化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2554-2567.DOI: 10.16085/j.issn.1000-6613.2023-1931
• 新能源与可再生能源 • 上一篇
收稿日期:
2023-11-02
修回日期:
2023-12-11
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
张宝
作者简介:
张宝(1984—),男,博士研究生,研究方向为燃料电池系统及塑性加工工艺。E-mail:hit07s@163.com。
基金资助:
ZHANG Bao(), WANG Peng, AN Yongpan, LYU Ping, JIANG Jianliang
Received:
2023-11-02
Revised:
2023-12-11
Online:
2024-05-15
Published:
2024-06-15
Contact:
ZHANG Bao
摘要:
受到航海运输领域的新政策和严格的排放法规限制,船舶应用燃料电池受到越来越多的关注与重视,尤其是具有高效率、低噪声、模块化的质子交换膜燃料电池(PEMFC)系统。本文介绍了由新源动力股份有限公司开发的船用PEMFC系统,以隔离防护和泄露探测为基准要求,该PEMFC系统配置了多个安全参数检测装置,对于BOP部件选型采用了针对性的方案,通过水热管理优化及标定,系统额定效率和峰值效率分别为45%和62%。为了证明PEMFC系统满足功能完善及安全可靠的要求,采用设计试验的方法研究并制定了性能评价试验,分别是可靠性试验、低温启动试验及双机并联试验。试验结果表明:经历了200h动态工况测试后系统在中间功率下性能无变化,在额定功率下电堆性能衰减率为1.2%;基于良好的水热管理及多模式控制手段,实现了吹扫时间和单体电压偏差大幅降低,当环境温度为-30℃时顺利实现低温启动,高于船用规范中的最苛刻要求;在高功率需求及冗余设计目标下,双机并联使得系统总成动力输出更平稳、可靠,而且通过交替启动策略提高了系统耐久性,不同的工作模式为系统维护及故障处理提供了基础条件;PEMFC系统具备搭载实船应用的能力。本文为船用PEMFC系统的设计和开发提供了参考依据。
中图分类号:
张宝, 王鹏, 安勇攀, 吕平, 蒋建良. 船舶应用燃料电池系统的设计与试验[J]. 化工进展, 2024, 43(5): 2554-2567.
ZHANG Bao, WANG Peng, AN Yongpan, LYU Ping, JIANG Jianliang. Design and experiment of fuel cell systems for marine application[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2554-2567.
双极板长度/mm | 双极板宽度/mm | 电堆节数/cells | 活性面积/cm2 | 额定电流/A | 环境温度/℃ | 工作温度/℃ | 供氢压力/kPa | 氢空压差/kPa |
---|---|---|---|---|---|---|---|---|
451 | 109 | 370 | 227 | 272 | -30~55 | -30~85 | 1000~1300 | 20±5 |
表1 电堆配置参数
双极板长度/mm | 双极板宽度/mm | 电堆节数/cells | 活性面积/cm2 | 额定电流/A | 环境温度/℃ | 工作温度/℃ | 供氢压力/kPa | 氢空压差/kPa |
---|---|---|---|---|---|---|---|---|
451 | 109 | 370 | 227 | 272 | -30~55 | -30~85 | 1000~1300 | 20±5 |
子系统 | 参数 | 控制策略 |
---|---|---|
空气 | 入口压力 | 模糊控制 |
入口湿度 | 模糊控制 | |
氢气 | 入口压力 | 前馈+模糊PID |
排放流量 | 脉冲排放控制 | |
冷却 | 工作温度 | 前馈+模糊PID |
出入口冷却液温差 | 比例控制 | |
功率 | 输出电流 | 前馈+积分控制 |
吹扫电压 | 积分控制 |
表2 PEMFC系统控制参数
子系统 | 参数 | 控制策略 |
---|---|---|
空气 | 入口压力 | 模糊控制 |
入口湿度 | 模糊控制 | |
氢气 | 入口压力 | 前馈+模糊PID |
排放流量 | 脉冲排放控制 | |
冷却 | 工作温度 | 前馈+模糊PID |
出入口冷却液温差 | 比例控制 | |
功率 | 输出电流 | 前馈+积分控制 |
吹扫电压 | 积分控制 |
性能参数 | 实测值 |
---|---|
额定功率/kW | 60 |
峰值功率/kW | 66 |
怠速功率/kW | 7 |
额定电流/A | 272 |
额定效率/% | 45 |
峰值效率/% | 62 |
表3 PEMFC系统性能参数
性能参数 | 实测值 |
---|---|
额定功率/kW | 60 |
峰值功率/kW | 66 |
怠速功率/kW | 7 |
额定电流/A | 272 |
额定效率/% | 45 |
峰值效率/% | 62 |
工况号 | 电流密度 /mA·cm-2 | 电流 /A | 三通阀开度 /% | 空气计量比 | 空气流量 /g·s-1 | 空气入堆压力 /kPa | 氢气入堆压力 /kPa | 氢回流泵转速 /r·min-1 | 脉冲排放周期(开/关) /s | 冷却液温度 /℃ |
---|---|---|---|---|---|---|---|---|---|---|
1 | 100 | 22.7 | 30 | 3.4 | 10.2 | 108.6 | 128.6 | 3300 | 0.5/8 | 65 |
2 | 1200 | 272.4 | 80 | 2.1 | 75.1 | 186.8 | 206.8 | 4000 | 0.5/3 | 72 |
3 | 600 | 136.2 | 50 | 2.7 | 48 | 153.9 | 173.9 | 3600 | 0.5/8 | 70 |
表5 可靠性试验操作条件
工况号 | 电流密度 /mA·cm-2 | 电流 /A | 三通阀开度 /% | 空气计量比 | 空气流量 /g·s-1 | 空气入堆压力 /kPa | 氢气入堆压力 /kPa | 氢回流泵转速 /r·min-1 | 脉冲排放周期(开/关) /s | 冷却液温度 /℃ |
---|---|---|---|---|---|---|---|---|---|---|
1 | 100 | 22.7 | 30 | 3.4 | 10.2 | 108.6 | 128.6 | 3300 | 0.5/8 | 65 |
2 | 1200 | 272.4 | 80 | 2.1 | 75.1 | 186.8 | 206.8 | 4000 | 0.5/3 | 72 |
3 | 600 | 136.2 | 50 | 2.7 | 48 | 153.9 | 173.9 | 3600 | 0.5/8 | 70 |
1 | UNCTAD. Review of maritime transport 2021[R/OL]. (2021-11-18)[2023-09-11]. . |
2 | UNCTAD. Trade and development report 2021[R/OL]. (2021-10-28)[2023-09-11]. . |
3 | TRAN Tien Anh. Effect of ship loading on marine diesel engine fuel consumption for bulk carriers based on the fuzzy clustering method[J]. Ocean Engineering, 2020, 207: 107383. |
4 | SÜRER Meryem Gizem, ARAT Hüseyin Turan. Advancements and current technologies on hydrogen fuel cell applications for marine vehicles[J]. International Journal of Hydrogen Energy, 2022, 47(45): 19865-19875. |
5 | INAL Omer Berkehan, DENIZ Cengiz. Assessment of fuel cell types for ships: Based on multi-criteria decision analysis[J]. Journal of Cleaner Production, 2020, 265: 121734. |
6 | DENIZ Cengiz, ZINCIR Burak. Environmental and economical assessment of alternative marine fuels[J]. Journal of Cleaner Production, 2016, 113: 438-449. |
7 | International Maritime Organization. Fourth greenhouse gas study 2020[R/OL]. (2021-03-24)[2023-09-11]. . |
8 | LACK Daniel A, CORBETT James J, ONASCH Timothy, et al. Particulate emissions from commercial shipping: Chemical, physical, and optical properties[J]. Journal of geophysical research, 2009, 114(D7). |
9 | Øyvind ENDRESEN, Eirik SØRGÅRD, SUNDET Jostein K, et al. Emission from international sea transportation and environmental impact[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D17). |
10 | International Maritime Organization. 2023 IMO strategy on reduction of GHG emissions from ships[EB/OL]. (2023-07-07)[2023-09-13]. . |
11 | DNV G L. Comparison of alternative marine fuels[R/OL]. (2019-07-05)[2023-09-13]. . |
12 | VAN DER MAAS T J. Assessment and comparison of alternative marine fuels[D]. Utrecht: Utrecht University, 2020. |
13 | VOGLER F, WÜRSIGG D. Fuel cell in maritime applications challenges, chances and experiences[C] // International Conference on Hydrogen Safety. Germany: IGEM, 2011. |
14 | XING Hui, STUART Charles, SPENCE Stephen, et al. Fuel cell power systems for maritime applications: Progress and perspectives[J]. Sustainability, 2021, 13(3): 1213. |
15 | ELKAFAS Ahmed G, RIVAROLO Massimo, GADDUCCI Eleonora, et al. Fuel cell systems for maritime: A review of research development, commercial products, applications, and perspectives[J]. Processes, 2022, 11(1): 97. |
16 | WEAVERGraham, BARRETT Steve. Marine applications of fuel cell technology[J]. Fuel Cells Bulletin, 2003, 2003(1): 11-12. |
17 | 王娜娜, 汪晓菲, 王硕. 船用燃料电池电力推进系统特性与展望[J]. 机电设备, 2022, 39(2): 39-43. |
WANG Nana, WANG Xiaofei, WANG Shuo. Characteristics and prospects of marine fuel cell electric propulsion system[J]. Mechanical and Electrical Equipment, 2022, 39(2): 39-43. | |
18 | 崔艳. 氢燃料电池动力技术在船舶上的应用[J]. 中国船检, 2023(1): 64-68. |
CUI Yan. Application of hydrogen fuel cell power technology in ships[J]. China Ship Survey, 2023(1): 64-68. | |
19 | Genevos. Genevos has been granted approval in principle (Aip) for its hydrogen power module (HPM) range, developed as a modular and drop-in zero emissions solution for the maritime industry [EB/OL]. (2022-01-20)[2023-09-13]. . |
20 | PowerCellution. PowerCellution marine system 200[EB/OL]. (2021-05-27)[2023-09-13]. . |
21 | SASANK B V, RAJALAKSHMI N, DHATHATHREYAN K S. Performance analysis of polymer electrolyte membrane (PEM) fuel cell stack operated under marine environmental conditions[J]. Journal of Marine Science and Technology, 2016, 21(3): 471-478. |
22 | WU Peng, BUCKNALL Richard.Hybrid fuel cell and battery propulsion system modelling and multi-objective optimisation for a coastal ferry[J]. International Journal of Hydrogen Energy, 2020, 45(4): 3193-3208. |
23 | WU Peng, PARTRIDGE Julius, BUCKNALL Richard. Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships[J]. Applied Energy, 2020, 275: 115258. |
24 | BASSAM A, PHILLIPS A, TURNOCK S, et al. Design, modelling and simulation of a hybrid fuel cell propulsion system for a domestic ferry[C]//Proceedings of the 13th International Symposium on PRActical Design of Ships and Other Floating Structures (PRADS’2016). Copenhagen: Technical University of Denmark, 2016: 545-553. |
25 | VAN BIERT L, GODJEVAC M, VISSER K, et al. A review of fuel cell systems for maritime applications[J]. Journal of Power Sources, 2016, 327: 345-364. |
26 | MCCONNELL Vicki P. Now, voyager? The increasing marine use of fuel cells[J]. Fuel Cells Bulletin, 2010, 2010(5): 12-17. |
27 | GADDUCCI E, LAMBERTI T, RIVAROLO M, et al. Experimental campaign and assessment of a complete 240-kW proton exchange membrane fuel cell power system for maritime applications[J]. International Journal of Hydrogen Energy, 2022, 47(53): 22545-22558. |
28 | RAFIEI Mehdi, BOUDJADAR Jalil, KHOOBAN Mohammad-Hassan. Energy management of a zero-emission ferry boat with a fuel-cell-based hybrid energy system: Feasibility assessment[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 1739-1748. |
29 | 大连海事大学. 中国第一艘燃料电池游艇在大连海事大学研发成功[EB/OL]. (2021-1-9)[2023-11-17]. . |
Dalian Maritime University. China’s first fuel cell yacht was successfully developed at Dalian Maritime University[EB/OL]. (2021-01-09)[2023-11-17]. . | |
30 | 李俊, 付树木. 国内船用氢燃料电池实例解析[J]. 交通节能与环保, 2023, 19(4): 26-29. |
LI Jun, FU Shumu. Analysis of the marine hydrogen fuel cell in China[J]. Transport Energy Conservation & Environmental Protection, 2023, 19(4): 26-29 | |
31 | 彭元亭, 李红享, 王振. 船用燃料电池技术应用现状与发展前景[J]. 船电技术, 2022, 42(6): 41-44. |
PENG Yuanting, LI Hongxiang, WANG Zhen. Application situation and development prospect of marine fuel cell[J]. Marine Electric & Electronic Technology, 2022, 42(6): 41-44. | |
32 | 王振, 雷刚. 燃料电池和锂电池在船用领域的对比分析[J]. 船电技术, 2021, 41(2): 18-20, 26. |
WANG Zhen, LEI Gang. Comparative analyses of fuel cells and lithium battery in the field of marine[J]. Marine Electric & Electronic Technology, 2021, 41(2): 18-20, 26. | |
33 | 钱伟, 易荣, 谢晓峰. 船用燃料电池技术的现状和发展[J]. 广东化工, 2022, 49(23): 114-116. |
QIAN Wei, YI Rong, XIE Xiaofeng. Current status and development on hydrogen fuel cell applications for marine vehicles[J]. Guangdong Chemical Industry, 2022, 49(23): 114-116. | |
34 | 中华人民共和国海事局. 氢燃料电池动力船舶技术与检验暂行规则(2022)[EB/OL]. (2022-03-07)[2023-09-13].. |
Maritime Safety Administration of the People’s Republic of China. Interim rules on technology and inspection of hydrogen fuel cell powered ships(2022)[EB/OL]. (2022-03-07) [2023-09-13]. . | |
35 | 中国船级社. 船舶应用燃料电池发电装置指南 2022[EB/OL]. (2022-07-01)[2023-09-13]. . |
China Classification Society. A guide to fuel cell power generation devices for marine applications 2022[EB/OL]. (2022-07-01) [2023-09-13]. . | |
36 | 中国船级社. E-23 氢燃料电池[EB/OL]. (2022-04-14)[2023-09-13]. . |
China Classification Society. Hydrogen fuel cell[EB/OL]. (2022-04-14) [2023-09-13]. . | |
37 | 念达, 邓琪敏, 付遵涛. 相对湿度及其变化的年循环研究进展[J]. 地球科学进展, 2018, 33(7): 762-774. |
NIAN Da, DENG Qimin, FU Zuntao. Research progress of relative humidity and its changing annual cycle[J]. Advances in Earth Science, 2018, 33(7): 762-774. | |
38 | HE Yongning, XING Linfen, ZHANG Yeqiang, et al. Development and experimental investigation of an oil-free twin-screw air compressor for fuel cell systems[J]. Applied Thermal Engineering, 2018, 145: 755-762. |
39 | GOULD Benjamin D, BATURINA Olga A, SWIDER-LYONS Karen E. Deactivation of Pt/VC proton exchange membrane fuel cell cathodes by SO2, H2S and COS[J]. Journal of Power Sources, 2009, 188(1): 89-95. |
40 | BATURINA O A, SWIDER-LYONS K E. Effect of SO2 on the performance of the cathode of a PEM fuel cell at 0.5—0.7V[J]. Journal of the Electrochemical Society, 2009, 156(12): B1423. |
41 | WALTERS Marius, WICK Maximilian, Sören TINZ, et al. Fuel cell system development: A strong influence on FCEV performance[J]. SAE International Journal of Alternative Powertrains, 2018, 7(3): 2018-1. |
42 | TOMINaoki, HASEGAWA Shigeki, FARNSWORTH Jared, et al. Development of air supply controller for FCV based on model-based development approach[J]. SAE International Journal of Advances and Current Practices in Mobility, 2021, 3(5): 2245-2256. |
43 | 国家市场监督管理总局, 国家标准化管理委员会. 燃料电池发动机性能试验方法: [S]. 北京: 中国标准出版社, 2023. |
State Administration for Market Regulation, Administration Standardization. Performance test methods for fuel cell system: [S]. Beijing: Standards Press of China, 2023. | |
44 | VASILYEV A, ANDREWS J, DUNNETT S J, et al. Dynamic reliability assessment of PEM fuel cell systems[J]. Reliability Engineering & System Safety, 2021, 210: 107539. |
45 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 往复式内燃机 排放测量 第4部分:不同用途发动机的稳态试验循环: [S]. 北京: 中国标准出版社, 2011. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Reciprocating internal combustion engines—Exhaust emission measurement—Part 4: Steady-state test cycles for different engine applications: [S]. Beijing: Standards Press of China, 2011. | |
46 | LUO Yueqi, JIAO Kui. Cold start of proton exchange membrane fuel cell[J]. Progress in Energy and Combustion Science, 2018, 64: 29-61. |
[1] | 石鎏, 胡振中, 李显, 孙一鸣, 童珊, 刘显哲, 郭丽, 刘豪, 彭冰, 李硕, 罗光前, 姚洪. 生物质气压烘焙技术研究进展[J]. 化工进展, 2024, 43(5): 2494-2511. |
[2] | 朱泰忠, 张良, 黄泽权, 罗伶萍, 黄菲, 薛立新. 具有烷基磺酸侧链的凝胶型聚苯并咪唑质子交换膜的制备与表征[J]. 化工进展, 2024, 43(4): 1962-1971. |
[3] | 杜永亮, 梁卓彬, 龚耀煦, 毕豪杰, 徐志远, 苑宏英. 气隙式膜蒸馏技术研究现状和应用[J]. 化工进展, 2024, 43(4): 1655-1666. |
[4] | 蒋晨光, 张胜振, 张翠清, 郭屹, 孙永伟. 基于DFSS方法优化52#费托蜡的制备工艺[J]. 化工进展, 2024, 43(4): 1742-1753. |
[5] | 钱志广, 王世学, 朱禹, 岳利可. 基于平板热管的高温质子交换膜燃料电池堆启动特性[J]. 化工进展, 2024, 43(4): 1754-1763. |
[6] | 陈家一, 高帷韬, 阴亚楠, 王诚, 欧阳鸿武, 毛宗强. 电化学沉积法制备质子交换膜燃料电池催化剂[J]. 化工进展, 2024, 43(4): 1796-1809. |
[7] | 张书铭, 刘化章. 基于BP神经网络模型优化Fe1-x O基氨合成催化剂[J]. 化工进展, 2024, 43(3): 1302-1308. |
[8] | 吴锋明, 李帅旗, 何世辉, 宋文吉, 冯自平. 大温升蒸汽压缩式热泵系统优化研究进展[J]. 化工进展, 2024, 43(3): 1178-1198. |
[9] | 陈俊先, 刘震, 焦文磊, 张天钰, 吕家孟, 姬忠礼. 基于微波谐振原理的天然气管道内液滴浓度测量方法[J]. 化工进展, 2024, 43(2): 734-742. |
[10] | 苏茜, 邓翔天, 刘振兴. 油气水三相流相含率超声测试模型优化[J]. 化工进展, 2024, 43(2): 791-799. |
[11] | 单良, 华夏杰, 牛玉风, 赵腾飞, 洪波, 孔明. 面向光场火焰温度场重建的特征提取优化方法[J]. 化工进展, 2024, 43(2): 823-829. |
[12] | 衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259. |
[13] | 王雄, 杨振宁, 李越, 申威峰. 基于化工机理与工业数据孪生建模的甲醇精馏过程优化[J]. 化工进展, 2024, 43(1): 310-319. |
[14] | 李蕴琪, 谢函霏, 崔丽瑞, 卢善富. 图案化微米线阵列Nafion膜制备及燃料电池性能[J]. 化工进展, 2024, 43(1): 320-327. |
[15] | 王敬翰, 吕杰, 赵丁, 林文野, 宋文吉, 冯自平. 基于BP神经网络的电动汽车动力电池产热估计[J]. 化工进展, 2024, 43(1): 400-406. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |