化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2494-2511.DOI: 10.16085/j.issn.1000-6613.2023-2126
• 新能源与可再生能源 • 上一篇
石鎏1(), 胡振中1, 李显1(), 孙一鸣1, 童珊1, 刘显哲1, 郭丽1,2,3, 刘豪1, 彭冰1, 李硕1, 罗光前1, 姚洪1
收稿日期:
2023-12-01
修回日期:
2024-02-04
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
李显
作者简介:
石鎏(1995—),男,博士研究生,研究方向为能源化工及固体燃料燃烧。E-mail:liu_shi@hust.edu.cn。
基金资助:
SHI Liu1(), HU Zhenzhong1, LI Xian1(), SUN Yiming1, TONG Shan1, LIU Xianzhe1, GUO Li1,2,3, LIU Hao1, PENG Bing1, LI Shuo1, LUO Guangqian1, YAO Hong1
Received:
2023-12-01
Revised:
2024-02-04
Online:
2024-05-15
Published:
2024-06-15
Contact:
LI Xian
摘要:
气压烘焙技术具备反应条件温和、能耗低、脱氧效率高、能量回收率高、半焦燃料品质近似次烟煤等优势,是一种有希望替代传统烘焙的新型技术之一。本文介绍了气压烘焙的发展脉络,综述了气压烘焙工况优化(包括原料种类、温度、压力、时间)、产物组成与理化特性,阐述了气压烘焙宏观反应路径和微观反应机理,着重介绍了半焦的燃烧、热解、气化利用途径,回顾了气压烘焙的反应器设计及其在含氯固废、污泥等处置中的拓展。最后对气压烘焙技术可将生物质转化为高品质固体燃料,直接替代煤炭进行了总结和展望。
中图分类号:
石鎏, 胡振中, 李显, 孙一鸣, 童珊, 刘显哲, 郭丽, 刘豪, 彭冰, 李硕, 罗光前, 姚洪. 生物质气压烘焙技术研究进展[J]. 化工进展, 2024, 43(5): 2494-2511.
SHI Liu, HU Zhenzhong, LI Xian, SUN Yiming, TONG Shan, LIU Xianzhe, GUO Li, LIU Hao, PENG Bing, LI Shuo, LUO Guangqian, YAO Hong. Gas-pressurized torrefaction of biomass: A review[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2494-2511.
项目 | 常压烘焙 | 气压烘焙 |
---|---|---|
条件 | 250~300℃ | 200~250℃ |
常压 | 1~1.8MPa | |
10~120min | 15~60min | |
机制 | 热裂解反应 | 强化挥发分与生物质的二次反应 |
能耗 | 高 | 低 |
半焦品质 | 氧含量>30%;高位热值17~24MJ/kg | 氧含量约20%;高位热值23~28MJ/kg |
能量回收率70%~95% | 能量回收率85%~96% | |
可磨性好 | 可磨性好 | |
燃料品质近似泥煤 | 燃料品质近似次烟煤 |
表1 气压烘焙与传统烘焙关键参数比较[10, 22, 29-35]
项目 | 常压烘焙 | 气压烘焙 |
---|---|---|
条件 | 250~300℃ | 200~250℃ |
常压 | 1~1.8MPa | |
10~120min | 15~60min | |
机制 | 热裂解反应 | 强化挥发分与生物质的二次反应 |
能耗 | 高 | 低 |
半焦品质 | 氧含量>30%;高位热值17~24MJ/kg | 氧含量约20%;高位热值23~28MJ/kg |
能量回收率70%~95% | 能量回收率85%~96% | |
可磨性好 | 可磨性好 | |
燃料品质近似泥煤 | 燃料品质近似次烟煤 |
种类 | 样品 | 烘焙条件 | 工业分析(d.b.)/% | 元素分析(d.a.f.)/% | 高位热值(d.a.f.) /MJ·kg-1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
挥发分 | 固定碳 | 灰分 | C | H | N | O | ||||
农业生物质 | 稻秆1[ | 75.2 | 15.2 | 9.6 | 48.9 | 5.2 | 0.9 | 45.0 | 15.9 | |
250℃、15min常压烘焙 | 68.8 | 19.9 | 11.3 | 50.8 | 5.6 | 1.0 | 42.7 | 17.5 | ||
250℃、2.5MPa、15min气压烘焙 | 40.8 | 40.5 | 18.7 | 68.4 | 5.2 | 1.5 | 24.9 | 26.2 | ||
稻秆2[ | 75.2 | 15.1 | 9.7 | 45.8 | 6.0 | 1.1 | 47.1 | 15.7 | ||
250℃、60min常压烘焙 | 72.1 | 15.9 | 12.1 | 53.2 | 6.0 | 1.3 | 39.5 | 19.7 | ||
250℃、1.8MPa、60min气压烘焙 | 45.9 | 36.0 | 18.2 | 70.8 | 5.5 | 1.9 | 21.8 | 28.0 | ||
玉米秸秆[ | 72.7 | 19.6 | 7.7 | 43.7 | 5.3 | 2.8 | 48.2 | 17.6 | ||
250℃、30min常压烘焙 | 66.6 | 22.3 | 11.1 | 45.4 | 4.9 | 2.3 | 47.4 | 18.2 | ||
250℃、2.5MPa N2、30min气压烘焙 | 49.5 | 35.7 | 14.8 | 56.7 | 4.5 | 2.5 | 36.3 | 22.2 | ||
芦苇[ | 70.0 | 18.1 | 11.9 | 44.5 | 5.7 | 1.7 | 48.1 | 14.6 | ||
270℃、30min常压烘焙 | 35.3 | 47.0 | 17.7 | 51.4 | 5.1 | 2.1 | 41.4 | 17.3 | ||
270℃、2.5MPa N2、30min气压烘焙 | 30.9 | 43.4 | 25.7 | 59.6 | 4.0 | 3.0 | 33.4 | 19.9 | ||
林业生物质 | 松木1[ | 85.5 | 14.1 | 0.4 | 50.3 | 5.9 | 0.04 | 43.8 | 17.7 | |
250℃、15min常压烘焙 | 82.5 | 17.0 | 0.5 | 53.3 | 6.0 | 0.03 | 40.6 | 19.4 | ||
250℃、2.5MPa N2、15min气压烘焙 | 62.1 | 37.1 | 0.8 | 65.4 | 5.5 | 0.09 | 29.1 | 24.7 | ||
松木2 | 80.6 | 16.9 | 2.5 | 47.9 | 5.6 | 0.2 | 46.3 | 16.9 | ||
250℃、60min常压烘焙 | 75.0 | 21.0 | 3.1 | 51.9 | 5.5 | 0.2 | 42.4 | 18.7 | ||
250℃、1.8MPa、60min气压烘焙 | 43.0 | 53.6 | 3.4 | 71.3 | 4.7 | 0.3 | 23.7 | 27.0 | ||
银合欢[ | 87.3 | 12.2 | 0.5 | 50.1 | 7.4 | 0.7 | 41.8 | 20.4 | ||
250℃、30min常压烘焙 | 81.6 | 17.3 | 1.1 | 54.0 | 6.4 | 0.7 | 38.9 | 21.9 | ||
250℃、4.0MPa、30min气压烘焙 | 60.0 | 38.2 | 1.8 | 62.3 | 5.6 | 1.0 | 31.1 | 25.8 | ||
杨木[ | 84.0 | 15.1 | 0.9 | 49.2 | 5.5 | 0.8 | 43.5 | 19.5 | ||
250℃、30min常压烘焙 | 82.9 | 15.6 | 1.5 | 49.8 | 5.7 | 0.8 | 43.7 | 19.8 | ||
250℃、2.5MPa N2、30min气压烘焙 | 71.2 | 26.9 | 1.8 | 58.4 | 5.6 | 0.5 | 35.4 | 23.5 |
表2 农业和林业生物质烘焙半焦的工业分析、元素分析和高位热值
种类 | 样品 | 烘焙条件 | 工业分析(d.b.)/% | 元素分析(d.a.f.)/% | 高位热值(d.a.f.) /MJ·kg-1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
挥发分 | 固定碳 | 灰分 | C | H | N | O | ||||
农业生物质 | 稻秆1[ | 75.2 | 15.2 | 9.6 | 48.9 | 5.2 | 0.9 | 45.0 | 15.9 | |
250℃、15min常压烘焙 | 68.8 | 19.9 | 11.3 | 50.8 | 5.6 | 1.0 | 42.7 | 17.5 | ||
250℃、2.5MPa、15min气压烘焙 | 40.8 | 40.5 | 18.7 | 68.4 | 5.2 | 1.5 | 24.9 | 26.2 | ||
稻秆2[ | 75.2 | 15.1 | 9.7 | 45.8 | 6.0 | 1.1 | 47.1 | 15.7 | ||
250℃、60min常压烘焙 | 72.1 | 15.9 | 12.1 | 53.2 | 6.0 | 1.3 | 39.5 | 19.7 | ||
250℃、1.8MPa、60min气压烘焙 | 45.9 | 36.0 | 18.2 | 70.8 | 5.5 | 1.9 | 21.8 | 28.0 | ||
玉米秸秆[ | 72.7 | 19.6 | 7.7 | 43.7 | 5.3 | 2.8 | 48.2 | 17.6 | ||
250℃、30min常压烘焙 | 66.6 | 22.3 | 11.1 | 45.4 | 4.9 | 2.3 | 47.4 | 18.2 | ||
250℃、2.5MPa N2、30min气压烘焙 | 49.5 | 35.7 | 14.8 | 56.7 | 4.5 | 2.5 | 36.3 | 22.2 | ||
芦苇[ | 70.0 | 18.1 | 11.9 | 44.5 | 5.7 | 1.7 | 48.1 | 14.6 | ||
270℃、30min常压烘焙 | 35.3 | 47.0 | 17.7 | 51.4 | 5.1 | 2.1 | 41.4 | 17.3 | ||
270℃、2.5MPa N2、30min气压烘焙 | 30.9 | 43.4 | 25.7 | 59.6 | 4.0 | 3.0 | 33.4 | 19.9 | ||
林业生物质 | 松木1[ | 85.5 | 14.1 | 0.4 | 50.3 | 5.9 | 0.04 | 43.8 | 17.7 | |
250℃、15min常压烘焙 | 82.5 | 17.0 | 0.5 | 53.3 | 6.0 | 0.03 | 40.6 | 19.4 | ||
250℃、2.5MPa N2、15min气压烘焙 | 62.1 | 37.1 | 0.8 | 65.4 | 5.5 | 0.09 | 29.1 | 24.7 | ||
松木2 | 80.6 | 16.9 | 2.5 | 47.9 | 5.6 | 0.2 | 46.3 | 16.9 | ||
250℃、60min常压烘焙 | 75.0 | 21.0 | 3.1 | 51.9 | 5.5 | 0.2 | 42.4 | 18.7 | ||
250℃、1.8MPa、60min气压烘焙 | 43.0 | 53.6 | 3.4 | 71.3 | 4.7 | 0.3 | 23.7 | 27.0 | ||
银合欢[ | 87.3 | 12.2 | 0.5 | 50.1 | 7.4 | 0.7 | 41.8 | 20.4 | ||
250℃、30min常压烘焙 | 81.6 | 17.3 | 1.1 | 54.0 | 6.4 | 0.7 | 38.9 | 21.9 | ||
250℃、4.0MPa、30min气压烘焙 | 60.0 | 38.2 | 1.8 | 62.3 | 5.6 | 1.0 | 31.1 | 25.8 | ||
杨木[ | 84.0 | 15.1 | 0.9 | 49.2 | 5.5 | 0.8 | 43.5 | 19.5 | ||
250℃、30min常压烘焙 | 82.9 | 15.6 | 1.5 | 49.8 | 5.7 | 0.8 | 43.7 | 19.8 | ||
250℃、2.5MPa N2、30min气压烘焙 | 71.2 | 26.9 | 1.8 | 58.4 | 5.6 | 0.5 | 35.4 | 23.5 |
样品 | 工业分析(d.b.)/% | 元素分析(d.a.f.)/% | 高位热值(d.a.f.) /MJ·kg-1 | |||||
---|---|---|---|---|---|---|---|---|
挥发分 | 固定碳(diff.) | 灰分 | C | H | N | O(diff.) | ||
稻秆 | 75.2 | 15.2 | 9.6 | 48.9 | 5.2 | 0.9 | 45.0 | 15.9 |
AP-200 | 74.3 | 15.5 | 10.2 | 47.5 | 6.0 | 0.9 | 45.6 | 16.5 |
AP-250 | 68.8 | 19.9 | 11.3 | 50.8 | 5.6 | 1.0 | 42.7 | 17.5 |
AP-300 | 43.0 | 35.5 | 21.5 | 65.3 | 5.0 | 1.3 | 28.4 | 24.1 |
GP-200 | 49.8 | 33.8 | 16.4 | 61.0 | 5.6 | 1.3 | 32.1 | 22.8 |
GP-250 | 40.8 | 40.5 | 18.7 | 68.4 | 5.2 | 1.5 | 24.9 | 26.2 |
GP-300 | 30.6 | 47.5 | 21.9 | 73.2 | 5.1 | 1.6 | 20.0 | 28.6 |
褐煤 | 45.3 | 34.2 | 20.5 | 65.3 | 4.9 | 1.1 | 28.7 | 24.0 |
次烟煤 | 33.2 | 44.3 | 22.5 | 74.9 | 5.7 | 1.5 | 17.9 | 31.7 |
表3 稻秆原样、褐煤、次烟煤和稻秆烘焙半焦的工业分析、元素分析和高位发热量分析结果比较[37, 41-42]
样品 | 工业分析(d.b.)/% | 元素分析(d.a.f.)/% | 高位热值(d.a.f.) /MJ·kg-1 | |||||
---|---|---|---|---|---|---|---|---|
挥发分 | 固定碳(diff.) | 灰分 | C | H | N | O(diff.) | ||
稻秆 | 75.2 | 15.2 | 9.6 | 48.9 | 5.2 | 0.9 | 45.0 | 15.9 |
AP-200 | 74.3 | 15.5 | 10.2 | 47.5 | 6.0 | 0.9 | 45.6 | 16.5 |
AP-250 | 68.8 | 19.9 | 11.3 | 50.8 | 5.6 | 1.0 | 42.7 | 17.5 |
AP-300 | 43.0 | 35.5 | 21.5 | 65.3 | 5.0 | 1.3 | 28.4 | 24.1 |
GP-200 | 49.8 | 33.8 | 16.4 | 61.0 | 5.6 | 1.3 | 32.1 | 22.8 |
GP-250 | 40.8 | 40.5 | 18.7 | 68.4 | 5.2 | 1.5 | 24.9 | 26.2 |
GP-300 | 30.6 | 47.5 | 21.9 | 73.2 | 5.1 | 1.6 | 20.0 | 28.6 |
褐煤 | 45.3 | 34.2 | 20.5 | 65.3 | 4.9 | 1.1 | 28.7 | 24.0 |
次烟煤 | 33.2 | 44.3 | 22.5 | 74.9 | 5.7 | 1.5 | 17.9 | 31.7 |
样品 | 体积密度(d.b.)/kg·m-3 | 能量密度(d.b.)/MJ·m-3 | 可磨性粒径的中位数/nm | 平衡吸水率/% |
---|---|---|---|---|
稻秆原样 | 165 | 2163 | 88850 | 13.96 |
常压烘焙半焦① | 144 | 2010 | 416.1 | 9.42 |
气压烘焙半焦② | 180 | 3309 | 28.25 | 7.52 |
褐煤 | 560~600 | 10600~11400 | 20000~60000 | 21.50 |
表4 稻秆原样、烘焙半焦和褐煤的部分理化特性[46]
样品 | 体积密度(d.b.)/kg·m-3 | 能量密度(d.b.)/MJ·m-3 | 可磨性粒径的中位数/nm | 平衡吸水率/% |
---|---|---|---|---|
稻秆原样 | 165 | 2163 | 88850 | 13.96 |
常压烘焙半焦① | 144 | 2010 | 416.1 | 9.42 |
气压烘焙半焦② | 180 | 3309 | 28.25 | 7.52 |
褐煤 | 560~600 | 10600~11400 | 20000~60000 | 21.50 |
样品 | 着火点 /℃ | 燃尽温度 /℃ | 最大失重温度 /℃ | 最大失重速率 /%·min-1 |
---|---|---|---|---|
稻秆原样 | 250 | 500 | 285 | 8.6 |
常压烘焙半焦① | 271 | 522 | 294 | 10.2 |
气压烘焙半焦② | 297 | 511 | 382 | 6.6 |
次烟煤 | 317 | 549 | 406 | 35.3 |
表5 稻秆原样、烘焙半焦的的燃烧行为参数[46]
样品 | 着火点 /℃ | 燃尽温度 /℃ | 最大失重温度 /℃ | 最大失重速率 /%·min-1 |
---|---|---|---|---|
稻秆原样 | 250 | 500 | 285 | 8.6 |
常压烘焙半焦① | 271 | 522 | 294 | 10.2 |
气压烘焙半焦② | 297 | 511 | 382 | 6.6 |
次烟煤 | 317 | 549 | 406 | 35.3 |
样品 | 元素分析/% | 高位热值 /MJ·kg-1 | |||
---|---|---|---|---|---|
C | H | N | O | ||
稻秆 | |||||
原样-热解生物油 | 34.0 | 8.7 | 0.8 | 56.5 | 13.9 |
常压烘焙-热解生物油 | 36.5 | 8.0 | 1.1 | 54.4 | 14.1 |
气压烘焙-热解生物油 | 59.6 | 4.0 | 1.4 | 31.1 | 20.3 |
木屑 | |||||
原样-热解生物油 | 36.3 | 8.4 | 0.1 | 55.2 | 14.4 |
常压烘焙-热解生物油 | 42.0 | 7.8 | 0.6 | 49.6 | 16.5 |
气压烘焙-热解生物油 | 53.8 | 7.4 | 0.1 | 38.7 | 21.9 |
表6 稻秆和木屑原样、常压烘焙半焦和气压烘焙半焦热解制得生物油的元素组成与高位热值[31]
样品 | 元素分析/% | 高位热值 /MJ·kg-1 | |||
---|---|---|---|---|---|
C | H | N | O | ||
稻秆 | |||||
原样-热解生物油 | 34.0 | 8.7 | 0.8 | 56.5 | 13.9 |
常压烘焙-热解生物油 | 36.5 | 8.0 | 1.1 | 54.4 | 14.1 |
气压烘焙-热解生物油 | 59.6 | 4.0 | 1.4 | 31.1 | 20.3 |
木屑 | |||||
原样-热解生物油 | 36.3 | 8.4 | 0.1 | 55.2 | 14.4 |
常压烘焙-热解生物油 | 42.0 | 7.8 | 0.6 | 49.6 | 16.5 |
气压烘焙-热解生物油 | 53.8 | 7.4 | 0.1 | 38.7 | 21.9 |
图26 一种生物质热量自平衡气压烘焙系统[50-51]1—物料进口;2—螺杆进料器;3—气动蝶阀;4—烟气换热器;5—温度传感器;6—压力传感器;7—输送螺杆;8—控制器;9—卸料阀;10—物料出口;11—传送带;12—燃烧器;13—烟气分流器;14—烟气出口;15—烟气增压泵;16—换热器烟气出口;17—背压阀
10 | CHEN Wei-Hsin, PENG Jianghong, BI Xiaotao T. A state-of-the-art review of biomass torrefaction, densification and applications[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 847-866. |
11 | ONYENWOKE Chukwuka, TABIL Lope G, MUPONDWA Edmund, et al. Effect of torrefaction on the physiochemical properties of white spruce sawdust for biofuel production[J]. Fuels, 2023, 4(1): 111-131. |
12 | 王贤华, 鞠付栋, 杨海平, 等. 神府煤加压热解特性及热解动力学分析[J]. 中国电机工程学报, 2011, 31(11): 40-44. |
WANG Xianhua, JU Fudong, YANG Haiping, et al. Kinetics and properties analysis of Shenfu coal pressurized pyrolysis[J]. Proceedings of the CSEE, 2011, 31(11): 40-44. | |
13 | 邓立华, 孙绍增, 张文达, 等. 压力对煤热解过程及热解焦炭理化结构的影响[J]. 燃烧科学与技术, 2021, 27(6): 644-652. |
DENG Lihua, SUN Shaozeng, ZHANG Wenda, et al. Effects of pressure on coal pyrolysis process and physicochemical structure of pyrolysis char[J]. Journal of Combustion Science and Technology, 2021, 27(6): 644-652. | |
14 | 杨允明, 李永华, 沙兴中, 等. 煤在固定床反应器中加压热解成气过程[J]. 燃料化学学报, 1987, 15(2): 176-180. |
YANG Yunming, LI Yonghua, SHA Xingzhong, et al. Study of coal pyrolysis under pressure in fixed-bed reactor[J]. Journal of Fuel Chemistry and Technology, 1987, 15(2): 176-180. | |
15 | YANG Haiping, CHEN Hanping, JU Fudong, et al. Influence of pressure on coal pyrolysis and char gasification[J]. Energy & Fuels, 2007, 21(6): 3165-3170. |
16 | YU Jianglong, LUCAS John A, WALL Terry F. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review[J]. Progress in Energy and Combustion Science, 2007, 33(2): 135-170. |
17 | BASILE Lucia, TUGNOLI Alessandro, STRAMIGIOLI Carlo, et al. Influence of pressure on the heat of biomass pyrolysis[J]. Fuel, 2014, 137: 277-284. |
18 | QIN Liyuan, WU Yang, HOU Zhiwei, et al. Influence of biomass components, temperature and pressure on the pyrolysis behavior and biochar properties of pine nut shells[J]. Bioresource Technology, 2020, 313: 123682. |
19 | NHUCHHEN Daya Ram, BASU Prabir. Experimental investigation of mildly pressurized torrefaction in air and nitrogen[J]. Energy & Fuels, 2014, 28(5): 3110-3121. |
20 | AGAR David, DEMARTINI Nikolai, HUPA Mikko. Influence of elevated pressure on the torrefaction of wood[J]. Energy & Fuels, 2016, 30(3): 2127-2136. |
21 | WANNAPEERA Janewit, WORASUWANNARAK Nakorn. Upgrading of woody biomass by torrefaction under pressure[J]. Journal of Analytical and Applied Pyrolysis, 2012, 96: 173-180. |
22 | TONG Shan, XIAO Li, LI Xian, et al. A gas-pressurized torrefaction method for biomass wastes[J]. Energy Conversion and Management, 2018, 173: 29-36. |
23 | DI BLASI Colomba, BRANCA Carmen. Kinetics of primary product formation from wood pyrolysis[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5547-5556. |
24 | CARRASCO Juan C, OPORTO Gloria S, ZONDLO John, et al. Torrefaction kinetics of red oak (quercus rubra) in a fluidized reactor[J]. BioResources, 2013, 8(4): 5067-5082. |
25 | DI BLASI Colomba, LANZETTA Mario. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere[J]. Journal of Analytical and Applied Pyrolysis, 1997, 40/41: 287-303. |
26 | FISHER Travis, HAJALIGOL Mohammad, WAYMACK Bruce, et al. Pyrolysis behavior and kinetics of biomass derived materials[J]. Journal of Analytical and Applied Pyrolysis, 2002, 62(2): 331-349. |
27 | SHEN D K, GU S, BRIDGWATER A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 199-206. |
28 | SHI Liu, HU Zhenzhong, LI Xian, et al. Gas-pressurized torrefaction of lignocellulosic solid wastes: Low-temperature deoxygenation and chemical structure evolution mechanisms[J]. Bioresource Technology, 2023, 385: 129414. |
29 | SUN Yiming, TONG Shan, LI Xian, et al. Gas-pressurized torrefaction of biomass wastes: Self-promoted deoxygenation of rice straw at low temperature[J]. Fuel, 2022, 308: 122029. |
30 | DACRES Omar D, TONG Shan, LI Xian, et al. Pyrolysis kinetics of biomasses pretreated by gas-pressurized torrefaction[J]. Energy Conversion and Management, 2019, 182: 117-125. |
31 | SUN Yiming, TONG Shan, LI Xian, et al. Gas-pressurized torrefaction of biomass wastes: The optimization of pressurization condition and the pyrolysis of torrefied biomass[J]. Bioresource Technology, 2021, 319: 124216. |
32 | DACRES Omar D, TONG Shan, LI Xian, et al. Gas-pressurized torrefaction of biomass wastes: The effect of varied pressure on pyrolysis kinetics and mechanism of torrefied biomass[J]. Fuel, 2020, 276: 118132. |
33 | MIAN Inamullah, LI Xian, JIAN Yiming, et al. Kinetic study of biomass pellet pyrolysis by using distributed activation energy model and Coats Redfern methods and their comparison[J]. Bioresource Technology, 2019, 294: 122099. |
34 | MIAN Inamullah, LI Xian, DACRES Omar D, et al. Combustion kinetics and mechanism of biomass pellet[J]. Energy, 2020, 205: 117909. |
35 | TONG Shan, SUN Yiming, LI Xian, et al. Gas-pressurized torrefaction of biomass wastes: Roles of pressure and secondary reactions[J]. Bioresource Technology, 2020, 313: 123640. |
36 | XIAO Li, ZHU Xianqing, LI Xian, et al. Effect of pressurized torrefaction pretreatments on biomass CO2 gasification[J]. Energy & Fuels, 2015, 29(11): 7309-7316. |
37 | 郭得忠. 生物质加压烘焙提质研究[D]. 北京: 华北电力大学, 2021. |
GUO Dezhong. Research on upgrading biomass fuels via pressurized torrefaction[D].Beijing: North China Electric Power University, 2021. | |
38 | HUANG Zhongliang, JIANG Shilin, GUO Junyuan, et al. Oxidative torrefaction of Phragmites australis: Gas-pressurized effects and correlation analysis based on color value[J]. Energy & Fuels, 2020, 34(9): 11073-11082. |
39 | 肖黎. 加压烘焙预处理对生物质气化特性的影响[D]. 武汉: 华中科技大学, 2016. |
XIAO Li. Influence of pressurized torrefaction pretreatments on gasification characteristics of biomass[D].Wuhan: Huazhong University of Science and Technology, 2016. | |
40 | CHEN Wei-Hsin, LU Kemiao, TSAI Chi-Ming. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction[J]. Applied Energy, 2012, 100: 318-325. |
41 | 侯康, 武建军, 尚晓玲, 等. 热重法研究逐级脱矿对褐煤燃烧特性的影响[J]. 化工进展, 2017, 36(3): 900-908. |
HOU Kang, WU Jianjun, SHANG Xiaoling, et al. Experimental study on effects of stepwise removal ofminerals on the combustion characteristics of lignites by TG/DTG[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 900-908. | |
42 | 王越, 马亚亚, 莫文龙, 等. 和丰次烟煤逐级萃取物和萃余物官能团组成FT-IR分析[J]. 燃料化学学报, 2021, 49(7): 890-901. |
WANG Yue, MA Yaya, MO Wenlong, et al. Functional groups of sequential extracts and corresponding residues from Hefeng sub-bituminous coal based on FT-IR analysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 890-901. | |
43 | 童珊. 农林废弃物的气压烘焙机理及产物的热转化行为研究[D]. 武汉: 华中科技大学, 2021. |
TONG Shan. Mechanism study of gas-pressurized torrefaction of agriculture and forestry waste and the thermal conversion behavior of the product[D].Wuhan: Huazhong University of Science and Technology, 2021. | |
44 | FANG Zhen, SATO Takafumi, SMITH Richard L, et al. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water[J]. Bioresource Technology, 2008, 99(9): 3424-3430. |
45 | SHI Liu, SUN Yiming, LI Xian, et al. Gas-pressurized torrefaction of lignocellulosic solid wastes: Deoxygenation and aromatization mechanisms of cellulose[J]. Molecules, 2023, 28(22): 7671. |
46 | 孙一鸣. 生物质气压烘焙脱氧机制及燃料特性研究[D]. 武汉: 华中科技大学, 2021. |
SUN Yiming. Study of deoxygenation mechanism of gas-pressurized torrefaction and fuel properties of torrefied biomass[D].Wuhan: Huazhong University of Science and Technology, 2021. | |
47 | TAN Mengjiao, LI Hui, HUANG Zhongliang, et al. Comparison of atmospheric and gas-pressurized oxidative torrefaction of heavy-metal-polluted rice straw[J]. Journal of Cleaner Production, 2021, 283: 124636. |
48 | GAO Pan, ZHAO Zeheng, LIU Yutong, et al. Effect of gas-pressurized torrefaction on the upgrading and pyrolysis characteristics of corn stalk[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 735-747. |
49 | TONG Shan, SUN Yiming, LI Xian, et al. Gas-pressurized torrefaction of biomass wastes: Co-gasification of gas-pressurized torrefied biomass with coal[J]. Bioresource Technology, 2021, 321: 124505. |
50 | 李显, 孙一鸣, 童珊, 等. 一种生物质废弃物气压烘焙系统: CN214004523U[P]. 2021-08-20. |
LI Xian, SUN Yiming, TONG Shan, et al. Biomass waste gas-pressurized torrefaction system: CN214004523U[P]. 2021-08-20. | |
1 | CIOLKOSZ Daniel, WALLACE Robert. A review of torrefaction for bioenergy feedstock production[J]. Biofuels, Bioproducts and Biorefining, 2011, 5(3): 317-329. |
2 | NEGI Sushant, JASWAL Gaurav, DASS Kali, et al. Torrefaction: A sustainable method for transforming of agri-wastes to high energy density solids (biocoal)[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(2): 463-488. |
3 | NIU Yanqing, Yuan LYU, LEI Yu, et al. Biomass torrefaction: Properties, applications, challenges, and economy[J]. Renewable and Sustainable Energy Reviews, 2019, 115: 109395. |
4 | 朱波, 王贤华, 陈应泉, 等. 农业秸秆烘焙特性实验[J]. 化工进展, 2010, 29(S1): 120-125. |
ZHU Bo, WANG Xianhua, CHEN Yingquan, et al. Experiment on torrefaction characteristics of agricultural straw[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 120-125. | |
5 | 郝宏蒙, 杨海平, 刘汝杰, 等. 烘培对典型农业秸秆吸水性能的影响[J]. 中国电机工程学报, 2013, 33(8): 90-94. |
HAO Hongmeng, YANG Haiping, LIU Rujie, et al. Influence of torrefaction on typical agricultural straw hydrophilic property[J]. Proceedings of the CSEE, 2013, 33(8): 90-94. | |
6 | 凌云逸, 孙锲, RONALD Wennersten. 生物质原料烘焙预处理研究[J]. 能源与环境, 2015(4): 85-87. |
LING Yunyi, SUN Qie, RONALD Wennersten. Study on torrefaction pretreatment of biomass raw materials[J]. Energy and Environment, 2015(4): 85-87. | |
7 | M-U GARBA, S-U GAMBO, MUSA U, et al. Impact of torrefaction on fuel property of tropical biomass feedstocks[J]. Biofuels, 2018, 9(3): 369-377. |
8 | MANATURA Kanit. Inert torrefaction of sugarcane bagasse to improve its fuel properties[J]. Case Studies in Thermal Engineering, 2020, 19: 100623. |
9 | WANG L, BARTA-RAJNAI E, SKREIBERG Ø, et al. Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark[J]. Applied Energy, 2018, 227: 137-148. |
51 | 李显, 石瑬, 孙一鸣, 等. 一种生物质热量自平衡气压烘焙系统: CN218842057U[P]. 2023-04-11. |
LI Xian, SHI Liu, SUN Yiming, et al. Biomass heat self-balancing gas-pressurized torrefaction system: CN218842057U[P]. 2023-04-11. | |
52 | 易琳琳, 付嘉, 李开源, 等. 一种基于气压烘焙的高氯固废处理方法及装置: CN116689463A[P]. 2023-09-05. |
YI Linlin, FU Jia, LI Kaiyuan, et al. High-chlorine solid waste treatment method and device based on gas-pressurized torrefaction: CN116689463A[P]. 2023-09-05. | |
53 | LI Miao, WANG Hou, HUANG Zhongliang, et al. Comparison of atmospheric pressure and gas-pressurized torrefaction of municipal sewage sludge: Properties of solid products[J]. Energy Conversion and Management, 2020, 213: 112793. |
54 | 李淼. 市政污泥的烘焙预处理及固体产物的热转化研究[D]. 长沙: 湖南大学, 2021. |
LI Miao. Study on torrefaction pretreatment of municipal sludge and thermochemical conversion of solid products[D]. Changsha: Central South University of Forestry and Technology, 2021. |
[1] | 韩伟, 韩恒文, 程薇, 汤玮健. 碳中和目标驱动下生物质燃料技术研究进展[J]. 化工进展, 2024, 43(5): 2463-2474. |
[2] | 黄坤, 许明, 吴秀娟, 裴思佳, 刘大伟, 马晓迅, 徐龙. 生物质活性炭的制备与微结构特性调控研究进展[J]. 化工进展, 2024, 43(5): 2475-2493. |
[3] | 杜永亮, 梁卓彬, 龚耀煦, 毕豪杰, 徐志远, 苑宏英. 气隙式膜蒸馏技术研究现状和应用[J]. 化工进展, 2024, 43(4): 1655-1666. |
[4] | 张书铭, 刘化章. 基于BP神经网络模型优化Fe1-x O基氨合成催化剂[J]. 化工进展, 2024, 43(3): 1302-1308. |
[5] | 吴锋明, 李帅旗, 何世辉, 宋文吉, 冯自平. 大温升蒸汽压缩式热泵系统优化研究进展[J]. 化工进展, 2024, 43(3): 1178-1198. |
[6] | 陈俊先, 刘震, 焦文磊, 张天钰, 吕家孟, 姬忠礼. 基于微波谐振原理的天然气管道内液滴浓度测量方法[J]. 化工进展, 2024, 43(2): 734-742. |
[7] | 苏茜, 邓翔天, 刘振兴. 油气水三相流相含率超声测试模型优化[J]. 化工进展, 2024, 43(2): 791-799. |
[8] | 单良, 华夏杰, 牛玉风, 赵腾飞, 洪波, 孔明. 面向光场火焰温度场重建的特征提取优化方法[J]. 化工进展, 2024, 43(2): 823-829. |
[9] | 张长胜, 文松, 赵晋翀, 卢方旭, 姜杰. 化工过程含氧有机气体化学脱氧研究进展[J]. 化工进展, 2024, 43(2): 903-912. |
[10] | 衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259. |
[11] | 王雄, 杨振宁, 李越, 申威峰. 基于化工机理与工业数据孪生建模的甲醇精馏过程优化[J]. 化工进展, 2024, 43(1): 310-319. |
[12] | 王敬翰, 吕杰, 赵丁, 林文野, 宋文吉, 冯自平. 基于BP神经网络的电动汽车动力电池产热估计[J]. 化工进展, 2024, 43(1): 400-406. |
[13] | 杨梦茹, 彭琴, 常玉龙, 邱淑兴, 张溅波, 江霞. 生物炭替代煤粉/焦炭高炉炼铁碳减排技术研究进展[J]. 化工进展, 2024, 43(1): 490-500. |
[14] | 王博, 张长安, 赵利民, 袁俊, 宋永一. 基于掺硼金刚石电极的工业废水处理研究进展[J]. 化工进展, 2024, 43(1): 501-513. |
[15] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |