化工进展 ›› 2018, Vol. 37 ›› Issue (12): 4726-4734.DOI: 10.16085/j.issn.1000-6613.2018-0144
刘流, 张颂红, 贠军贤, 姚克俭
收稿日期:
2018-01-17
修回日期:
2018-03-20
出版日期:
2018-12-05
发布日期:
2018-12-05
通讯作者:
张颂红,副教授,硕士生导师,主要研究方向为传质与分离。
作者简介:
刘流(1991-),男,硕士研究生。
基金资助:
LIU Liu, ZHANG Songhong, YUN Junxian, YAO Kejian
Received:
2018-01-17
Revised:
2018-03-20
Online:
2018-12-05
Published:
2018-12-05
摘要: 纳凝胶(nanogels)具有比表面积大、负载量高、分散稳定、刺激响应性等优点,在生物医药、化工和新材料等领域有广阔的应用前景。本文对制备纳凝胶的物理和化学交联等常规方法及微流控、电喷射、电芬顿法等新方法进行了综述,阐述了各种方法的制备原理与优缺点;对纳凝胶的生物相容性和降解性、溶胀性、稳定性等基本性能作了介绍,特别对其刺激响应性作了重点调研;并对其在药物控释、生物传感器、酶固定化、分子成像、增塑剂、水处理等方面的应用研究进展进行了归纳。最后结合纳凝胶在制备方法及应用中存在的实际问题,指出新型凝胶基质、纳凝胶表面改性及绿色可控制备方法等是今后纳凝胶研究的重要方向。
中图分类号:
刘流, 张颂红, 贠军贤, 姚克俭. 纳凝胶的制备、性能及应用进展[J]. 化工进展, 2018, 37(12): 4726-4734.
LIU Liu, ZHANG Songhong, YUN Junxian, YAO Kejian. Recent research progress on preparation methods, properties and applications of nanogels[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4726-4734.
[1] MAVUSO S, MARIMUTHU T, CHOONARA Y E, et al.A review of polymeric colloidal nanogels in transdermal drug delivery[J]. Current Pharmaceutical Design, 2015, 21(20):2801-13. [2] SONI G, YADAV K S. Nanogels as potential nanomedicine carrier for treatment of cancer:a mini review of the state of the art[J]. Saudi Pharmaceutical Journal, 2016, 24(2):133-139. [3] NEAMTU I, RUSU A G, DIACONU A, et al. Basic concepts and recent advances in nanogels as carriers for medical applications[J]. Drug Delivery, 2017, 24(1):539-557. [4] SASAKI Y, AKIYOSHI K. Nanogel engineering for new nanobiomaterials:from chaperoning engineering to biomedical applications[J]. Chemical Record, 2010, 10(6):366-376. [5] WANI T U, RASHID M, KUMAR M, et al. Targeting aspects of nanogels:an overview[J]. International Journal of Pharmaceutical Sciences and Nanotechnology, 2014, 7(4):2612-2630. [6] MENG X, EDGAR K J. "Click" reactions in polysaccharide modification[J]. Progress in Polymer Science, 2016, 53:52-85. [7] OH J K, DRUMRIGHT R, SIEGWART D J, et al. The development of microgels/nanogels for drug delivery applications[J]. Progress in Polymer Science, 2008, 33(4):448-477. [8] SONI K S, DESALE S S, BRONICH T K. Nanogels:an overview of properties, biomedical applications and obstacles to clinical translation[J]. Journal of Controlled Release, 2016, 240:109-126. [9] 李祯珍, 周淑彦, 窦红静, 等. 自组装辅助聚合法制备纤维素基温度/pH双敏感性荧光纳米凝胶[J]. 高等学校化学学报, 2013, 35(7):1608-1614. LI Zhenzhen, ZHOU Shuyan, DOU Hongjing, et al. Temperature/pH dual-sensitive fluorescence nano-gel based on cellulose through self-assembly assisted polymerization[J]. Chemical Journal of Chinese Universities, 2013, 35(7):1608-1614. [10] LI Y L, ZHU L, LIU Z, et al. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells[J]. Angewandte Chemie International Edition, 2009, 48(52):9914-9918. [11] 李霏霏, 张娜. 纳米凝胶载体系统的研究进展[J]. 中国药学杂志, 2016, 51(3):177-182. LI Feifei, ZHANG Na. Research progress in nanogel carrier systems[J]. Chinese Pharmaceutical Journal, 2016, 51(3):177-182. [12] PARK C W, YANG H M, LEE H J, et al. Core-shell nanogel of PEG-poly(aspartic acid)and its pH-responsive release of rh-insulin[J]. Soft Matter, 2013, 9(6):1781-1788. [13] ZHANG Y, DING J, LI M, et al. One-step "Click Chemistry"-synthesized cross-linked prodrug nanogel for highly selective intracellular drug delivery and upregulated antitumor efficacy[J]. ACS Applied Materials & Interfaces, 2016, 8(17):10673-10682. [14] DING J, ZHUANG X, XIAO C, et al. Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery[J]. Journal of Materials Chemistry, 2011, 21(30):11383-11391. [15] 王杨, 顾准. 刺激响应性聚N-乙烯基己内酰胺纳米凝胶的制备及性能研究[J]. 化学与生物工程, 2016, 33(6):39-44. WANG Yang, GU Zhun. Preparation and performance of stimuli-responsive poly(N-vinylcaprolactam)nanogel[J]. Chemistry & Bioengineering, 2016, 33(6):39-44. [16] WANG Y, ZHENG J, TIAN Y, et al. Acid degradable poly(vinylcaprolactam)-based nanogels with ketal linkages for drug delivery[J]. Journal of Materials Chemistry B, 2015, 3(28):5824-5832. [17] 张稳, 韩晓东, 苏红莹, 等. 反相微乳液法制备纳米凝胶的研究进展[J]. 高分子材料科学与工程, 2016, 32(9):178-183. ZHANG Wen, HAN Xiaodong, SU Hongying, et al. Progress in synthesis of nanogels by inverse microemulsion[J]. Polymeric Materials Science and Engineering, 2016, 32(9):178-183. [18] KRISCH E, MESSAGER L, GYARMATI B, et al. Redox-and pH-responsive nanogels based on thiolated poly(aspartic acid)[J]. Macromolecular Materials and Engineering, 2016, 301(3):260-266. [19] LI W, LIU Q, ZHANG P, et al. Zwitterionic nanogels crosslinked by fluorescent carbon dots for targeted drug delivery and simultaneous bioimaging[J]. Acta Biomaterialia, 2016, 40:254-262. [20] KIM H, KIM B, LEE C, et al. Redox-responsive biodegradable nanogels for photodynamic therapy using Chlorin e6[J]. Journal of Materials Science, 2016, 51(18):8442-8451. [21] 龚霞, 胡莹莹, 尤祥宇, 等. RAFT聚合法制备丙烯酰胺纳米凝胶的工艺优化[J]. 化学与生物工程, 2016, 33(10):35-38. GONG Xia, HU Yingying, YOU Xiangyu, et al. Process optimization of acrylamide nanogels prepared by RAFT polymerization[J]. Chemistry & Bioengineering, 2016, 33(10):35-38. [22] ZUO Y, GUO N, JIAO Z, et al. Novel reversible thermos responsive nanogel based on poly(ionic liquid)s prepared via RAFT crosslinking copolymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2016, 54(1):169-178. [23] WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101):368. [24] ZHANG S H, YUN J X, SHEN S C, et al. Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction[J]. Chemical Engineering Science, 2008, 63(23):5600-5605. [25] ZHANG S H, SHEN S C, CHEN Z, et al. Preparation of solid lipid nanoparticles in co-flowing microchannels[J]. Chemical Engineering Journal, 2008, 144(2):324-328. [26] 陈卓, 张颂红, 沈绍传, 等. 在T型微通道内制备固体脂质纳米粒(SLN)的实验研究[J]. 高校化学工程学报, 2009, 23(6):927-932. CHEN Zhuo, ZHANG Songhong, SHEN Shaochuan, et al. Preparation of solid lipid nanoparticles in T-shaped junction microchannels[J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23(6):927-932. [27] AKHTER K F, MUMIN M A, LUI E K, et al. Microfluidic synthesis of ginseng polysaccharide nanoparticles for immunostimulating action on macrophage cell lines[J]. ACS Biomaterials Science & Engineering, 2015, 2(1):96-103. [28] BAZBAN-SHOTORBANI S, DASHTIMOGHADAM E, KARKHANEH A, et al. Microfluidic directed synthesis of alginate nanogels with tunable pore size for efficient protein delivery[J]. Langmuir, 2016, 32(19):4996-5003. [29] BAZBAN-SHOTORBANI S, DASHTIMOGHADAM E, KARKHANEH A, et al. Microfluidic directed synthesis of alginate nanogels with tunable pore size for efficient protein delivery[J]. Langmuir, 2016, 32(19):4996-5003. [30] TAPIA-HERNÁNDEZ J A, TORRES-CHÁVEZ P I, RAMÍREZ-WONG B, et al. Micro-and nanoparticles by electrospray:advances and applications in foods[J]. Journal of Agricultural and Food Chemistry, 2015, 63(19):4699-4707. [31] CHEN J, DAI H, LIN H, et al. A new strategy based on electrospray technique to prepare dual-responsive poly(ether urethane)nanogels[J]. Colloids and Surfaces B:Biointerfaces, 2016, 141:278-283. [32] SIRÉS I, BRILLAS E, OTURAN M A, et al. Electrochemical advanced oxidation processes:today and tomorrow. A review[J]. Environmental Science and Pollution Research, 2014, 21(14):8336-8367. [33] LANZALACO S, SIRÉS I, SABATINO M A, et al. Synthesis of polymer nanogels by electro-Fenton process:investigation of the effect of main operation parameters[J]. Electrochimica Acta, 2017, 246:812-822. [34] GONÇALVES C, PEREIRA P, GAMA M. Self-assembled hydrogel nanoparticles for drug delivery applications[J]. Materials, 2010, 3(2):1420-1460. [35] KAZAKOV S, LEVON K. Liposome-nanogel structures for future pharmaceutical applications[J]. Current Pharmaceutical Design, 2006, 12(36):4713-4728. [36] SULTANA F, IMRAN-UL-HAQUE M, ARAFAT M, et al. An overview of nanogel drug delivery system[J]. Journal of Applied Pharmaceutical Science, 2013, 3(8):S95-S105. [37] WU H Q, WANG C C. Biodegradable smart nanogels:a new platform for targeting drug delivery and biomedical diagnostics[J]. Langmuir, 2016, 32(25):6211-6225. [38] 马天泽, 李雪婷, 赵迪, 等. 多重响应的单分散聚(N-异丙基丙烯酰胺-co-丙烯酸)纳米水凝胶的制备及性能表征[J]. 功能高分子学报, 2015, 28(3):307-312. MA Tianze, LI Xueting, ZHAO Di, et al. Preparation and performance characterization of multiple responsive and monodisperse poly(N-isopropylacrylamide-co-acrylic acid) nanogels[J]. Journal of Functional Polymers, 2015, 28(3):307-312. [39] ZHANG Z J, WANG J, NIE X, et al. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods[J]. Journal of the American Chemical Society, 2014, 136(20):7317-7326. [40] PANJA S, DEY G, BHARTI R, et al. Metal ion ornamented ultra-fast light-sensitive nanogel for potential in vivo cancer therapy[J]. Chemistry of Materials, 2016, 28(23):8598-8610. [41] CAZARES-CORTES E, ESPINOSA A, GUIGNER J M, et al. Doxorubicin Intracellular remote release from biocompatible oligo(ethylene glycol) methyl ether methacrylate-based magnetic nanogels triggered by magnetic hyperthermia[J]. ACS Applied Materials & Interfaces, 2017, 9(31):25775-25788. [42] SADIGHIAN S, ROSTAMIZADEH K, HAMIDI M, et al. Magnetic nanogels as dual triggered anticancer drug delivery:toxicity evaluation on isolated rat liver mitochondria[J]. Toxicology Letters, 2017, 278:18-29. [43] WEN X, QIAO X, HAN X, et al. Multifunctional magnetic branched polyethylenimine nanogels with in-situ generated Fe3O4 and their applications as dye adsorbent and catalyst support[J]. Journal of Materials Science, 2016, 51(6):3170-3181. [44] ZHANG Q, ZHA L, MA J, et al. A novel route to prepare pH-and temperature-sensitive nanogels via a semibatch process[J]. Journal of Colloid and Interface Science, 2009, 330(2):330-336. [45] ZHANG K, WU X Y. Temperature and pH-responsive polymeric composite membranes of controlled delivery of protein and peptides[J]. Biomaterials, 2004, 25(22):5281-5291. [46] HE J, TONG X, ZHAO Y. Photo responsive nanogels based on photo controllable cross-links[J]. Macromolecules, 2009, 42(13):4845-4852. [47] 王晔晨, 全微雷, 张金敏, 等. 磁性聚合物微球的制备及其应用研究进展[J]. 化工进展, 2017, 36(8):2971-2977. WANG Yechen, QUAN Weilei, ZHANG Jinmin, et al. Progress in preparation and application of magnetic polymer microspheres[J]. Chemical Industry and Engineering Progress, 2017, 36(8):2971-2977. [48] SUN H W, ZHANG L Y, ZHU X J, et al. Poly(PEGMA)magnetic nanogels:preparation via photochemical method, characterization and application as drug carrier[J]. Science in China Series B:Chemistry, 2009, 52(1):69-75. [49] ZAREKAR N S, LINGAYAT V J, PANDE V V. Nanogel as a novel platform for smart drug delivery system[J]. Nanoscience and Nanotechnology Research, 2017, 4(1):25-31. [50] YANG G, WANG X, FU S, et al. pH-triggered chitosan nanogels via an ortho ester-based linkage for efficient chemotherapy[J]. Acta Biomaterialia, 2017, 60(15):232-243. [51] BRANNIGAN R P, KHUTORYANSKIYV V. Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery[J]. Colloids and Surfaces B:Biointerfaces, 2017, 155:538-543. [52] SIERRA-MARTIN B, FERNANDEZ-BARBERO A. Inorganic/polymer hybrid nanoparticles for sensing applications[J]. Advances in Colloid and Interface Science, 2016, 233:25-37. [53] WU W, MITRA N, YAN E C, et al. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH[J]. ACS Nano, 2010, 4(8):4831-4839. [54] HONG J, XU D, GONG P, et al. Covalent-bonded immobilization of enzyme on hydrophilic polymer covering magnetic nanogels[J]. Microporous and Mesoporous Materials, 2008, 109(1-3):470-477. [55] JI X, LIU J, LIU L, et al. Enzyme-polymer hybrid nanogels fabricated by thiol-disulfide exchange reaction[J]. Colloids and Surfaces B:Biointerfaces, 2016, 148:41-48. [56] AHMED I N, CHANG R, TSAI W B. Poly(acrylic acid)nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose[J]. Colloids and Surfaces B:Biointerfaces, 2017, 152:339-343. [57] ZHU J, SUN W, SHI X. Nanogels as contrast agents for molecular imaging[J]. Chinese Journal of Chemistry, 2016, 34(6):547-557. [58] CARO C, GARCÍA-MARTÍN M L, PERNIALEAL M. Manganese-based nanogels as pH switches for magnetic resonance imaging[J]. Biomacromolecules, 2017, 18(5):1617-1623. [59] SUN W, YANG J, ZHU J, et al. Immobilization of iron oxide nanoparticles within alginate nanogels for enhanced MR imaging applications[J]. Biomaterials Science, 2016, 4(10):1422-1430. [60] LEE K W, CHUNG J W, KWAK S Y. Synthesis and characterization of bio-based alkyl terminal hyperbranched polyglycerols:a detailed study of their plasticization effect and migration resistance[J]. Green Chemistry, 2016, 18(4):999-1009. [61] SARASWATHY M, STANSBURY J, NAIR D. Thiol-functionalized nanogels as reactive plasticizers for crosslinked polymer networks[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74:296-303. [62] SAVIC I M, STOJILJKOVIC S T, STOJANOVIC S B, et al. Modeling and optimization of Fe(Ⅲ) adsorption from water using bentonite clay:comparison of central composite design and artificial neural network[J]. Chemical Engineering & Technology, 2012, 35(11):2007-2014. [63] AKL M A, SARHAN A A, SHOUEIR K R, et al. Application of crosslinked ionic poly(vinyl alcohol)nanogel as adsorbents for water treatment[J]. Journal of Dispersion Science and Technology, 2013, 34(10):1399-1408. [64] MAHIDA V P, PATEL M P. Removal of some most hazardous cationic dyes using novel poly(NIPAAm/AA/N-allylisatin) nanohydrogel[J]. Arabian Journal of Chemistry, 2016, 9(3):430-442. |
[1] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[2] | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
[3] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[4] | 马殿普, 李俊, 覃德清, 袁英杰, 潘飞, 符泽卫. 锡酸锌纳米材料的制备方法及应用研究进展[J]. 化工进展, 2022, 41(6): 3113-3126. |
[5] | 宋梓豪, 王宏鑫, 杜博宇, 段秋阳, 卢晶虹, 江颖辉, 崔升. 聚酰亚胺气凝胶制备、性能及应用进展[J]. 化工进展, 2022, 41(2): 816-826. |
[6] | 刘瑞琴, 孟凡会, 王立言, 张鹏, 张俊峰, 谭猗生, 李忠. 有序介孔CuCoZr催化剂的制备及其催化合成气制乙醇及高级醇性能[J]. 化工进展, 2022, 41(11): 5870-5878. |
[7] | 何广源, 陈学敏, 王雨婷, 李发堂, 张子健, 许文浩. 钴酸镍基纳米材料在超级电容器中的研究进展[J]. 化工进展, 2021, 40(7): 3813-3825. |
[8] | 刘玉华, 魏宏亮, 李松茂, 刘子君, 李维坤, 王刚. 淀粉基水凝胶的研究进展[J]. 化工进展, 2021, 40(12): 6738-6751. |
[9] | 卞维柏, 陈一帆, 潘建明. 智能印迹聚合物及其外场强化的识别机制研究进展[J]. 化工进展, 2021, 40(12): 6752-6764. |
[10] | 公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10): 5554-5576. |
[11] | 黄文斌, 魏强, 周亚松. 均一介孔Al2O3劣质蜡油加氢脱氮催化剂研究进展[J]. 化工进展, 2020, 39(S2): 196-203. |
[12] | 罗明生, 冯旭楞, 宋丹, 杨智, 王亚涛, 李洪娟. 制备方法对FeC2O4制备的费托合成铁催化剂的影响[J]. 化工进展, 2020, 39(6): 2422-2429. |
[13] | 黄杰,张颂红,贠军贤,姚克俭. 聚甲基丙烯酸缩水甘油酯疏水纳凝胶的制备与表征[J]. 化工进展, 2019, 38(12): 5435-5441. |
[14] | 付绒,杨春林,胡燕燕,欧梅桂. 核壳型磁性荧光纳米复合材料的制备及其应用研究进展[J]. 化工进展, 2019, 38(08): 3742-3755. |
[15] | 李兆宁, 赵彦杰, 范亚茹. 相变蓄冷浆体材料研究进展[J]. 化工进展, 2018, 37(S1): 108-116. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 845
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 391
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |