化工进展 ›› 2024, Vol. 43 ›› Issue (2): 1001-1012.DOI: 10.16085/j.issn.1000-6613.2023-0302
• 材料科学与技术 •
高海港1,2(), 安高军3, 鲁长波3, 李艳香2(), 张玉明1(), 李望良2
收稿日期:
2022-03-10
修回日期:
2022-04-15
出版日期:
2024-02-25
发布日期:
2024-03-07
通讯作者:
李艳香,张玉明
作者简介:
高海港(1997—),男,硕士研究生,研究方向为中间相沥青的制备与纺丝。E-mail:harbor0226@126.com。
基金资助:
GAO Haigang1,2(), AN Gaojun3, LU Changbo3, LI Yanxiang2(), ZHANG Yuming1(), LI Wangliang2
Received:
2022-03-10
Revised:
2022-04-15
Online:
2024-02-25
Published:
2024-03-07
Contact:
LI Yanxiang, ZHANG Yuming
摘要:
随着我国航空航天和电子等行业的快速发展,高性能沥青基碳纤维因其高模量和高导热等优异性能而受到广泛关注。其中,中间相沥青的制备是高性能沥青基碳纤维制备的首要环节,但因沥青组成结构复杂、杂原子较多、合成的中间相沥青产品性能不均一等因素限制,我国纺丝级中间相沥青量产化仍未实现,严重制约了相关产业的发展。本文综述了中间相沥青的形成过程和性质,对比了煤、石油、萘三种沥青原料的组成和分子结构,阐述了原料沥青中复杂成分对中间相沥青形成过程的影响以及常见的预处理方法,并对预处理方法的优缺点进行了比较,分析了直接热缩聚法、溶剂分离法、加氢改性法、催化改性法、共碳法以及其他方法的制备过程及其优缺点,并对中间相沥青形成过程中的影响因素进行了归纳总结。最后展望了中间相沥青的发展前景,针对目前的瓶颈问题提出了建议。研究者应从沥青原料出发,探究原料分子结构和工艺条件对中间相沥青结构的影响规律并阐明其机理。
中图分类号:
高海港, 安高军, 鲁长波, 李艳香, 张玉明, 李望良. 可纺中间相沥青的研究进展[J]. 化工进展, 2024, 43(2): 1001-1012.
GAO Haigang, AN Gaojun, LU Changbo, LI Yanxiang, ZHANG Yuming, LI Wangliang. Research progress on spinnable mesophase pitch[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1001-1012.
纤维类型 | 牌号 | 单丝直径/μm | 拉伸强度/GPa | 拉伸模量/GPa | 热导率/W·m-1·K-1 | 断裂伸长/% | 密度/g·cm-3 |
---|---|---|---|---|---|---|---|
PAN | T300 | 7 | 3.53 | 230 | 10 | 1.5 | 1.76 |
PAN | M60J | 5 | 3.82 | 588 | 151 | 0.7 | 1.93 |
PAN | T1100 | 5 | 7.0 | 324 | 32 | 2.2 | 1.8 |
煤基 | K13D2U | — | 3.7 | 935 | 800 | 0.4 | 2.2 |
煤基 | YS-95A | 7 | 3.53 | 920 | 600 | 0.3 | 2.19 |
油基 | K-1100 | 10 | 3.1 | 965 | 1100 | 0.2 | 2.2 |
表1 部分PAN基与中间相沥青基碳纤维产品型号及性能指标
纤维类型 | 牌号 | 单丝直径/μm | 拉伸强度/GPa | 拉伸模量/GPa | 热导率/W·m-1·K-1 | 断裂伸长/% | 密度/g·cm-3 |
---|---|---|---|---|---|---|---|
PAN | T300 | 7 | 3.53 | 230 | 10 | 1.5 | 1.76 |
PAN | M60J | 5 | 3.82 | 588 | 151 | 0.7 | 1.93 |
PAN | T1100 | 5 | 7.0 | 324 | 32 | 2.2 | 1.8 |
煤基 | K13D2U | — | 3.7 | 935 | 800 | 0.4 | 2.2 |
煤基 | YS-95A | 7 | 3.53 | 920 | 600 | 0.3 | 2.19 |
油基 | K-1100 | 10 | 3.1 | 965 | 1100 | 0.2 | 2.2 |
光学组织结构 | 单元光学组织尺寸/μm |
---|---|
各向同性 | 无光学活性 |
细粒马赛克型 | 直径 < 1.5 |
中等粒度马赛克型 | 1.5 < 直径 < 5.0 |
粗粒马赛克型 | 5.0 < 直径 < 10.0 |
中等流线型 | 流线长度 < 30,宽度 < 5 |
粗流线型 | 30 < 流线长度 < 60, 5 <宽度 < 10 |
广域流线型 | 流线长度 < 1.5,宽度 > 10 |
广域型 | 宽度 > 60 |
表2 碳质中间相织构的分类和性质[11]
光学组织结构 | 单元光学组织尺寸/μm |
---|---|
各向同性 | 无光学活性 |
细粒马赛克型 | 直径 < 1.5 |
中等粒度马赛克型 | 1.5 < 直径 < 5.0 |
粗粒马赛克型 | 5.0 < 直径 < 10.0 |
中等流线型 | 流线长度 < 30,宽度 < 5 |
粗流线型 | 30 < 流线长度 < 60, 5 <宽度 < 10 |
广域流线型 | 流线长度 < 1.5,宽度 > 10 |
广域型 | 宽度 > 60 |
方法名称 | 处理目标 | 优点 | 缺点 | 影响因素 |
---|---|---|---|---|
加热过滤法 | 去除喹啉不溶物、不溶性杂质 | 净化效果好,溶剂可回收,工艺简单 | 滤网强度、孔径要求较高,且需经常更换,滤材孔径和助滤剂粒径需微米级,成本较大 | 原料性质,溶剂种类和比例,滤材孔径及助滤剂粒径,过滤温度及压力 |
溶剂萃取法 | 去除轻、重组分,获得理想组分 | 净化效果好,溶剂可回收,成本低 | 溶剂用量大,部分溶剂难以脱除,操作烦琐且效率低 | 溶剂种类,萃取温度,萃取时间 |
溶剂沉降法 | 去除重组分,获得理想组分 | 溶剂可回收,设备成本低,工艺简单 | 分离效率低,产品质量不稳定,固体颗粒粒径为微米级时不易分离脱除,但加入沉降助剂和絮凝剂会增加成本且后期处理困难 | 溶剂种类和比例,萃取温度和沉降时间,沉降剂的种类和用量 |
超临界萃取法 | 去除全组分杂质,获得理想组分 | 原料适应性高,分离效果优异,溶剂可回收 | 工艺复杂,设备多且要求高,能耗和成本相对较高 | 原料本身性质,溶剂的种类,操作温度和压力 |
离心分离法 | 去除喹啉不溶物、较小杂质 | 分离能力强,效率高 | 处理量小,分离精度低且高黏度细微颗粒难以脱除;设备要求高,能耗和成本相对高 | 原料密度,溶剂比例、种类及用量,滤布目数,萃取温度和时间,离心转速和时间 |
表3 原料沥青预处理方法比较[23-30]
方法名称 | 处理目标 | 优点 | 缺点 | 影响因素 |
---|---|---|---|---|
加热过滤法 | 去除喹啉不溶物、不溶性杂质 | 净化效果好,溶剂可回收,工艺简单 | 滤网强度、孔径要求较高,且需经常更换,滤材孔径和助滤剂粒径需微米级,成本较大 | 原料性质,溶剂种类和比例,滤材孔径及助滤剂粒径,过滤温度及压力 |
溶剂萃取法 | 去除轻、重组分,获得理想组分 | 净化效果好,溶剂可回收,成本低 | 溶剂用量大,部分溶剂难以脱除,操作烦琐且效率低 | 溶剂种类,萃取温度,萃取时间 |
溶剂沉降法 | 去除重组分,获得理想组分 | 溶剂可回收,设备成本低,工艺简单 | 分离效率低,产品质量不稳定,固体颗粒粒径为微米级时不易分离脱除,但加入沉降助剂和絮凝剂会增加成本且后期处理困难 | 溶剂种类和比例,萃取温度和沉降时间,沉降剂的种类和用量 |
超临界萃取法 | 去除全组分杂质,获得理想组分 | 原料适应性高,分离效果优异,溶剂可回收 | 工艺复杂,设备多且要求高,能耗和成本相对较高 | 原料本身性质,溶剂的种类,操作温度和压力 |
离心分离法 | 去除喹啉不溶物、较小杂质 | 分离能力强,效率高 | 处理量小,分离精度低且高黏度细微颗粒难以脱除;设备要求高,能耗和成本相对高 | 原料密度,溶剂比例、种类及用量,滤布目数,萃取温度和时间,离心转速和时间 |
方法名称 | 优点 | 缺点 |
---|---|---|
直接缩聚法 | 工艺原理与流程相对简单,生产成本低,适合大规模工业生产 | 组分复杂,反应进程难以控制;原料品质要求高;一般需要采取减压蒸馏、搅拌等手段去除轻组分或促进中间相沥青形成 |
溶剂分离法 | 根据溶剂特性萃取得到所需组分,对原料进行优化;溶剂可重复利用;耗能少 | 需根据原料不同性质选择一种或多种溶剂萃取分离,存在剂油比大、所需组分所占比例小的问题;也存在部分溶剂难以脱除、操作过程烦琐的问题 |
加氢改性法 | 有效脱除杂原子,改善原料性质;制备的中间相沥青取向性、软化点等纺丝性能优良 | 需加入供氢剂或者对原料直接加氢处理,对设备安全性要求高,供氢剂成本较高 |
催化改性法 | 原料收率高、反应温度和压力低、时间短;制备的中间相沥青软化点低、可溶性好 | AlCl3催化剂难以彻底分离和回收,影响纤维性能;HF/BF3腐蚀性强,对设备要求高,成本大,且存在环境污染问题 |
共炭化法 | 对原料进行综合利用,共混种类多,弥补单一原料在组成和结构上的缺陷,从而改良中间相沥青性能 | 共混使原料组成结构更加复杂,反应条件复杂化,反应稳定性差;且存在部分共混原料成本高的问题 |
交联合成法 | 使中间相分子聚合成为更大分子,从而促进广域中间相沥青的形成,有利于提高纤维的最终性能 | 交联剂品类少、适用范围小;沥青原料分子量高,反应难以控制,容易过度反应而生焦 |
烷基改性法 | 通过添加烷基结构的数量和种类来改善原料分子结构,形成的中间相沥青具有大片层结构,且可纺性能优良 | 催化剂难以脱除或腐蚀性强,工艺相对复杂,技术还不成熟,目前还处在试验阶段 |
表4 中间相沥青制备方法对比[36-58]
方法名称 | 优点 | 缺点 |
---|---|---|
直接缩聚法 | 工艺原理与流程相对简单,生产成本低,适合大规模工业生产 | 组分复杂,反应进程难以控制;原料品质要求高;一般需要采取减压蒸馏、搅拌等手段去除轻组分或促进中间相沥青形成 |
溶剂分离法 | 根据溶剂特性萃取得到所需组分,对原料进行优化;溶剂可重复利用;耗能少 | 需根据原料不同性质选择一种或多种溶剂萃取分离,存在剂油比大、所需组分所占比例小的问题;也存在部分溶剂难以脱除、操作过程烦琐的问题 |
加氢改性法 | 有效脱除杂原子,改善原料性质;制备的中间相沥青取向性、软化点等纺丝性能优良 | 需加入供氢剂或者对原料直接加氢处理,对设备安全性要求高,供氢剂成本较高 |
催化改性法 | 原料收率高、反应温度和压力低、时间短;制备的中间相沥青软化点低、可溶性好 | AlCl3催化剂难以彻底分离和回收,影响纤维性能;HF/BF3腐蚀性强,对设备要求高,成本大,且存在环境污染问题 |
共炭化法 | 对原料进行综合利用,共混种类多,弥补单一原料在组成和结构上的缺陷,从而改良中间相沥青性能 | 共混使原料组成结构更加复杂,反应条件复杂化,反应稳定性差;且存在部分共混原料成本高的问题 |
交联合成法 | 使中间相分子聚合成为更大分子,从而促进广域中间相沥青的形成,有利于提高纤维的最终性能 | 交联剂品类少、适用范围小;沥青原料分子量高,反应难以控制,容易过度反应而生焦 |
烷基改性法 | 通过添加烷基结构的数量和种类来改善原料分子结构,形成的中间相沥青具有大片层结构,且可纺性能优良 | 催化剂难以脱除或腐蚀性强,工艺相对复杂,技术还不成熟,目前还处在试验阶段 |
1 | HUANG Dong, TAN Ruixuan, LIU Ling, et al. Preparation and properties of the three-dimensional highly thermal conductive carbon/carbon-silicon carbide composite using the mesophase-pitch-based carbon fibers and pyrocarbon as thermal diffusion channels[J]. Journal of the European Ceramic Society, 2021, 41(8): 4438-4446. |
2 | WU Qi, LI Wenjun, LIU Chang, et al. Carbon fiber reinforced elastomeric thermal interface materials for spacecraft[J]. Carbon, 2022, 187: 432-438. |
3 | Seunghyun KO, CHOI Jong-Eun, LEE Chul Wee, et al. Preparation of petroleum-based mesophase pitch toward cost-competitive high-performance carbon fibers[J]. Carbon Letters, 2020, 30(1): 35-44. |
4 | 何盛宝, 黄格省. 化工新材料产业及其在低碳发展中的作用[J]. 化工进展, 2022, 41(3): 1634-1644. |
HE Shengbao, HUANG Gesheng. The new chemical materials industry and its role in low carbon development[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1634-1644. | |
5 | 史景利, 马昌. 沥青基碳纤维的研发及产业化[J]. 高科技纤维与应用, 2014, 39(3): 7-14. |
SHI Jingli, MA Chang. Research and industrialization of pitch based carbon fiber[J]. Hi-Tech Fiber & Application, 2014, 39(3): 7-14. | |
6 | DAULBAYEV Chingis, KAIDAR Bayan, SULTANOV Fail, et al. The recent progress in pitch derived carbon fibers applications. A Review[J]. South African Journal of Chemical Engineering, 2021, 38: 9-20. |
7 | 叶崇. 高导热中间相沥青碳纤维的制备及结构调控[D]. 长沙: 湖南大学, 2019. |
YE Chong. Preparation and structure control of mesophase pitch carbon fiber with high thermal conductivity[D]. Changsha: Hunan University, 2019. | |
8 | 张媛媛, 初人庆, 郭丹, 等. 高性能沥青基碳纤维发展现状及制备工艺[J]. 当代化工, 2023, 52(2): 457-460. |
ZHANG Yuanyuan, CHU Renqing, GUO Dan, et al. Development status and preparation technology of high performance pitch-based carbon fiber[J]. Contemporary Chemical Industry, 2023, 52(2): 457-460. | |
9 | 贺文晋, 张晓欠, 刘丹, 等. 沥青基碳纤维制备研究进展[J]. 煤化工, 2019, 47(4): 72-75, 81. |
HE Wenjin, ZHANG Xiaoqian, LIU Dan, et al. Research progress on pitch-based carbon fiber preparation[J]. Coal Chemical Industry, 2019, 47(4): 72-75, 81. | |
10 | GUO Jianguang, LI Xuanke, XU Huitao, et al. Molecular structure control in mesophase pitch via co-carbonization of coal tar pitch and petroleum pitch for production of carbon fibers with both high mechanical properties and thermal conductivity[J]. Energy & Fuels, 2020, 34(5): 6474-6482. |
11 | 李同起. 碳质中间相结构的形成及其相关材料的应用研究[D]. 天津: 天津大学, 2005. |
LI Tongqi. Study on the formation of carbonaceous mesophase structure and the application of related materials[D]. Tianjin: Tianjin University, 2005. | |
12 | YUAN Guanming, LI Baoliu, LI Xuanke, et al. Effect of liquid crystalline texture of mesophase pitches on the structure and property of large-diameter carbon fibers[J]. ACS Omega, 2019, 4(1): 1095-1102. |
13 | 肖南, 邱介山. 煤沥青基功能碳材料的研究现状及前景[J]. 化工进展, 2016, 35(6): 1804-1811. |
XIAO Nan, QIU Jieshan. Progress in synthesis and applications of functional carbon materials from coal tar pitch[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1804-1811. | |
14 | FAN Xiaohua, FEI Youqing, CHEN Lei, et al. Distribution and structural analysis of polycyclic aromatic hydrocarbons abundant in coal tar pitch[J]. Energy & Fuels, 2017, 31(5): 4694-4704. |
15 | 余洋, 吴晃, 黄东, 等. 萘系和油系中间相沥青碳纤维性能对比研究[J]. 化工新型材料, 2021, 49(8): 70-73, 78. |
YU Yang, WU Huang, HUANG Dong, et al. Comparison on the property of the carbon fibers with naphthalene-based and the petroleum-based mesophase pitch[J]. New Chemical Materials, 2021, 49(8): 70-73, 78. | |
16 | LI Weidong, CHEN Yilong, ZHANG Linzhou, et al. Supercritical fluid extraction of fluid catalytic cracking slurry oil: Bulk property and molecular composition of narrow fractions[J]. Energy & Fuels, 2016, 30(12): 10064-10071. |
17 | 洪海球, 邓宋, 赖仕全, 等. 萘沥青及热转化产物的性质和结构表征[J]. 化工进展, 2020, 39(7): 2724-2733. |
HONG Haiqiu, DENG Song, LAI Shiquan, et al. Properties and structural characterization of naphthalene pitch and its thermal conversion products[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2724-2733. | |
18 | HALIM Humala Paulus, Ji Sun IM, LEE Chul Wee. Preparation of needle coke from petroleum by-products[J]. Carbon Letters, 2013, 14(3): 152-161. |
19 | KUMAR Subhash, SRIVASTAVA Manoj. Meliorate optical textures and mesophase contents by promising approach of deasphalting of petroleum residues[J]. Journal of Industrial and Engineering Chemistry, 2017, 48: 133-141. |
20 | 张强, 张志伟, 王鑫, 等. 催化油浆陶瓷膜净化处理实验研究[J]. 石油学报(石油加工), 2018, 34(6): 1163-1171. |
ZHANG Qiang, ZHANG Zhiwei, WANG Xin, et al. Application performance of ceramic membrane on purifying FCC slurry oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(6): 1163-1171. | |
21 | 陈庆岭, 王宁. 催化裂化油浆膜过滤技术工业应用研究[J]. 石油炼制与化工, 2020, 51(9): 45-49. |
CHEN Qingling, WANG Ning. Study on industrial application of membrane filtration technology for fcc slurry[J]. Petroleum Processing and Petrochemicals, 2020, 51(9): 45-49. | |
22 | BANERJEE Chandrachur, CHANDALIYA Vimal Kumar, DASH Pratik Swarup. Recent advancement in coal tar pitch-based carbon fiber precursor development and fiber manufacturing process[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105272. |
23 | 朱亚明, 高丽娟, 赵雪飞, 等. 净化煤沥青的主要制备工艺、表征方法及应用概述[J]. 炭素技术, 2018, 37(1): 9-14, 33. |
ZHU Yaming, GAO Lijuan, ZHAO Xuefei, et al. Preparation, characterization and application of refined coal tar pitch[J]. Carbon Techniques, 2018, 37(1): 9-14, 33. | |
24 | 孙培山, 王志杰, 王东飞, 等. 降低煤焦油中灰分和喹啉不溶物的研究[J]. 煤化工, 2011, 39(3): 30-32. |
SUN Peishan, WANG Zhijie, WANG Dongfei, et al. Study on removing the ash and QI in the coal tar[J]. Coal Chemical Industry, 2011, 39(3): 30-32. | |
25 | 唐世波, 魏晓慧, 熊楚安, 等. 溶剂沉降法脱除煤焦油中的喹啉不溶物[J]. 煤炭转化, 2016, 39(1): 58-61. |
TANG Shibo, WEI Xiaohui, XIONG Chu’an, et al. Removal of quinoline-insolubles in coal tar with solvent-sedimentation method[J]. Coal Conversion, 2016, 39(1): 58-61. | |
26 | 舒展. 超临界流体萃取油品的工艺研究进展[J]. 广东化工, 2019, 46(5): 144-145, 138. |
SHU Zhan. Research progress on supercritical fluid extraction technology of petroleum products[J]. Guangdong Chemical Industry, 2019, 46(5): 144-145, 138. | |
27 | ZHANG Linzhou, XU Zhiming, SHI Quan, et al. Molecular characterization of polar heteroatom species in Venezuela Orinoco petroleum vacuum residue and its supercritical fluid extraction subfractions[J]. Energy & Fuels, 2012, 26(9): 5795-5803. |
28 | 邱江华, 胡定强, 王光辉, 等. 溶剂-离心法脱除煤焦油中的喹啉不溶物[J]. 炭素技术, 2012, 31(6): 9-12. |
QIU Jianghua, HU Dingqiang, WANG Guanghui, et al. Removal of quinoline-insolubles in coal tar by solventcentrifugation method[J]. Carbon Techniques, 2012, 31(6): 9-12. | |
29 | 于传瑞, 赵娜, 郭爱军, 等. 煤焦油中脱除喹啉不溶物技术的研究进展[J]. 化工进展, 2015, 34(9): 3262-3266. |
YU Chuanrui, ZHAO Na, GUO Aijun, et al. Research progress in the removal of quinoline insolubles in coal tar[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3262-3266. | |
30 | 贾振斌, 姜浩强, 孙鹏飞. 煤直接液化沥青脱固技术研究综述[J]. 中国煤炭, 2022, 48(8): 121-124. |
JIA Zhenbin, JIANG Haoqiang, SUN Pengfei. Review on desolidation technology of coal direct liquefied asphalt[J]. China Coal, 2022, 48(8): 121-124. | |
31 | LI Ming, LIU Dong, DU Hui, et al. Preparation of mesophase pitch by aromatics-rich distillate of naphthenic vacuum gas oil[J]. Applied Petrochemical Research, 2015, 5(4): 339-346. |
32 | 周玉柱, 刘云芳, 孙海成, 等. 可纺石油基中间相沥青制备及测试分析[J]. 高科技纤维与应用, 2021, 46(4): 44-51. |
ZHOU Yuzhu, LIU Yunfang, SUN Haicheng, et al. Preparation and test analysis of spinnable petroleum-based mesophase pitch[J]. Hi-Tech Fiber and Application, 2021, 46(4): 44-51. | |
33 | 代晓玉, 马远恩, 许志明, 等. 催化裂化油浆组成分布对中间相沥青光学织构的影响[J]. 化工学报, 2020, 71(6): 2678-2687, 2450. |
DAI Xiaoyu, MA Yuan’en, XU Zhiming, et al. Effects of composition distribution of catalytic slurry oils on optical texture of mesophase pitch[J]. CIESC Journal, 2020, 71(6): 2678-2687, 2450. | |
34 | 王成扬, 陈明鸣, 李明伟. 沥青基炭材料[M]. 北京: 化学工业出版社, 2018: 102-108. |
WANG Chengyang, CHEN Mingming, LI Mingwei. Pitch-based carbon materials[M]. Beijing: Chemical Industry Press, 2018: 102-108. | |
35 | ERIK Frank, STEUDLE Lisa M, DENIS Ingildeev, et al. Carbon fibers: Precursor systems, processing, structure, and properties[J]. Angewandte Chemie International Edition, 2014, 53(21): 5262-5298. |
36 | 万新. 重油热缩聚反应初生中间相沥青的形成过程与机制研究[D]. 东营: 中国石油大学(华东), 2019. |
WAN Xin. Study on formation process and mechanism of primary mesophase pitch in thermal polycondensation of heavy oil[D]. Dongying: China University of Petroleum (Huadong), 2019. | |
37 | Reza BAGHERI S, GRAY Murray R, MCCAFFREY William C. Influence of depressurization and cooling on the formation and development of mesophase[J]. Energy & Fuels, 2011, 25(12): 5541-5548. |
38 | LOU Bin, LIU Dong, QIU Yu, et al. Modified effect on properties of mesophase pitch prepared from various two-stage thermotreatments of FCC decant oil[J]. Fuel, 2021, 284: 119034. |
39 | RHEE B, CHUNG D H, IN S J, et al. A comparison of pressure and reflux in the two-stage production of mesophase[J]. Carbon, 1991, 29(3): 343-350. |
40 | 何笑雨. 环烷基重馏分油制备中间相沥青机制研究[D]. 东营: 中国石油大学(华东), 2017. |
HE Xiaoyu. Study on the mechanism of preparing mesophase pitch from naphthenic heavy distillate oil[D]. Dongying: China University of Petroleum (Huadong), 2017. | |
41 | 沈国波, 刘东. 低温热缩聚-溶剂热萃取法制备同性沥青基碳纤维[J]. 石油学报(石油加工), 2022, 38(6): 1271-1280. |
SHEN Guobo, LIU Dong. Preparation of isotropic pitch-based carbon fibers by low temperature thermal polycondensation-solvent thermal extraction[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(6): 1271-1280. | |
42 | LIANG Zhengwu, LU Yonggen, SUN Zhulin, et al. Polymerization kinetics and control of the components of a mesophase pitch[J]. New Carbon Materials, 2020, 35(5): 591-598. |
43 | 马远恩. 油浆及其超临界萃取组分性质组成及中间相沥青织构的对比[D]. 北京: 中国石油大学(北京), 2020. |
MA Yuan’en. Comparison of properties and composition of slurry oil and its supercritical extraction components and texture of mesophase pitch[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
44 | DAI Xiaoyu, MA Yuan’en, ZHANG Linzhou, et al. Optimization of molecular composition distribution of slurry oil by supercritical fluid extraction to improve the structure and performance of mesophase pitch[J]. Energies, 2022, 15(19): 7041. |
45 | 许蕾, 王相君, 杨桃, 等. 高温煤沥青不同组分中间相形成过程[J]. 新型炭材料, 2020, 35(5): 599-608. |
XU Lei, WANG Xiangjun, YANG Tao, et al. Formation of mesophase from the components of high temperature coal tar pitch[J]. New Carbon Materials, 2020, 35(5): 599-608. | |
46 | LI Ming, LIU Dong, Zhuowu MEN, et al. Effects of different extracted components from petroleum pitch on mesophase development[J]. Fuel, 2018, 222: 617-626. |
47 | LI Ming, ZHANG Yadong, YU Shitao, et al. Effects of in-process hydrogenation on mesophase development during the thermal condensation of petroleum aromatic-rich fraction[J]. Energy & Fuels, 2018, 32(4): 5659-5663. |
48 | LI Ming, ZHANG Yadong, YU Shitao, et al. Preparation and characterization of petroleum-based mesophase pitch by thermal condensation with in-process hydrogenation[J]. RSC Advances, 2018, 8(53): 30230-30238. |
49 | 于冉, 赵燕, 刘东. 富芳烃重油组分结构调变对中间相沥青形成的影响机制[J]. 石油炼制与化工, 2021, 52(12): 72-78. |
YU Ran, ZHAO Yan, LIU Dong. Influence mechanism of structural modulation of heavy oil rich in aromatics on the formation of mesophase pitch[J]. Petroleum Processing and Petrochemicals, 2021, 52(12): 72-78. | |
50 | 吴艳. 不同煤基沥青芳烃分子结构对生成中间相炭微球的影响[J]. 煤质技术, 2020, 35(4): 13-19. |
WU Yan. Effect of molecular structure of different coal-based pitch aromatic hydrocarbons on the formation of mesophase carbon microspheres[J]. Coal Quality Technology, 2020, 35(4): 13-19. | |
51 | 曲凤娇, 刘东, 郑凯元, 等. 中间相沥青的研究进展[J]. 材料导报, 2014, 28(1): 100-105. |
QU Fengjiao, LIU Dong, ZHENG Kaiyuan, et al. The preparation and applied research status of mesophase pitch[J]. Materials Review, 2014, 28(1): 100-105. | |
52 | Chaehun LIM, KWAK Cheol Hwan, Yoonyoung KO, et al. Mesophase pitch production from fluorine-pretreated FCC decant oil[J]. Fuel, 2022, 328: 125244. |
53 | LI Ming, LIU Dong, LOU Bin, et al. Effects of inductive condensation on mesophase development during aromatic-rich oil carbonization[J]. Energy & Fuels, 2019, 33(8): 7200-7205. |
54 | ZHANG Xingwei, MENG Yuchen, FAN Baolin, et al. Preparation of mesophase pitch from refined coal tar pitch using naphthalene-based mesophase pitch as nucleating agent[J]. Fuel, 2019, 243: 390-397. |
55 | 杨燕红, 刘媛媛, 孙鸣, 等. 煤沥青与石油沥青共混改性及其热解特性[J]. 化工进展, 2016, 35(2): 479-484. |
YANG Yanhong, LIU Yuanyuan, SUN Ming, et al. Modification of petroleum asphalt with coal tar pitch extract and pyrolysis properties[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 479-484. | |
56 | GUO Jianguang, ZHU Hui, XU Huitao, et al. Spinnable mesophase pitch prepared via Co-carbonization of fluid catalytic cracking decant oil and synthetic naphthalene pitch[J]. Energy & Fuels, 2020, 34(2): 2566-2573. |
57 | 柴鲁宁, 师楠, 温福山, 等. 高分子改性对中间相沥青微观结构及碳纤维力学性能的影响[J]. 石油炼制与化工, 2022, 53(6): 76-83. |
CHAI Luning, SHI Nan, WEN Fushan, et al. Effect of polymers modification on microstructure of mesophase pitches and mechanical properties of carbon fibers[J]. Petroleum Processing and Petrochemicals, 2022, 53(6): 76-83. | |
58 | LI Ming, LIU Dong, LOU Bin, et al. Relationship between structural modification of aromatic-rich fraction from heavy oil and the development of mesophase microstructure in thermal polymerization process[J]. Energy & Fuels, 2016, 30(10): 8177-8184. |
59 | 张亚东, 王浩, 张兴茂, 等. 富芳烃油馏分组成对中间相沥青形成的影响[J]. 石油炼制与化工, 2020, 51(12): 64-68. |
ZHANG Yadong, WANG Hao, ZHANG Xingmao, et al. Influences of compositions of aromatic-rich oils on formation of mesophase pitch[J]. Petroleum Processing and Petrochemicals, 2020, 51(12): 64-68. | |
60 | LI Ming, LIU Dong, Renqing LYU, et al. Preparation of the mesophase pitch by hydrocracking tail oil from a naphthenic vacuum residue[J]. Energy & Fuels, 2015, 29(7): 4193-4200. |
61 | LI Ming, LIU Dong, LOU Bin, et al. Hydroalkylation modification of naphthene-based aromatic-rich fraction and its influences on mesophase development[J]. RSC Advances, 2018, 8(7): 3750-3759. |
62 | 何成友, 聂毅, 李佩佩, 等. 石油基中间相沥青的研制[J]. 过程工程学报, 2017, 17(5): 1023-1027. |
HE Chengyou, NIE Yi, LI Peipei, et al. Preparation of mesophase pitch from petroleum pitch[J]. The Chinese Journal of Process Engineering, 2017, 17(5): 1023-1027. | |
63 | XIONG Qingan, ZHANG Yuming, HUANG Youjian, et al. Fundamental study of the integrated process of heavy oil pyrolysis and coke gasification. Part Ⅰ: Effect of CO and H2 in syngas atmosphere on heavy oil pyrolysis[J]. Fuel, 2022, 324: 124650. |
64 | Roberto GARCÍA, CRESPO José L, MARTIN Shona C, et al. Development of mesophase from a low-temperature coal tar pitch[J]. Energy & Fuels, 2003, 17(2): 291-301. |
65 | RAHIMI Parviz, GENTZIS Thomas, FAIRBRIDGE Craig. Interaction of clay additives with mesophase formed during thermal treatment of solid-free athabasca bitumen fraction[J]. Energy & Fuels, 1999, 13(4): 817-825. |
66 | 梁正午, 吕永根, 孙祝林, 等. 中间相沥青的聚合动力学及组分控制[J]. 新型炭材料, 2020, 35(5): 591-598. |
LIANG Zhengwu, Yonggen LYU, SUN Zhulin, et al. Polymerization kinetics and control of the components of a mesophase pitch[J]. New Carbon Materials, 2020, 35(5): 591-598. | |
67 | 程习松. 中间相沥青形成过程中组分迁移的研究[D]. 上海: 东华大学, 2022. |
CHENG Xisong. Study on component migration during the formation of mesophase pitch[D]. Shanghai: Donghua University, 2022. | |
68 | ZHANG Xingwei, NING Shuli, MA Zhaokun, et al. The structural properties of chemically derived graphene nanosheets/mesophase pitch-based composite carbon fibers with high conductivities[J]. Carbon, 2020, 156: 499-505. |
69 | ZHANG Xingwei, MA Zhaokun, MENG Yuchen, et al. Effects of the addition of conductive graphene on the preparation of mesophase from refined coal tar pitch[J]. Journal of Analytical and Applied Pyrolysis, 2019, 140: 274-280. |
70 | ALWAY-COOPER Rebecca M, ANDERSON David P, OGALE Amod A. Carbon black modification of mesophase pitch-based carbon fibers[J]. Carbon, 2013, 59: 40-48. |
71 | WANG Liyong, LIU Zhanjun, GUO Quangui, et al. Structure of silicon-modified mesophase pitch-based graphite fibers[J]. Carbon, 2015, 94: 335-341. |
72 | ZHAI Xiaoling, LIU Junqing, ZHANG Yuxia, et al. Microcrystal structure evolution of mesophase pitch-based carbon fibers with enhanced oxidation resistance and tensile strength induced by boron doping[J]. Ceramics International, 2019, 45(9): 11734-11738. |
[1] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[2] | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
[3] | 李冬燕, 周剑, 江倩, 苗凯, 倪诗莹, 邹栋. 碳化硅陶瓷膜的制备及其应用进展[J]. 化工进展, 2023, 42(12): 6399-6408. |
[4] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[5] | 马殿普, 李俊, 覃德清, 袁英杰, 潘飞, 符泽卫. 锡酸锌纳米材料的制备方法及应用研究进展[J]. 化工进展, 2022, 41(6): 3113-3126. |
[6] | 宋梓豪, 王宏鑫, 杜博宇, 段秋阳, 卢晶虹, 江颖辉, 崔升. 聚酰亚胺气凝胶制备、性能及应用进展[J]. 化工进展, 2022, 41(2): 816-826. |
[7] | 刘瑞琴, 孟凡会, 王立言, 张鹏, 张俊峰, 谭猗生, 李忠. 有序介孔CuCoZr催化剂的制备及其催化合成气制乙醇及高级醇性能[J]. 化工进展, 2022, 41(11): 5870-5878. |
[8] | 何广源, 陈学敏, 王雨婷, 李发堂, 张子健, 许文浩. 钴酸镍基纳米材料在超级电容器中的研究进展[J]. 化工进展, 2021, 40(7): 3813-3825. |
[9] | 公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10): 5554-5576. |
[10] | 黄文斌, 魏强, 周亚松. 均一介孔Al2O3劣质蜡油加氢脱氮催化剂研究进展[J]. 化工进展, 2020, 39(S2): 196-203. |
[11] | 罗明生, 冯旭楞, 宋丹, 杨智, 王亚涛, 李洪娟. 制备方法对FeC2O4制备的费托合成铁催化剂的影响[J]. 化工进展, 2020, 39(6): 2422-2429. |
[12] | 付绒,杨春林,胡燕燕,欧梅桂. 核壳型磁性荧光纳米复合材料的制备及其应用研究进展[J]. 化工进展, 2019, 38(08): 3742-3755. |
[13] | 李兆宁, 赵彦杰, 范亚茹. 相变蓄冷浆体材料研究进展[J]. 化工进展, 2018, 37(S1): 108-116. |
[14] | 刘流, 张颂红, 贠军贤, 姚克俭. 纳凝胶的制备、性能及应用进展[J]. 化工进展, 2018, 37(12): 4726-4734. |
[15] | 张国辉, 张玉婷, 张景成, 南军, 臧甲忠, 于海斌. 制备方法对Ni-Mo/Al2O3加氢催化剂性能的影响[J]. 化工进展, 2018, 37(11): 4315-4321. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |