白柏杨, 贾永梁, 马晓迅. Mo掺杂改性NiC/Al-MCM-41的芘催化加氢性能[J]. 化工进展, 2024, 43(5): 2386-2395. |
[11] | 丁思佳, 蒋淑娇, 杨占林, 彭绍忠, 蒋乾民. 基于氮化物结构与加氢行为关系设计重油加氢脱氮催化剂[J]. 化工进展, 2024, 43(5): 2436-2448. |
[12] | 张宝, 王鹏, 安勇攀, 吕平, 蒋建良. 船舶应用燃料电池系统的设计与试验[J]. 化工进展, 2024, 43(5): 2554-2567. |
[13] | 段翔, 田野, 董文威, 宋松, 李新刚. 苯酐合成的反应网络及催化反应机制研究现状与展望[J]. 化工进展, 2024, 43(5): 2587-2599. |
[14] | 方峣, 刘雷, 高志华, 黄伟, 左志军. 光辅助直接甲醇燃料电池阳极催化剂的研究进展[J]. 化工进展, 2024, 43(5): 2611-2628. |
[15] | 张金鹏, 屈婷, 荆洁颖, 李文英. 吸附强化水气变换制氢复合催化剂研究进展[J]. 化工进展, 2024, 43(5): 2629-2644. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |