[1] COLAS A, CURTIS J. Biomaterials science:an introduction to materials in medicine[M]. 2ed. Amsterdam:Elsevier Inc., 2004:80-85.
[2] 王腾, 田雨, 杨璠, 等. 高温硫化硅橡胶改性及老化研究进展[J]. 化工进展, 2016, 35(s2):209-213. WANG Teng, TIAN Yu, YANG Fan, et al. Recent advances on modify and aging researches of high temperature vulcanized silicone rubber[J]. Chemical Industry and Engineering Progress, 2016, 35(s2):209-213.
[3] NEOH K G, LI M, KANG E T, et al. Surface modification strategies for combating catheter-related complications:recent advances and challenges[J]. Journal of Materials Chemistry B, 2017, 5(11):2045-2067.
[4] CHEN S, LI L, ZHAO C, et al. Surface hydration:principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23):5283-5293.
[5] HADJESFANDIARIN, YU K, MEI Y, et al. Polymer brush-based approaches for the development of infection-resistant surfaces[J]. Journal of Materials Chemistry B, 2014, 2(31):4968-4978.
[6] RAMBARRAN T, GONZAGA F, BROOK M A. Generic, metal-free cross-linking and modification of silicone elastomers using click ligation[J]. Macromolecules, 2012, 45(5):2276-2285.
[7] MAGENNIS E P, HOOK A L, WILLIAMS P, et al. Making silicone rubber highly resistant to bacterial attachment using thiolene grafting[J]. Applied Materials & Interfaces, 2016, 8(45):30780-30787.
[8] LI M, NEOH K G, XU L Q, et al. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties[J]. Langmuir, 2012, 28(51):16408-16422.
[9] KEUM H, KIM J Y, YU B, et al. Prevention of bacterial colonization on catheters by a one-step coating process involving an antibiofouling polymer in water[J]. Applied Materials & Interfaces, 2017, 9(23):19736-19745.
[10] BANERJEE I, PANGULE R C, KANE R S. Antifouling coatings:recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms[J]. Advanced Materials, 2011, 23(6):690-718.
[11] SINGHA P, LOCKLIN J, HANDA H, et al. A review of the recent advances in antimicrobial coatings for urinary catheters[J]. Acta Biomaterialia, 2017, 50(1):20-40.
[12] DIAZ B C, ORTNER A, DIMITTOV R, et al. Building an antifouling zwitterionic coating on urinary catheters using an enzymatically triggered bottom-up approach[J]. Applied Materials & Interfaces, 2014, 6(14):11385-11393.
[13] SHIVAPOOJA P, LOPEZ G P, YU Q, et al. Modification of silicone elastomer surfaces with zwitterionic polymers:short term fouling resistance and triggered biofouling release[J]. Applied Materials & Interfaces, 2015, 7(46):25586-25591.
[14] WANG R, CHUA K L, NEOH K G, et al. Bifunctional coating with sustained release of 4-amide-piperidine-C12 for long-term prevention of bacterial colonization on silicone[J]. Biomaterials Science & Engineering, 2015, 1(6):405-415.
[15] BROOK M A, DODGE L, CHEN Y, et al. Sugar complexation to silicone boronic acids[J]. Chemical Communications, 2013, 49(14):1392-1394.
[16] ALAUZUN J G, YOUNG S, D'SOUZA R, et al. Biocompatible, hyaluronic acid modified silicone elastomers[J]. Chemical Communications, 2013, 49(14):1392-1394.
[17] LI M, NEOH K G, KANG E T, et al. Surface modification of silicone with covalently immobilized and crosslinked agarose for potential application in the inhibition of infection and omental wrapping[J]. Advanced Functional Materials, 2013, 24(11):1631-1643.
[18] ZHU Z, WANG J, LOPEZ A I, et al. Surfaces presenting α-phenyl mannoside derivatives enable formation of stable, high coverage, non-pathogenic escherichia coli biofilms against pathogen colonization[J]. Biomaterials Science, 2015, 3(6):842-851.
[19] JUNTER G A, THEBAULT P, LEBRUN L. Polysaccharide-based antibiofilm surfaces[J]. Acta Biomaterialia, 2016, 30(15):13-25.
[20] 吴宗山, 胡海洋, 任艺, 等.纳米银的抗菌机理研究进展[J]. 化工进展, 2015, 34(5):1349-1356. WU Zongshan, HU Haiyang, REN Yi, et al. Progress of antibacterial mechanisms of silver nanoparticles[J]. Chemical Industry and Engineering Progress, 2015, 34(5):1349-1356.
[21] LEMIRE J A, HARRISON J J, TURNER R J.Antimicrobial activity of metals:mechanisms, molecular targets and applications[J]. Nature Reviews Microbiology, 2015, 11(6):371-384.
[22] KNETSCH M L W, KOOLE L H. New strategies in the development of antimicrobial coatings:the example of increasing usage of silver and silver nanoparticles[J]. Polymer, 2011, 3(1):340-366.
[23] AFLORI M, MIRON C, DOBROMIR M, et al. Bactericidal effect on Foley catheters obtained by plasma and silver nitrate treatments[J]. High Performance Polymers, 2015, 27(5):655-660.
[24] KUMAR C G, SUJITHA P. Green synthesis of Kocuran-functionalized silver glyconanoparticles for use as antibiofilm coatings on silicone urethral catheters[J]. Nanotechnology, 2014, 25(32):1-16.
[25] WANG R, NEOH K G, KANG E T, et al. Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2015, 103(3):519-528.
[26] JOHNSON J R, JOHNSTON B, KUSKOWSKI M A, et al. In vitro comparison of nitrofurazone and silver alloy-coated foley catheters for contact-dependent and diffusible inhibition of urinary tract infection-associated microorganisms[J]. Antimicrobial Agents & Chemotherapy, 2012, 56(9):4969-4972.
[27] CAMPOCCIA D, MONTANARO L, ARCIOLA C R. A review of the biomaterials technologies for infection-resistant surfaces[J]. Biomaterials, 2013, 34(34):8533-8554.
[28] FISHER L E, HOOK A L, ASHRAF W, et al. Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity[J]. Journal of Controlled Release, 2015, 202(28):57-64.
[29] STEWART P S, COSTERTON J W. Antibiotic resistance of bacteria in biofilms[J]. Lancet, 2001, 358(9276):135-138.
[30] EPAND R M, VOGEL H J. Diversity of antimicrobial peptides and their mechanisms of action[J]. Biochim Biophys Acta, 1999, 1462(1/2):11-28.
[31] LIM K, CHUA R R, SARAVANAN R, et al. Immobilization studies of an engineered arginine-tryptophan-rich peptide on a silicone surface with antimicrobial and antibiofilm activity[J]. Applied Materials & Interfaces, 2013, 5(13):6412-6422.
[32] GAO Q, YU M, SU Y J, et al. Rationally designed dual functional block copolymers for bottlebrush-like coatings:in vitro and in vivo antimicrobial, antibiofilm, and antifouling properties[J]. Acta Biomaterialia, 2017, 51(15):112-124.
[33] PINESE C, JEBOR S, ECHALIER C, et al. Simple and specific grafting of antibacterial peptides on silicone catheters[J]. Advanced Healthcare Materials, 2017, 5(23):3067-3073.
[34] LI X, LI P, SARAVANAN R, et al. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties[J]. Acta Biomaterialia, 2014, 10(1):258-266.
[35] HESTROM L. Serine protease mechanism and specificity[J]. Chemical Reviews, 2002, 102(12):4501-4524.
[36] LONGHI C, SCOARUGHI G L, POGGIALI F, et al. Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes[J]. Microbial Pathogenesis, 2008, 45(1):45-52.
[37] KUMAR J K. Lysostaphin:an antistaphylococcal agent[J]. Applied Microbiology & Biotechnology, 2008, 80(4):555-561.
[38] KAPLAN J B, LOVETRI K, CARDONA S T, et al. Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci[J]. Journal of Antibiotics, 2008, 65(2):73-77.
[39] BORYSOWSKI J, WEBER-DABROWSKA B, GORSKI A. Bacteriophage endolysins as a novel class of antibacterial agents[J]. Experimental Biology & Medicine, 2006, 231(4):366-377.
[40] THALLINGER B, PRASETVO E N, NYANHONGO G S, et al. Antimicrobial enzymes:an emerging strategy to fight microbes and microbial biofilms[J]. Biotechnology Journal, 2006, 8(1):97-109.
[41] VATERRODT A, THALLINGER B, DAUMANM K, et al. Antifouling and antibacterial multifunctional polyzwitterion/enzyme coating on silicone catheter material prepared by electrostatic layer by layer assembly[J]. Langmuir, 2016, 32(5):1347-1359.
[42] LIPOVSKY A, THALLINGER B, PERELSHTEIN I, et al. Ultrasound coating of polydimethylsiloxanes with antimicrobial enzymes[J]. Journal of Materials Chemistry B, 2015, 3(35):7041-7019.
[43] IVANOVA K, FERNANDES M M, FRANCESKO A, et al. Quorum quenching and matrix degrading enzymes in multilayer coatings synergistically prevent bacterial biofilm formation on urinary catheters[J]. Applied Materials & Interfaces, 2015, 7(49):27066-27077.
[44] 左华江, 温婉华, 吴丁财, 等.高分子抗菌剂的研究现状[J]. 化工进展, 2013, 32(3):604-609. ZUO Huajiang, WEN Wanhua, WU Dingcai, et al. State of the art of antibacterial polymers[J]. Chemical Industry and Engineering Progress, 2013, 32(3):604-609.
[45] CAVALLARO A, MIERCZYNSKA A, BARTON M, et al. Influence of immobilized quaternary ammonium group surface density on antimicrobial efficacy and cytotoxicity[J]. Biofouling, 2015, 32(1):13-24.
[46] XUE Y, XIAO H, ZHANG Y, et al. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts[J]. International Journal of Molecular Sciences, 2015, 16(2):3626-3655.
[47] DING X, YANG C, LIM T P, et al. Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers[J]. Biomaterials, 2012, 33(28):6593-6603.
[48] LI H, BAO H, BOK K X, et al. High durability and low toxicity antimicrobial coatings fabricated by quaternary ammonium silane copolymers[J]. Biomaterials Science, 2016, 4(2):299-309.
[49] YANG C, DING X, ONO R J, et al. Brush like polycarbonates containing dopamine, cations, and PEG providing a broad-spectrum, antibacterial, and antifouling surface via one-step coating[J]. Advanced Materials, 2014, 26(43):7346-7351.
[50] ZHOU C, WU Y, THAPPETA K, et al. In vivo anti-biofilm and anti-bacterial non-leachable coating thermally polymerized on cylindrical catheter[J]. Applied Materials & Interfaces, 2017, 9(41):36269-36280.
[51] RONG W, NEOH K G, KANG E T, et al.Integration of antifouling and bactericidal moieties for optimizing the efficacy of antibacterial coatings[J]. Journal of Colloid & Interface Science, 2015, 438:138-148. |