化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2475-2493.DOI: 10.16085/j.issn.1000-6613.2023-2121
• 新能源与可再生能源 • 上一篇
黄坤1(), 许明2, 吴秀娟1, 裴思佳1, 刘大伟1(), 马晓迅1, 徐龙1()
收稿日期:
2023-12-01
修回日期:
2024-03-04
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
刘大伟,徐龙
作者简介:
黄坤(1999—),男,硕士研究生,研究方向为生物质活性炭的制备与应用。E-mail:2060035242@qq.com。
基金资助:
HUANG Kun1(), XU Ming2, WU Xiujuan1, PEI Sijia1, LIU Dawei1(), MA Xiaoxun1, XU Long1()
Received:
2023-12-01
Revised:
2024-03-04
Online:
2024-05-15
Published:
2024-06-15
Contact:
LIU Dawei, XU Long
摘要:
生物质是一种极具应用潜力的可再生资源,具有来源广泛、储量丰富和价格低廉等特点。以生物质为原料制备活性炭,是推进生物质材料资源化利用的重要途径。本文主要综述了以生物质为原料制备活性炭以及通过制备条件调控其比表面积、孔隙结构和表面性质等微结构特性的研究,重点阐述了生物质组成、炭化和活化条件(如炭化方式、活化剂种类、活化剂用量及反应停留时间等因素)对活性炭微结构特性的影响,并对常用活化剂(如水蒸气、CO2、ZnCl2、H3PO4、KOH等)对孔结构和表面性质的调控机理进行了详细探讨。最后对具有不同微结构特性活性炭的应用做了总结。
中图分类号:
黄坤, 许明, 吴秀娟, 裴思佳, 刘大伟, 马晓迅, 徐龙. 生物质活性炭的制备与微结构特性调控研究进展[J]. 化工进展, 2024, 43(5): 2475-2493.
HUANG Kun, XU Ming, WU Xiujuan, PEI Sijia, LIU Dawei, MA Xiaoxun, XU Long. Research progress on preparation and microstructural characteristics regulation of biomass activated carbon[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2475-2493.
生物质种类 | 元素组成/% | 原子比 | 灰分/% | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | H/C | O/C | (O+N)/C | ||||
植物源生物质 | 木屑 | 90.98 | 0.87 | 2.91 | 0.78 | 0.11 | 0.02 | 0.03 | 4.46 | [ |
玉米秸秆 | 81.47 | 0.72 | 4.38 | 0.69 | 0.11 | 0.77 | 0.077 | 12.70 | [ | |
竹子 | 83.29 | 3.08 | 11.56 | 0.40 | 0.44 | 0.10 | 0.11 | 1.32 | [ | |
动物源生物质 | 猪粪便 | 43.12 | 5.54 | 3.42 | 2.23 | 0.95 | 0.06 | 0.10 | 13.14 | [ |
牛骨 | 42.41 | 2.35 | 22.22 | 2.35 | 0.66 | 0.39 | 0.44 | — | [ | |
鸡粪 | 42.87 | 2.45 | 11.45 | 1.88 | 0.99 | 0.20 | 0.24 | 39.71 | [ | |
污泥生物质 | 市政污泥 | 18.12 | 0.24 | 0.68 | 1.88 | 0.16 | 0.03 | 0.12 | 79.08 | [ |
表1 不同来源生物炭的元素组成及其灰分含量[3]
生物质种类 | 元素组成/% | 原子比 | 灰分/% | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | H/C | O/C | (O+N)/C | ||||
植物源生物质 | 木屑 | 90.98 | 0.87 | 2.91 | 0.78 | 0.11 | 0.02 | 0.03 | 4.46 | [ |
玉米秸秆 | 81.47 | 0.72 | 4.38 | 0.69 | 0.11 | 0.77 | 0.077 | 12.70 | [ | |
竹子 | 83.29 | 3.08 | 11.56 | 0.40 | 0.44 | 0.10 | 0.11 | 1.32 | [ | |
动物源生物质 | 猪粪便 | 43.12 | 5.54 | 3.42 | 2.23 | 0.95 | 0.06 | 0.10 | 13.14 | [ |
牛骨 | 42.41 | 2.35 | 22.22 | 2.35 | 0.66 | 0.39 | 0.44 | — | [ | |
鸡粪 | 42.87 | 2.45 | 11.45 | 1.88 | 0.99 | 0.20 | 0.24 | 39.71 | [ | |
污泥生物质 | 市政污泥 | 18.12 | 0.24 | 0.68 | 1.88 | 0.16 | 0.03 | 0.12 | 79.08 | [ |
样品 | 比表面积/m2·g-1 | 产率/% | 微孔孔容/cm3·g-1 | 介孔孔容/cm3·g-1 |
---|---|---|---|---|
核桃壳生物炭 | 209 | — | 0.12 | 0.05 |
C-850-60 | 542 | 79.4 | 0.30 | 0.05 |
C-850-120 | 743 | 64.9 | 0.39 | 0.06 |
C-850-180 | 841 | 60.2 | 0.49 | 0.18 |
C-850-240 | 1220 | 56.3 | 0.68 | 0.18 |
H-850-30 | 699 | 62.2 | 0.37 | 0.08 |
H-850-45 | 966 | 49.8 | 0.47 | 0.11 |
H-850-60 | 1361 | 43.8 | 0.74 | 0.20 |
表2 不同活化时间、不同活化剂CO2(C)和水蒸气(H)活化核桃壳[65]
样品 | 比表面积/m2·g-1 | 产率/% | 微孔孔容/cm3·g-1 | 介孔孔容/cm3·g-1 |
---|---|---|---|---|
核桃壳生物炭 | 209 | — | 0.12 | 0.05 |
C-850-60 | 542 | 79.4 | 0.30 | 0.05 |
C-850-120 | 743 | 64.9 | 0.39 | 0.06 |
C-850-180 | 841 | 60.2 | 0.49 | 0.18 |
C-850-240 | 1220 | 56.3 | 0.68 | 0.18 |
H-850-30 | 699 | 62.2 | 0.37 | 0.08 |
H-850-45 | 966 | 49.8 | 0.47 | 0.11 |
H-850-60 | 1361 | 43.8 | 0.74 | 0.20 |
活化剂 | 生物质 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 介孔孔容/cm3·g-1 | 参考文献 |
---|---|---|---|---|---|---|
KOH | 赤桉木 | 2595 | 1.275 | 1.236 | 0.039 | [ |
蚕茧 | 2797 | 1.735 | 1.232 | — | [ | |
柏木 | 1705 | 0.963 | 0.764 | 0.112 | [ | |
杉木 | 1826 | 1.146 | 0.673 | 0.788 | [ | |
H3PO4 | 板栗壳 | 989 | 0.7103 | 0.45 | 0.262 | [ |
马占相思木 | 1038 | 0.422 | 0.357 | 0.0349 | [ | |
马占相思木 | 957 | 0.555 | 0.337 | 0.1824 | [ | |
ZnCl2 | 腰果壳 | 859 | 0.830 | 0.356 | 0.617 | [ |
番茄废弃物 | 787 | 1.000 | 0.277 | 0.723 | [ |
表3 不同活化剂对于生物质活性炭孔隙结构的影响
活化剂 | 生物质 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 介孔孔容/cm3·g-1 | 参考文献 |
---|---|---|---|---|---|---|
KOH | 赤桉木 | 2595 | 1.275 | 1.236 | 0.039 | [ |
蚕茧 | 2797 | 1.735 | 1.232 | — | [ | |
柏木 | 1705 | 0.963 | 0.764 | 0.112 | [ | |
杉木 | 1826 | 1.146 | 0.673 | 0.788 | [ | |
H3PO4 | 板栗壳 | 989 | 0.7103 | 0.45 | 0.262 | [ |
马占相思木 | 1038 | 0.422 | 0.357 | 0.0349 | [ | |
马占相思木 | 957 | 0.555 | 0.337 | 0.1824 | [ | |
ZnCl2 | 腰果壳 | 859 | 0.830 | 0.356 | 0.617 | [ |
番茄废弃物 | 787 | 1.000 | 0.277 | 0.723 | [ |
1 | 蒋剑春, 孙康. 活性炭制备技术及应用研究综述[J]. 林产化学与工业, 2017, 37(1): 1-13. |
JIANG Jianchun, SUN Kang. Review on preparation technology of activated carbon and its application[J]. Chemistry and Industry of Forest Products, 2017, 37(1): 1-13. | |
2 | TAN Hao, LI Jialing, HE Min, et al. Global evolution of research on green energy and environmental technologies: A bibliometric study[J]. Journal of Environmental Management, 2021, 297: 113382 |
3 | SONG Ge, QIN Fanzhi, YU Jiangfang, et al. Tailoring biochar for persulfate-based environmental catalysis: Impact of biomass feedstocks[J]. Journal of Hazardous Materials, 2022, 424: 127663. |
4 | TANG Jiawen, ZHANG Shudong, ZHANG Xiaotong, et al. Effects of pyrolysis temperature on soil-plant-microbe responses to Solidago canadensis L.-derived biochar in coastal saline-alkali soil[J]. The Science of the Total Environment, 2020, 731: 138938. |
5 | WANG Shuqi, ZHANG Han, HUANG Haiyan, et al. Influence of temperature and residence time on characteristics of biochars derived from agricultural residues: A comprehensive evaluation[J]. Process Safety and Environmental Protection, 2020, 139: 218-229. |
6 | Jin sun CHA, PARK Sung Hoon, JUNG Sang-Chul, et al. Production and utilization of biochar: A review[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 1-15. |
7 | FAN Jiajun, CAI Chao, CHI Haifeng, et al. Remediation of cadmium and lead polluted soil using thiol-modified biochar[J]. Journal of Hazardous Materials, 2020, 388: 122037. |
8 | FANG Zheng, GAO Yurong, BOLAN Nanthi, et al. Conversion of biological solid waste to graphene-containing biochar for water remediation: A critical review[J]. Chemical Engineering Journal, 2020, 390: 124611. |
9 | LIU Haoyu, LIU Yani, TANG Lin, et al. Egg shell biochar-based green catalysts for the removal of organic pollutants by activating persulfate[J]. The Science of the Total Environment, 2020, 745: 141095. |
10 | RODRIGUEZ José Alexander, LUSTOSA FILHO José Ferreira, MELO Leônidas Carrijo Azevedo, et al. Influence of pyrolysis temperature and feedstock on the properties of biochars produced from agricultural and industrial wastes[J]. Journal of Analytical and Applied Pyrolysis, 2020, 149: 104839. |
11 | SINGH R, NAIK D V, DUTTA R K, et al. Biochars for the removal of naphthenic acids from water: A prospective approach towards remediation of petroleum refinery wastewater[J]. Journal of Cleaner Production, 2020, 266: 121986. |
12 | WEI Zhuo, WANG Jim J, MENG Yili, et al. Potential use of biochar and rhamnolipid biosurfactant for remediation of crude oil-contaminated coastal wetland soil: Ecotoxicity assessment[J]. Chemosphere, 2020, 253: 126617. |
13 | MAHENE Wilson L, KIVEVELE Thomas, MACHUNDA Revocatus. The role of textural properties and surface chemistry of activated carbon support in catalytic deoxygenation of triglycerides into renewable diesel[J]. Catalysis Communications, 2023, 181: 106737. |
14 | 蒋倩雯, 朱晴晴, 吴欣妍, 等. 活性炭吸附脱除水中重金属离子的应用研究[J]. 环境保护前沿, 2023(2): 455-460. |
JIANG Qianwen, ZHU Qingqing, WU Xinyan, et al. Study on the application of activated carbon adsorption to remove heavy metal ions from water[J]. Advances in Environmental Protection, 2023(2): 455-460. | |
15 | AO Wenya, FU Jie, MAO Xiao, et al. Microwave assisted preparation of activated carbon from biomass: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 958-979. |
16 | ODETOYE T E, BAKAR M S ABU, TITILOYE J O. Pyrolysis and characterization of Jatropha curcas shell and seed coat[J]. Nigerian Journal of Technological Development, 2019, 16(2): 71. |
17 | HUANG Yu-Fong, CHIUEH Pei-Te, KUAN Wenhui, et al. Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics[J]. Energy, 2016, 100: 137-144. |
18 | RADENAHMAD Nikdalila, AZAD Atia Tasfiah, SAGHIR Muhammad, et al. A review on biomass derived syngas for SOFC based combined heat and power application[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109560. |
19 | YANG Xiaodong, WAN Yongshan, ZHENG Yulin, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review[J]. Chemical Engineering Journal, 2019, 366: 608-621. |
20 | UKANWA Kalu, PATCHIGOLLA Kumar, SAKRABANI Ruben, et al. A review of chemicals to produce activated carbon from agricultural waste biomass[J]. Sustainability, 2019, 11(22): 6204. |
21 | LENG Lijian, XIONG Qin, YANG Lihong, et al. An overview on engineering the surface area and porosity of biochar[J]. The Science of the Total Environment, 2021, 763: 144204. |
22 | Jari HYVÄLUOMA, HANNULA Markus, ARSTILA Kai, et al. Effects of pyrolysis temperature on the hydrologically relevant porosity of willow biochar[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 446-453. |
23 | RODRIGUEZ CORREA Catalina, HEHR Tobias, Ariane VOGLHUBER-SLAVINSKY, et al. Pyrolysis vs. hydrothermal carbonization: Understanding the effect of biomass structural components and inorganic compounds on the char properties[J]. Journal of Analytical and Applied Pyrolysis, 2019, 140: 137-147. |
24 | RONSSE Frederik, VAN HECKE Sven, DICKINSON Dane, et al. Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions[J]. GCB Bioenergy, 2013, 5(2): 104-115. |
25 | MENG Hong, NIE Chunyang, LI Wenlang, et al. Insight into the effect of lignocellulosic biomass source on the performance of biochar as persulfate activator for aqueous organic pollutants remediation: Epicarp and mesocarp of citrus peels as examples[J]. Journal of Hazardous Materials, 2020, 399: 123043. |
26 | Begüm BAŞER, YOUSAF Balal, YETIS Ulku, et al. Formation of nitrogen functionalities in biochar materials and their role in the mitigation of hazardous emerging organic pollutants from wastewater[J]. Journal of Hazardous Materials, 2021, 416: 126131. |
27 | WANG Huazhe, GUO Wanqian, LIU Banghai, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism[J]. Water Research, 2019, 160: 405-414. |
28 | ZHU Lei, LEI Hanwu, WANG Lu, et al. Biochar of corn stover: Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 149-156. |
29 | ZHANG Jining, Fan LYU, LUO Chenghao, et al. Humification characterization of biochar and its potential as a composting amendment[J]. Journal of Environmental Sciences (China), 2014, 26(2): 390-397. |
30 | HUANG Wen, CHEN Jiao, ZHANG Jianqiang. Adsorption characteristics of methylene blue by biochar prepared using sheep, rabbit and pig manure[J]. Environmental Science and Pollution Research International, 2018, 25(29): 29256-29266. |
31 | XIAO Jiang, HU Rui, CHEN Guangcai. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd( Ⅱ ), Cu( Ⅱ ) and Pb( Ⅱ )[J]. Journal of Hazardous Materials, 2020, 387: 121980. |
32 | 胡菲菲, 何丕文. 不同热解温度制备的鸡粪生物炭对废水中磷的吸附[J]. 湖北农业科学, 2014, 53(8): 1774-1778, 1785. |
HU Feifei, HE Piwen. Phosphate adsorption in wastewater by bio-carbon prepared from pyrolysis of chicken manure at different temperature[J]. Hubei Agricultural Sciences, 2014, 53(8): 1774-1778, 1785. | |
33 | Anna ZIELIŃSKA, OLESZCZUK Patryk, CHARMAS Barbara, et al. Effect of sewage sludge properties on the biochar characteristic[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 201-213. |
34 | CHEN Yidi, WANG Rupeng, DUAN Xiaoguang, et al. Production, properties, and catalytic applications of sludge derived biochar for environmental remediation[J]. Water Research, 2020, 187: 116390. |
35 | LENG Lijian, HUANG Huajun. An overview of the effect of pyrolysis process parameters on biochar stability[J]. Bioresource Technology, 2018, 270: 627-642. |
36 | LEWANDOWSKI Witold M, RYMS Michał, KOSAKOWSKI Wojciech. Thermal biomass conversion: A review[J]. Processes, 2020, 8(5): 516. |
37 | 刘壮, 田宜水, 胡二峰, 等. 低阶煤热解影响因素及其工艺技术研究进展[J]. 洁净煤技术, 2021, 27(1): 50-59. |
LIU Zhuang, TIAN Yishui, HU Erfeng, et al. Research progress on influencing factors and technology of low-rank coal pyrolysis[J]. Clean Coal Technology, 2021, 27(1): 50-59. | |
38 | LIU Wujun, JIANG Hong, YU Hanqing. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115(22): 12251-12285. |
39 | DAHOU T, DEFOORT F, KHIARI B, et al. Role of inorganics on the biomass char gasification reactivity: A review involving reaction mechanisms and kinetics models[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110136. |
40 | RASHIDI Nor Adilla, CHAI Yee Ho, ISMAIL Intan Syafiqah, et al. Biomass as activated carbon precursor and potential in supercapacitor applications[J]. Biomass Conversion and Biorefinery, 2022:1-15. |
41 | WANG Zhao, YU Chang, HUANG Huawei, et al. Carbon-enabled microwave chemistry: From interaction mechanisms to nanomaterial manufacturing[J]. Nano Energy, 2021, 85: 106027. |
42 | XIAO Xin, CHEN Baoliang, CHEN Zaiming, et al. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review[J]. Environmental Science & Technology, 2018, 52(9): 5027-5047. |
43 | KHIARI Besma, JEGUIRIM Mejdi. Pyrolysis of grape Marc from Tunisian wine industry: Feedstock characterization, thermal degradation and kinetic analysis[J]. Energies, 2018, 11(4): 730. |
44 | BOATENG A A. Characterization and thermal conversion of charcoal derived from fluidized-bed fast pyrolysis oil production of switchgrass[J]. Industrial & Engineering Chemistry Research, 2007, 46(26): 8857-8862. |
45 | LEE Yongwoon, Pu-Reun-Byul EUM, Changkook RYU, et al. Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1[J]. Bioresource Technology, 2013, 130: 345-350. |
46 | Kyung-Min POO, Eun-Bi SON, CHANG Jae-Soo, et al. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution[J]. Journal of Environmental Management, 2018, 206: 364-372. |
47 | SHEN Yafei. A review on hydrothermal carbonization of biomass and plastic wastes to energy products[J]. Biomass and Bioenergy, 2020, 134: 105479. |
48 | PONNUSAMY Vinoth Kumar, NAGAPPAN Senthil, BHOSALE Rahul R, et al. Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications[J]. Bioresource Technology, 2020, 310: 123414. |
49 | ANTERO Romario Victor Pacheco, ALVES Andreia Cristina Fonseca, DE OLIVEIRA Sergio Botelho, et al. Challenges and alternatives for the adequacy of hydrothermal carbonization of lignocellulosic biomass in cleaner production systems: A review[J]. Journal of Cleaner Production, 2020, 252: 119899. |
50 | JIAN Xiumei, ZHUANG Xiuzheng, LI Bosong, et al. Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis[J]. Environmental Technology and Innovation, 2018, 10: 27-35. |
51 | CELLETTI Silvia, BERGAMO Alex, BENEDETTI Vittoria, et al. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate[J]. Journal of Environmental Management, 2021, 280: 111635. |
52 | GADKARI Siddharth, FIDALGO Beatriz, GU Sai. Numerical investigation of microwave-assisted pyrolysis of lignin[J]. Fuel Processing Technology, 2017, 156: 473-484. |
53 | LI Junfeng, ZHOU Wei, HUANG Yuming, et al. Rapid, simple and sustainable preparation of N-rich activated carbons with high performance for gas adsorption, via microwave heating[J]. Separation and Purification Technology, 2024, 330: 125464. |
54 | HESAS R H, DAUD W, SAHU J, et al. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 1-11. |
55 | ZHONG Zhuoya, YANG Qi, LI Xiaoming, et al. Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption[J]. Industrial Crops and Products, 2012, 37(1): 178-185. |
56 | FOO K Y, HAMEED B H. Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating[J]. Bioresource Technology, 2012, 111: 425-432. |
57 | NAMAZI Azadeh B, Grant ALLEN D, JIA Charles Q. Benefits of microwave heating method in production of activated carbon[J]. The Canadian Journal of Chemical Engineering, 2016, 94(7): 1262-1268. |
58 | LIU Qingsong, ZHENG Tong, WANG Peng, et al. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation[J]. Industrial Crops and Products, 2010, 31(2): 233-238. |
59 | AO Wenya, FU Jie, MAO Xiao, et al. Characterization and analysis of activated carbons prepared from furfural residues by microwave-assisted pyrolysis and activation[J]. Fuel Processing Technology, 2021, 213: 106640. |
60 | HEIDARINEJAD Zoha, DEHGHANI Mohammad Hadi, HEIDARI Mohsen, et al. Methods for preparation and activation of activated carbon: A review[J]. Environmental Chemistry Letters, 2020, 18(2): 393-415. |
61 | CHOWDHURY Zaira Zaman, HAMID Sharifah Bee ABD, Rasel DAS, et al. Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution[J]. BioResources, 2013, 8(4): 6523-6555. |
62 | ZHAO Can, GE Lichao, Longhui MAI, et al. Review on coal-based activated carbon: Preparation, modification, application, regeneration, and perspectives[J]. Energy & Fuels, 2023, 37(16): 11622-11642. |
63 | WONG Syieluing, NGADI Norzita, INUWA Ibrahim M, et al. Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review[J]. Journal of Cleaner Production, 2018, 175: 361-375. |
64 | I-I AHMED, A-K GUPTA. Kinetics of woodchips char gasification with steam and carbon dioxide[J]. Applied Energy, 2011, 88(5): 1613-1619. |
65 | GONZÁLEZ Juan F, Silvia ROMÁN, GONZÁLEZ-GARCÍA Carmen M, et al. Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7474-7481. |
66 | ZHAO Hong, YU Qiongfen, LI Ming, et al. Preparation and water vapor adsorption of “green” walnut-shell activated carbon by CO2 physical activation[J]. Adsorption Science & Technology, 2020, 38(1/2): 60-76. |
67 | O Yu DERKACHEVA, PONOMAREV D A, SPITSYN A A, et al. Change in the functional composition of the carbon surface upon water vapor activation[J]. Russian Journal of Applied Chemistry, 2021, 94(7): 996-1001. |
68 | HEIDARI Aghdas, YOUNESI Habibollah, RASHIDI Alimorad, et al. Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: Effect of chemical activation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(2): 579-588. |
69 | LI Jia, Dickon H L NG, SONG Peng, et al. Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for Congo red adsorption[J]. Biomass and Bioenergy, 2015, 75: 189-200. |
70 | SINGH Gurwinder, MARIA RUBAN Ajanya, GENG Xun, et al. Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation[J]. Chemical Engineering Journal, 2023, 451: 139045. |
71 | NIAZI Leila, LASHANIZADEGAN Asghar, SHARIFIFARD Hakimeh. Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (Ⅵ) removal from dilute aqueous solutions[J]. Journal of Cleaner Production, 2018, 185: 554-561. |
72 | DANISH M, HASHIM R, M N Mohamad IBRAHIM, et al. Effect of acidic activating agents on surface area and surface functional groups of activated carbons produced from Acacia mangium wood[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 418-425. |
73 | SPAGNOLI Angela A, GIANNAKOUDAKIS Dimitrios A, BASHKOVA Svetlana. Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: The role of surface and structural parameters[J]. Journal of Molecular Liquids, 2017, 229: 465-471. |
74 | Hasan SAYĞıLı, Fuat GÜZEL. High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: Process optimization, characterization and dyes adsorption[J]. Journal of Cleaner Production, 2016, 113: 995-1004. |
75 | AHMED Muthanna J, THEYDAN Samar K. Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 199-208. |
