[1] MAVUSO S, MARIMUTHU T, CHOONARA Y E, et al.A review of polymeric colloidal nanogels in transdermal drug delivery[J]. Current Pharmaceutical Design, 2015, 21(20):2801-13.
[2] SONI G, YADAV K S. Nanogels as potential nanomedicine carrier for treatment of cancer:a mini review of the state of the art[J]. Saudi Pharmaceutical Journal, 2016, 24(2):133-139.
[3] NEAMTU I, RUSU A G, DIACONU A, et al. Basic concepts and recent advances in nanogels as carriers for medical applications[J]. Drug Delivery, 2017, 24(1):539-557.
[4] SASAKI Y, AKIYOSHI K. Nanogel engineering for new nanobiomaterials:from chaperoning engineering to biomedical applications[J]. Chemical Record, 2010, 10(6):366-376.
[5] WANI T U, RASHID M, KUMAR M, et al. Targeting aspects of nanogels:an overview[J]. International Journal of Pharmaceutical Sciences and Nanotechnology, 2014, 7(4):2612-2630.
[6] MENG X, EDGAR K J. "Click" reactions in polysaccharide modification[J]. Progress in Polymer Science, 2016, 53:52-85.
[7] OH J K, DRUMRIGHT R, SIEGWART D J, et al. The development of microgels/nanogels for drug delivery applications[J]. Progress in Polymer Science, 2008, 33(4):448-477.
[8] SONI K S, DESALE S S, BRONICH T K. Nanogels:an overview of properties, biomedical applications and obstacles to clinical translation[J]. Journal of Controlled Release, 2016, 240:109-126.
[9] 李祯珍, 周淑彦, 窦红静, 等. 自组装辅助聚合法制备纤维素基温度/pH双敏感性荧光纳米凝胶[J]. 高等学校化学学报, 2013, 35(7):1608-1614. LI Zhenzhen, ZHOU Shuyan, DOU Hongjing, et al. Temperature/pH dual-sensitive fluorescence nano-gel based on cellulose through self-assembly assisted polymerization[J]. Chemical Journal of Chinese Universities, 2013, 35(7):1608-1614.
[10] LI Y L, ZHU L, LIU Z, et al. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells[J]. Angewandte Chemie International Edition, 2009, 48(52):9914-9918.
[11] 李霏霏, 张娜. 纳米凝胶载体系统的研究进展[J]. 中国药学杂志, 2016, 51(3):177-182. LI Feifei, ZHANG Na. Research progress in nanogel carrier systems[J]. Chinese Pharmaceutical Journal, 2016, 51(3):177-182.
[12] PARK C W, YANG H M, LEE H J, et al. Core-shell nanogel of PEG-poly(aspartic acid)and its pH-responsive release of rh-insulin[J]. Soft Matter, 2013, 9(6):1781-1788.
[13] ZHANG Y, DING J, LI M, et al. One-step "Click Chemistry"-synthesized cross-linked prodrug nanogel for highly selective intracellular drug delivery and upregulated antitumor efficacy[J]. ACS Applied Materials & Interfaces, 2016, 8(17):10673-10682.
[14] DING J, ZHUANG X, XIAO C, et al. Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery[J]. Journal of Materials Chemistry, 2011, 21(30):11383-11391.
[15] 王杨, 顾准. 刺激响应性聚N-乙烯基己内酰胺纳米凝胶的制备及性能研究[J]. 化学与生物工程, 2016, 33(6):39-44. WANG Yang, GU Zhun. Preparation and performance of stimuli-responsive poly(N-vinylcaprolactam)nanogel[J]. Chemistry & Bioengineering, 2016, 33(6):39-44.
[16] WANG Y, ZHENG J, TIAN Y, et al. Acid degradable poly(vinylcaprolactam)-based nanogels with ketal linkages for drug delivery[J]. Journal of Materials Chemistry B, 2015, 3(28):5824-5832.
[17] 张稳, 韩晓东, 苏红莹, 等. 反相微乳液法制备纳米凝胶的研究进展[J]. 高分子材料科学与工程, 2016, 32(9):178-183. ZHANG Wen, HAN Xiaodong, SU Hongying, et al. Progress in synthesis of nanogels by inverse microemulsion[J]. Polymeric Materials Science and Engineering, 2016, 32(9):178-183.
[18] KRISCH E, MESSAGER L, GYARMATI B, et al. Redox-and pH-responsive nanogels based on thiolated poly(aspartic acid)[J]. Macromolecular Materials and Engineering, 2016, 301(3):260-266.
[19] LI W, LIU Q, ZHANG P, et al. Zwitterionic nanogels crosslinked by fluorescent carbon dots for targeted drug delivery and simultaneous bioimaging[J]. Acta Biomaterialia, 2016, 40:254-262.
[20] KIM H, KIM B, LEE C, et al. Redox-responsive biodegradable nanogels for photodynamic therapy using Chlorin e6[J]. Journal of Materials Science, 2016, 51(18):8442-8451.
[21] 龚霞, 胡莹莹, 尤祥宇, 等. RAFT聚合法制备丙烯酰胺纳米凝胶的工艺优化[J]. 化学与生物工程, 2016, 33(10):35-38. GONG Xia, HU Yingying, YOU Xiangyu, et al. Process optimization of acrylamide nanogels prepared by RAFT polymerization[J]. Chemistry & Bioengineering, 2016, 33(10):35-38.
[22] ZUO Y, GUO N, JIAO Z, et al. Novel reversible thermos responsive nanogel based on poly(ionic liquid)s prepared via RAFT crosslinking copolymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2016, 54(1):169-178.
[23] WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101):368.
[24] ZHANG S H, YUN J X, SHEN S C, et al. Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction[J]. Chemical Engineering Science, 2008, 63(23):5600-5605.
[25] ZHANG S H, SHEN S C, CHEN Z, et al. Preparation of solid lipid nanoparticles in co-flowing microchannels[J]. Chemical Engineering Journal, 2008, 144(2):324-328.
[26] 陈卓, 张颂红, 沈绍传, 等. 在T型微通道内制备固体脂质纳米粒(SLN)的实验研究[J]. 高校化学工程学报, 2009, 23(6):927-932. CHEN Zhuo, ZHANG Songhong, SHEN Shaochuan, et al. Preparation of solid lipid nanoparticles in T-shaped junction microchannels[J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23(6):927-932.
[27] AKHTER K F, MUMIN M A, LUI E K, et al. Microfluidic synthesis of ginseng polysaccharide nanoparticles for immunostimulating action on macrophage cell lines[J]. ACS Biomaterials Science & Engineering, 2015, 2(1):96-103.
[28] BAZBAN-SHOTORBANI S, DASHTIMOGHADAM E, KARKHANEH A, et al. Microfluidic directed synthesis of alginate nanogels with tunable pore size for efficient protein delivery[J]. Langmuir, 2016, 32(19):4996-5003.
[29] BAZBAN-SHOTORBANI S, DASHTIMOGHADAM E, KARKHANEH A, et al. Microfluidic directed synthesis of alginate nanogels with tunable pore size for efficient protein delivery[J]. Langmuir, 2016, 32(19):4996-5003.
[30] TAPIA-HERNÁNDEZ J A, TORRES-CHÁVEZ P I, RAMÍREZ-WONG B, et al. Micro-and nanoparticles by electrospray:advances and applications in foods[J]. Journal of Agricultural and Food Chemistry, 2015, 63(19):4699-4707.
[31] CHEN J, DAI H, LIN H, et al. A new strategy based on electrospray technique to prepare dual-responsive poly(ether urethane)nanogels[J]. Colloids and Surfaces B:Biointerfaces, 2016, 141:278-283.
[32] SIRÉS I, BRILLAS E, OTURAN M A, et al. Electrochemical advanced oxidation processes:today and tomorrow. A review[J]. Environmental Science and Pollution Research, 2014, 21(14):8336-8367.
[33] LANZALACO S, SIRÉS I, SABATINO M A, et al. Synthesis of polymer nanogels by electro-Fenton process:investigation of the effect of main operation parameters[J]. Electrochimica Acta, 2017, 246:812-822.
[34] GONÇALVES C, PEREIRA P, GAMA M. Self-assembled hydrogel nanoparticles for drug delivery applications[J]. Materials, 2010, 3(2):1420-1460.
[35] KAZAKOV S, LEVON K. Liposome-nanogel structures for future pharmaceutical applications[J]. Current Pharmaceutical Design, 2006, 12(36):4713-4728.
[36] SULTANA F, IMRAN-UL-HAQUE M, ARAFAT M, et al. An overview of nanogel drug delivery system[J]. Journal of Applied Pharmaceutical Science, 2013, 3(8):S95-S105.
[37] WU H Q, WANG C C. Biodegradable smart nanogels:a new platform for targeting drug delivery and biomedical diagnostics[J]. Langmuir, 2016, 32(25):6211-6225.
[38] 马天泽, 李雪婷, 赵迪, 等. 多重响应的单分散聚(N-异丙基丙烯酰胺-co-丙烯酸)纳米水凝胶的制备及性能表征[J]. 功能高分子学报, 2015, 28(3):307-312. MA Tianze, LI Xueting, ZHAO Di, et al. Preparation and performance characterization of multiple responsive and monodisperse poly(N-isopropylacrylamide-co-acrylic acid) nanogels[J]. Journal of Functional Polymers, 2015, 28(3):307-312.
[39] ZHANG Z J, WANG J, NIE X, et al. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods[J]. Journal of the American Chemical Society, 2014, 136(20):7317-7326.
[40] PANJA S, DEY G, BHARTI R, et al. Metal ion ornamented ultra-fast light-sensitive nanogel for potential in vivo cancer therapy[J]. Chemistry of Materials, 2016, 28(23):8598-8610.
[41] CAZARES-CORTES E, ESPINOSA A, GUIGNER J M, et al. Doxorubicin Intracellular remote release from biocompatible oligo(ethylene glycol) methyl ether methacrylate-based magnetic nanogels triggered by magnetic hyperthermia[J]. ACS Applied Materials & Interfaces, 2017, 9(31):25775-25788.
[42] SADIGHIAN S, ROSTAMIZADEH K, HAMIDI M, et al. Magnetic nanogels as dual triggered anticancer drug delivery:toxicity evaluation on isolated rat liver mitochondria[J]. Toxicology Letters, 2017, 278:18-29.
[43] WEN X, QIAO X, HAN X, et al. Multifunctional magnetic branched polyethylenimine nanogels with in-situ generated Fe3O4 and their applications as dye adsorbent and catalyst support[J]. Journal of Materials Science, 2016, 51(6):3170-3181.
[44] ZHANG Q, ZHA L, MA J, et al. A novel route to prepare pH-and temperature-sensitive nanogels via a semibatch process[J]. Journal of Colloid and Interface Science, 2009, 330(2):330-336.
[45] ZHANG K, WU X Y. Temperature and pH-responsive polymeric composite membranes of controlled delivery of protein and peptides[J]. Biomaterials, 2004, 25(22):5281-5291.
[46] HE J, TONG X, ZHAO Y. Photo responsive nanogels based on photo controllable cross-links[J]. Macromolecules, 2009, 42(13):4845-4852.
[47] 王晔晨, 全微雷, 张金敏, 等. 磁性聚合物微球的制备及其应用研究进展[J]. 化工进展, 2017, 36(8):2971-2977. WANG Yechen, QUAN Weilei, ZHANG Jinmin, et al. Progress in preparation and application of magnetic polymer microspheres[J]. Chemical Industry and Engineering Progress, 2017, 36(8):2971-2977.
[48] SUN H W, ZHANG L Y, ZHU X J, et al. Poly(PEGMA)magnetic nanogels:preparation via photochemical method, characterization and application as drug carrier[J]. Science in China Series B:Chemistry, 2009, 52(1):69-75.
[49] ZAREKAR N S, LINGAYAT V J, PANDE V V. Nanogel as a novel platform for smart drug delivery system[J]. Nanoscience and Nanotechnology Research, 2017, 4(1):25-31.
[50] YANG G, WANG X, FU S, et al. pH-triggered chitosan nanogels via an ortho ester-based linkage for efficient chemotherapy[J]. Acta Biomaterialia, 2017, 60(15):232-243.
[51] BRANNIGAN R P, KHUTORYANSKIYV V. Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery[J]. Colloids and Surfaces B:Biointerfaces, 2017, 155:538-543.
[52] SIERRA-MARTIN B, FERNANDEZ-BARBERO A. Inorganic/polymer hybrid nanoparticles for sensing applications[J]. Advances in Colloid and Interface Science, 2016, 233:25-37.
[53] WU W, MITRA N, YAN E C, et al. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH[J]. ACS Nano, 2010, 4(8):4831-4839.
[54] HONG J, XU D, GONG P, et al. Covalent-bonded immobilization of enzyme on hydrophilic polymer covering magnetic nanogels[J]. Microporous and Mesoporous Materials, 2008, 109(1-3):470-477.
[55] JI X, LIU J, LIU L, et al. Enzyme-polymer hybrid nanogels fabricated by thiol-disulfide exchange reaction[J]. Colloids and Surfaces B:Biointerfaces, 2016, 148:41-48.
[56] AHMED I N, CHANG R, TSAI W B. Poly(acrylic acid)nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose[J]. Colloids and Surfaces B:Biointerfaces, 2017, 152:339-343.
[57] ZHU J, SUN W, SHI X. Nanogels as contrast agents for molecular imaging[J]. Chinese Journal of Chemistry, 2016, 34(6):547-557.
[58] CARO C, GARCÍA-MARTÍN M L, PERNIALEAL M. Manganese-based nanogels as pH switches for magnetic resonance imaging[J]. Biomacromolecules, 2017, 18(5):1617-1623.
[59] SUN W, YANG J, ZHU J, et al. Immobilization of iron oxide nanoparticles within alginate nanogels for enhanced MR imaging applications[J]. Biomaterials Science, 2016, 4(10):1422-1430.
[60] LEE K W, CHUNG J W, KWAK S Y. Synthesis and characterization of bio-based alkyl terminal hyperbranched polyglycerols:a detailed study of their plasticization effect and migration resistance[J]. Green Chemistry, 2016, 18(4):999-1009.
[61] SARASWATHY M, STANSBURY J, NAIR D. Thiol-functionalized nanogels as reactive plasticizers for crosslinked polymer networks[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74:296-303.
[62] SAVIC I M, STOJILJKOVIC S T, STOJANOVIC S B, et al. Modeling and optimization of Fe(Ⅲ) adsorption from water using bentonite clay:comparison of central composite design and artificial neural network[J]. Chemical Engineering & Technology, 2012, 35(11):2007-2014.
[63] AKL M A, SARHAN A A, SHOUEIR K R, et al. Application of crosslinked ionic poly(vinyl alcohol)nanogel as adsorbents for water treatment[J]. Journal of Dispersion Science and Technology, 2013, 34(10):1399-1408.
[64] MAHIDA V P, PATEL M P. Removal of some most hazardous cationic dyes using novel poly(NIPAAm/AA/N-allylisatin) nanohydrogel[J]. Arabian Journal of Chemistry, 2016, 9(3):430-442. |