76 | WANG Jiacheng, KASKEL Stefan. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725. |
77 | 左宋林. 磷酸活化法活性炭孔隙结构的调控机制[J]. 新型炭材料, 2018, 33(4): 289-302. |
ZUO Songlin. A review of the control of pore texture of phosphoric acid-activated carbons[J]. New Carbon Materials, 2018, 33(4): 289-302. | |
78 | LI Chao, LI Yuannian, SHAO Yuewen, et al. Activation of biomass with volatilized KOH[J]. Green Chemistry, 2023, 25(7): 2825-2839. |
79 | MARQUES Susana C R, MESTRE Ana S, MACHUQUEIRO Miguel, et al. Apple tree branches derived activated carbons for the removal of β-blocker atenolol[J]. Chemical Engineering Journal, 2018, 345: 669-678. |
80 | Narandalai BYAMBA-OCHIR, SHIM Wang Geun, BALATHANIGAIMANI M S, et al. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation[J]. Applied Surface Science, 2016, 379: 331-337. |
81 | ALABADI Akram, RAZZAQUE Shumaila, YANG Yuwan, et al. Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity[J]. Chemical Engineering Journal, 2015, 281: 606-612. |
82 | YAHYA Mohd Adib, AL-QODAH Z, C W Zanariah NGAH. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 46: 218-235. |
83 | YORGUN Sait, Derya YıLDıZ, ŞIMŞEK Yunus Emre. Activated carbon from paulownia wood: Yields of chemical activation stages[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(14): 2035-2042. |
84 | 左宋林. 磷酸活化法制备活性炭综述(Ⅰ)——磷酸的作用机理[J]. 林产化学与工业, 2017, 37(3): 1-9. |
ZUO Songlin. Review on phosphoric acid activation for preparation of activated carbon(Ⅰ): Roles of phosphoric acid[J]. Chemistry and Industry of Forest Products, 2017, 37(3): 1-9. | |
85 | BOUNDZANGA Henriette Moussounda, CAGNON Benoît, ROULET Marjorie, et al. Contributions of hemicellulose, cellulose, and lignin to the mass and the porous characteristics of activated carbons produced from biomass residues by phosphoric acid activation[J]. Biomass Conversion and Biorefinery, 2022, 12(8): 3081-3096. |
86 | YORGUN Sait, YILDIZ Derya. Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4 [J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53: 122-131. |
87 | DE YUSO Alicia Martínez, RUBIO Begoña, Teresa IZQUIERDO M. Influence of activation atmosphere used in the chemical activation of almond shell on the characteristics and adsorption performance of activated carbons[J]. Fuel Processing Technology, 2014, 119: 74-80. |
88 | 廖绍华, 杨晓梅, 黄毕生, 等. 氯化锌活化柚子皮制备生物炭及其对亚甲基蓝的吸附[J]. 大理大学学报, 2020, 5(12): 15-20. |
LIAO Shaohua, YANG Xiaomei, HUANG Bisheng, et al. Preparation of biochar from pomelo peels activated by zinc chloride and its adsorption of methylene blue[J]. Journal of Dali University, 2020, 5(12): 15-20. | |
89 | SAKA Cafer. BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2 [J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 21-24. |
90 | Arash ARAMI-NIYA, DAUD Wan Mohd Ashri Wan, MJALLI Farouq S. Using granular activated carbon prepared from oil palm shell by ZnCl2 and physical activation for methane adsorption[J]. Journal of Analytical and Applied Pyrolysis, 2010, 89(2): 197-203. |
91 | GUNDOGDU Ali, DURAN Celal, Basri SENTURK H, et al. Physicochemical characteristics of a novel activated carbon produced from tea industry waste[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 249-259. |
92 | Sandra RODRÍGUEZ-SÁNCHEZ, RUIZ Begoña, David MARTÍNEZ-BLANCO, et al. Sustainable thermochemical single-step process to obtain magnetic activated carbons from chestnut industrial wastes[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17293-17305. |
93 | BEDIA J, PEÑAS-GARZÓN M, GÓMEZ-AVILÉS A, et al. Review on activated carbons by chemical activation with FeCl3 [J]. C — Journal of Carbon Research, 2020, 6(2): 21. |
94 | 杨骏兵, 康飞宇, 黄正宏. 过渡族金属对球形活性炭孔结构与吸附性能的影响[J]. 清华大学学报(自然科学版), 2002, 42(5): 688-691. |
YANG Junbing, KANG Feiyu, HUANG Zhenghong. Influence of transition metals on the pore structure and adsorption properties of spherical activated carbon[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(5): 688-691. | |
95 | 朱厚堃, 张琼元, 郑玉华, 等. 化学活化剂对活性炭制备影响的研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(2): 25-34. |
ZHU Houkun, ZHANG Qiongyuan, ZHENG Yuhua, et al. Research progress on influence of chemical activators on preparation of activated carbon[J]. Natural Gas Chemical Industry, 2022, 47(2): 25-34. | |
96 | AZEEM Sarwar, MAJID Ali, HUSSAIN Khoja Asif, et al. Synthesis and characterization of biomass-derived surface-modified activated carbon for enhanced CO2 adsorption[J]. Journal of CO2 Utilization, 2021, 46: 101476. |
97 | DIN Muhammad Imran, ASHRAF Sania, INTISAR Azeem. Comparative study of different activation treatments for the preparation of activated carbon: A mini-review[J]. Science Progress, 2017, 100(3): 299-312. |
98 | SI Mengying, YAN Xu, LIU Mingren, et al. In situ lignin bioconversion promotes complete carbohydrate conversion of rice straw by Cupriavidus basilensis B-8[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7969-7978. |
99 | ZHANG Kejing, LIU Mingren, ZHANG Tingzheng, et al. High-performance supercapacitor energy storage using a carbon material derived from lignin by bacterial activation before carbonization[J]. Journal of Materials Chemistry A, 2019, 7(47): 26838-26848. |
100 | LI Zesheng, YU Changlin. Adsorption in the treatment of three wastes[M]//Nanostructured Materials. Amsterdam: Elsevier, 2024: 317-326. |
101 | Arash ARAMI-NIYA, DAUD Wan Mohd Ashri Wan, MJALLI Farouq S. Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption[J]. Chemical Engineering Research and Design, 2011, 89(6): 657-664. |
102 | WANG Baoying, LAN Jingming, BO Chunmiao, et al. Adsorption of heavy metal onto biomass-derived activated carbon: Review[J]. RSC Advances, 2023, 13(7): 4275-4302. |
103 | SHARMA Gaurav, SHARMA Shweta, KUMAR Amit, et al. Activated carbon as superadsorbent and sustainable material for diverse applications[J]. Adsorption Science & Technology, 2022, 2022: 4184809. |
104 | JEIRANI Zahra, NIU Catherine Hui, SOLTAN Jafar. Adsorption of emerging pollutants on activated carbon[J]. Reviews in Chemical Engineering, 2017, 33(5): 491-522. |
105 | IWANOW Melanie, Tobias GÄRTNER, SIEBER Volker, et al. Activated carbon as catalyst support: Precursors, preparation, modification and characterization[J]. Beilstein Journal of Organic Chemistry, 2020, 16: 1188-1202. |
106 | LI Jiang, LIU Junling, ZHOU Hongjun, et al. Catalytic transfer hydrogenation of furfural to furfuryl alcohol over nitrogen-doped carbon-supported iron catalysts[J]. ChemSusChem, 2016, 9(11): 1339-1347. |
107 | 陈庆明, 刘大伟, 吕随明, 等. 面向CH4-CO2重整反应的生物质炭基催化剂载体制备工艺的研究进展[J]. 燃料化学学报(中英文), 2023, 51(3): 273-292. |
CHEN Qingming, LIU Dawei, Suiming LYU, et al. Research progress on the preparation process of biochar-based catalyst support for dry reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2023, 51(3): 273-292. | |
108 | BEDIA J, MONSALVO V M, RODRIGUEZ J J, et al. Iron catalysts by chemical activation of sewage sludge with FeCl3 for CWPO[J]. Chemical Engineering Journal, 2017, 318: 224-230. |
109 | SOUSA Juliana P S, PEREIRA Manuel F R, FIGUEIREDO José L. Modified activated carbon as catalyst for NO oxidation[J]. Fuel Processing Technology, 2013, 106: 727-733. |
110 | WANG Yongfang, ZUO Songlin, LIU Ya. Ammonia modification of high-surface-area activated carbons as metal-free electrocatalysts for oxygen reduction reaction[J]. Electrochimica Acta, 2018, 263: 465-473. |
111 | PENG Xinwen, ZHANG Lei, CHEN Zhongxin, et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes[J]. Advanced Materials, 2019, 31(16): 1900341. |
112 | LIU Zheng, ZHANG Su, WANG Lin, et al. High-efficiency utilization of carbon materials for supercapacitors[J]. Nano Select, 2020, 1(2): 244-262. |
113 | NIE Hongqi, YANG Xuhao, YANG Sulan, et al. The enhanced catalytic decomposition behaviors of RDX by using porous activated carbon loaded with nanosized metal oxides[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(10): 4255-4266. |
114 | ZUO Xiaoxia, CHANG Kun, ZHAO Jing, et al. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material[J]. Journal of Materials Chemistry A, 2016, 4(1): 51-58. |
115 | PEÑAS-GARZÓN M, GÓMEZ-AVILÉS A, BELVER C, et al. Degradation pathways of emerging contaminants using TiO2-activated carbon heterostructures in aqueous solution under simulated solar light[J]. Chemical Engineering Journal, 2020, 392: 124867. |
116 | COUMANS A E, HENSEN E J M. A real support effect on the hydrodeoxygenation of methyl oleate by sulfided NiMo catalysts[J]. Catalysis Today, 2017, 298: 181-189. |
117 | ZHANG Pengfei, WANG Li, YANG Shize, et al. Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking[J]. Nature Communications, 2017, 8: 15020. |
118 | CHATURVEDI Vikash, USANGONVKAR Saurabh, SHELKE Manjusha V. Synthesis of high surface area porous carbon from anaerobic digestate and it’s electrochemical study as an electrode material for ultracapacitors[J]. RSC Advances, 2019, 9(62): 36343-36350. |
119 | LIU Tianyu, ZHANG Feng, SONG Yu, et al. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures[J]. Journal of Materials Chemistry A, 2017, 5(34): 17705-17733. |
120 | SINHA Prerna, YADAV Amit, TYAGI Alekha, et al. Keratin-derived functional carbon with superior charge storage and transport for high-performance supercapacitors[J]. Carbon, 2020, 168: 419-438. |
121 | LENG Changyu, SUN Kang. The preparation of 3D network pore structure activated carbon as an electrode material for supercapacitors with long-term cycle stability[J]. RSC Advances, 2016, 6(62): 57075-57083. |
122 | YANG Binbin, ZHANG Deyi, HE Jingjing, et al. Simple and green fabrication of a biomass-derived N and O self-doped hierarchical porous carbon via a self-activation route for supercapacitor application[J]. Carbon Letters, 2020, 30(6): 709-719. |
123 | NGIDI Nonjabulo P D, OLLENGO Moses A, NYAMORI Vincent O. Effect of doping temperatures and nitrogen precursors on the physicochemical, optical, and electrical conductivity properties of nitrogen-doped reduced graphene oxide[J]. Materials, 2019, 12(20): 3376. |
124 | LI Baoqiang, CHENG Yinfeng, DONG Longpei, et al. Nitrogen doped and hierarchically porous carbons derived from chitosan hydrogel via rapid microwave carbonization for high-performance supercapacitors[J]. Carbon, 2017, 122: 592-603. |
[1] | 高海港, 安高军, 鲁长波, 李艳香, 张玉明, 李望良. 可纺中间相沥青的研究进展[J]. 化工进展, 2024, 43(2): 1001-1012. |
[2] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[3] | 王嘉, 彭冲, 唐磊, 陆安慧. 渣油加氢催化剂活性相结构调控及对反应性能影响[J]. 化工进展, 2023, 42(4): 1811-1821. |
[4] | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
[5] | 章建忠, 许升, 樊家澍, 费振宇, 王堃, 黄建, 崔峰波, 冉文华. 玻璃纤维浸润剂的分析与表征技术进展[J]. 化工进展, 2023, 42(2): 821-838. |
[6] | 李冬燕, 周剑, 江倩, 苗凯, 倪诗莹, 邹栋. 碳化硅陶瓷膜的制备及其应用进展[J]. 化工进展, 2023, 42(12): 6399-6408. |
[7] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[8] | 刘培慧, 刘宇喆, 李琳, 王少辉, 王同华. 具有多级孔道结构的高比表面多孔炭活化策略及VOCs吸附性能[J]. 化工进展, 2022, 41(S1): 613-621. |
[9] | 马殿普, 李俊, 覃德清, 袁英杰, 潘飞, 符泽卫. 锡酸锌纳米材料的制备方法及应用研究进展[J]. 化工进展, 2022, 41(6): 3113-3126. |
[10] | 武晨浩, 李昆锋, 李肖华, 费志方, 张震, 杨自春. 二氧化硅气凝胶常压干燥工艺的研究进展[J]. 化工进展, 2022, 41(2): 837-847. |
[11] | 宋梓豪, 王宏鑫, 杜博宇, 段秋阳, 卢晶虹, 江颖辉, 崔升. 聚酰亚胺气凝胶制备、性能及应用进展[J]. 化工进展, 2022, 41(2): 816-826. |
[12] | 刘瑞琴, 孟凡会, 王立言, 张鹏, 张俊峰, 谭猗生, 李忠. 有序介孔CuCoZr催化剂的制备及其催化合成气制乙醇及高级醇性能[J]. 化工进展, 2022, 41(11): 5870-5878. |
[13] | 何广源, 陈学敏, 王雨婷, 李发堂, 张子健, 许文浩. 钴酸镍基纳米材料在超级电容器中的研究进展[J]. 化工进展, 2021, 40(7): 3813-3825. |
[14] | 公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10): 5554-5576. |
[15] | 黄文斌, 魏强, 周亚松. 均一介孔Al2O3劣质蜡油加氢脱氮催化剂研究进展[J]. 化工进展, 2020, 39(S2): 196-203. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |