化工进展 ›› 2020, Vol. 39 ›› Issue (S2): 196-203.doi: 10.16085/j.issn.1000-6613.2020-0711
收稿日期:
2020-04-29
出版日期:
2020-11-20
发布日期:
2020-11-17
通讯作者:
魏强
E-mail:18401682448@163.com;qwei@cup.edu.cn
作者简介:
黄文斌(1996—),男,硕士研究生,研究方向为石油与天然气化学。E-mail:基金资助:
Wenbin HUANG(), Qiang WEI(
), Yasong ZHOU
Received:
2020-04-29
Online:
2020-11-20
Published:
2020-11-17
Contact:
Qiang WEI
E-mail:18401682448@163.com;qwei@cup.edu.cn
摘要:
提高加氢脱氮(HDN)性能是劣质蜡油加氢处理催化剂开发的关键和难点,而催化剂载体材料的制备及改性技术研究是获得高性能劣质蜡油加氢处理催化剂的核心。本文针对常规Al2O3孔径分布较大而不利于反应物的扩散及比表面积的提高问题,介绍了均一介孔Al2O3(MA)载体的制备方法(溶胶-凝胶法、沉淀法、水热合成法)及优缺点。为提高催化剂加氢脱氮活性,综述了Al2O3载体的助剂(磷、硼、氟)改性、复合氧化物(钛铝、硅铝复合氧化物)改性及复合改性的最新研究进展,分析了改性后载体酸性及与活性相间相互作用的变化以及对催化剂加氢脱氮性能的影响。指出未来应着重于均一介孔Al2O3载体及复合改性两方面的研究,以期获得高活性劣质蜡油加氢脱氮催化剂。
中图分类号:
黄文斌, 魏强, 周亚松. 均一介孔Al2O3劣质蜡油加氢脱氮催化剂研究进展[J]. 化工进展, 2020, 39(S2): 196-203.
Wenbin HUANG, Qiang WEI, Yasong ZHOU. Research progress of homogeneous mesoporous Al2O3 of hydrodenitrogenation catalyst for inferior gas oil[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 196-203.
1 | 徐春明, 杨朝合. 石油炼制工程[M]. 第4版. 北京: 石油工业出版社, 2009: 277-280. |
XU Chunming, YANG Chaohe. Petroleum refining engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009: 277-280. | |
2 | NGUYEN M T, TAYAKOUT-FAYOLLE M, PIRNGRUBER G D, et al. Kinetic modeling of quinoline hydrodenitrogenation over a NiMo(P)/Al2O3 catalyst in a batch reactor[J]. Industrial & Engineering Chemistry Research, 2015, 54(38): 9278-9288. |
3 | PRADO G H C, RAO Y, KLERK A D. Nitrogen removal from oil: a review[J]. Energy & Fuels, 2017, 31(1): 14-36. |
4 | VÁZQUEZ-GARRIDO I, LÓPEZ-BENÍTEZ A, BERHAULT G, et al. Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions[J]. Fuel, 2019, 236: 55-64. |
5 | HAN W, NIE H, LONG X Y, et al. A study on the role of Ni atoms in the HDN activity of NiMoS2/Al2O3 catalyst[J]. Applied Catalysis A: General, 2020, 593: 117458. |
6 | HO T C. Hydrodenitrogenation catalysis[J]. Catalysis Reviews, 1988, 30(1): 117-160. |
7 | GUO K, DING Y, YU Z X. One-step synthesis of ultrafine MoNiS and MoCoS monolayers as high-performance catalysts for hydrodesulfurization and hydrodenitrogenation[J]. Applied Catalysis B: Environmental, 2018, 239: 433-440. |
8 | GUTIÉRREZ O Y, SINGH S, SCHACHTL E, et al. Effects of the support on the performance and promotion of (Ni)MoS2 catalysts for simultaneous hydrodenitrogenation and hydrodesulfurization[J]. ACS Catalysis, 2014, 4(5): 1487-1499. |
9 | EGOROVA M, PRINS R. The role of Ni and Co promoters in the simultaneous HDS of dibenzothiophene and HDN of amines over Mo/γ-Al2O3 catalysts[J]. Journal of Catalysis, 2006, 241(1): 162-172. |
10 | BACHRACH M, MARKS T J, NOTESTEIN J M. Understanding the hydrodenitrogenation of heteroaromatics on a molecular level[J]. ACS Catalysis, 2016, 6(3): 1455-1476. |
11 | JANG E J, LEE J, KWAK J H. Morphology change and phase transformation of alumina related to defect sites and its use in catalyst preparation[J]. Catalysis Today, 2019, DOI: 10.1016/j.cattod.2019.09.043. |
12 | WU M M, LI T, LI H Y, et al. Desulfurization of hot coal gas over regenerable low-cost Fe2O3/mesoporous Al2O3 prepared by the sol-gel method [J]. Energy & Fuels, 2017, 31(12): 13921-13932. |
13 | ZHOU W W, ZHANG Y N, TAO X J, et al. Effects of gallium addition to mesoporous alumina by impregnation on dibenzothiophene hydrodesulfurization performances of the corresponding NiMo supported catalysts[J]. Fuel, 2018, 228: 152-163. |
14 | 田丹碧, 杨孝荣, 刘会祥, 等. 一种使用双咪唑离子液体合成介孔氧化铝的方法: CN102167373A[P]. 2011-08-31. |
TIAN Danbi, YANG Xiaorong, LIU Huixiang, et al. Method for synthesizing mesoporous aluminum oxide by using dicationic imidazolium ionic liquid: CN102167373A[P]. 2011-08-31. | |
15 | PARK H S, YANG S H, JUN Y S, et al. A facile route to synthesize large-mesoporous γ-alumina by room temperature ionic liquids[J]. Chemistry of Materials, 2007, 19(3): 535-542. |
16 | 朴玲钰, 刘祥志, 毛立娟, 等. 反相微乳液法制备纳米氧化铝[J]. 物理化学学报, 2009, 25(11): 2232-2236. |
PIAO Lingyu, LIU Xiangzhi, MAO Lijuan, et al. Preparation of nano-alumina by reverse microemulsion method[J]. Acta Physico-Chimica Sinica, 2009, 25(11): 2232-2236. | |
17 | GHOSH S, NASKAR M K. Synthesis of mesoporous γ-alumina nanorods using a double surfactant system by reverse microemulsion process[J]. RSC Advances, 2013, 3(13): 4207. |
18 | 张旭光, 马云飞. 介孔氧化铝的溶胶-凝胶法制备[J]. 合成化学, 2017, 25(10): 844-846. |
ZHANG Xuguang, MA Yunfei. Preparation of mesoporous alumina by sol-gel methods[J]. Chinese Journal of Synthetic Chemistry, 2017, 25(10): 844-846. | |
19 | YANG W C, LI C F, TIAN S Q, et al. Influence of synthesis variables of a sol-gel process on the properties of mesoporous alumina and their fluoride adsorption[J]. Materials Chemistry and Physics, 2020, 242: 122499. |
20 | YANG P D, ZHAO D Y, MARGOLESE D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J]. Nature, 1998, 396(6707): 152-155. |
21 | PAN D, CHEN W, HUANG X, et al. Solvothermal-assisted evaporation-induced self-assembly of ordered mesoporous alumina with improved performance[J]. Journal of Colloid & Interface Science, 2018, 529: 432-443. |
22 | 严润华, 蔡卫权, 卓俊琳, 等. 一锅溶剂蒸发诱导自组装法制备助剂体相分布的Pd-Ba-Zn/γ-Al2O3催化剂及其蒽醌加氢性能[J]. 化工进展, 2018, 37(3): 1014-1020. |
YAN Runhua, CAI Weiquan, ZHUO Junlin. One-pot solvent evaporation induced self-assembly synthesis of Pd-Ba-Zn/γ-Al2O3 catalyst with homogeneous distribution of the promoters and its hydrogenation performance of anthraquinone[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1014-1020. | |
23 | 王娟, 李晨, 徐博. 溶胶-凝胶法的基本原理、发展及应用现状[J]. 化学工业与工程, 2009, 26(3): 273-277. |
WANG Juan, LI Chen, XU Bo. Basic principle, advance and current application situation of sol-gel method[J]. Chemical Industry and Engineering, 2009, 26(3): 273-277. | |
24 | STOLYAROVA E A, DANILEVICH V V, KLIMOV O V, et al. Comparison of alumina supports and catalytic activity of CoMoP/γ-Al2O3 hydrotreating catalysts obtained using flash calcination of gibbsite and precipitation method[J]. Catalysis Today, 2019. DOI: 10.1016/j.cattod.2019.09.019. |
25 | ZHAO R H, GUO F, HU Y Q, et al. Self-assembly synthesis of organized mesoporous alumina by precipitation method in aqueous solution[J]. Microporous and Mesoporous Materials, 2006, 93(1-3): 212-216. |
26 | 吕振辉, 薛冬, 彭绍忠, 等. 介孔氧化铝制备方法对其载体及催化剂性能的影响[J]. 石油化工, 2017, 46(1): 17-26. |
Zhenhui LÜ, XUE Dong, PENG Shaozhong, et al. Influences of preparation methods of mesoporous alumina on its properties and performances of the catalysts[J]. Petrochemical Technology, 2017, 46(1): 17-26. | |
27 | ZHANG L L, WU Y S, ZHANG L N, et al. Synthesis and characterization of mesoporous alumina with high specific area via coprecipitation method[J]. Vacuum, 2016, 133: 1-6. |
28 | GAN Z H, NING G L, LIN Y, et al. Morphological control of mesoporous alumina nanostructures via template-free solvothermal synthesis[J]. Materials Letters, 2007, 61(17): 3758-3761. |
29 | 朱华. 水热晶化法合成介孔氧化铝分子筛研究[J]. 四川文理学院学报, 2012, 22(5): 47-50. |
ZHU Hua. Mesoporous alumina molecular sieves synthesized by hydrothermal crystallization method[J]. Sichuan University of Arts and Science Journal, 2012, 22(5): 47-50. | |
30 | GARCÍA M V, GARBARINO G, FINOCCHIO E, et al. Characterization of a mesoporous γ-Al2O3 catalyst: influence of their properties on ethanol conversion[J]. Materials Today: Proceedings, 2018, 5(9): 17515-17524. |
31 | HAN W, NIE H, LONG X Y, et al. Preparation of F-doped MoS2/Al2O3 catalysts as a way to understand the electronic effects of the support Brønsted acidity on HDN activity[J]. Journal of Catalysis, 2016, 339: 135-142. |
32 | LI G C, LIU Y Q, TANG Z, et al. Effects of rehydration of alumina on its structural properties, surface acidity, and HDN activity of quinoline[J]. Applied Catalysis A: General, 2012, 437/438: 79-89. |
33 | 罗怡, 周亚松, 魏强, 等. 磷、柠檬酸改性对MoW/Ni/Al2O3催化剂性质及加氢脱氮性能的影响[J]. 化工学报, 2014, 65(10): 3916-3923. |
LUO Yi, ZHOU Yasong, WEI Qiang, et al. Effect of citric acid and phosphorus on properties and hydrodenitrogenation performance of MoW/Ni/Al2O3 catalysts[J]. CIESC Jorunal, 2014, 65(10): 3916-3923. | |
34 | YU G L, ZHOU Y S, WEI Q, et al. A novel method for preparing well dispersed and highly sulfided NiW hydrodenitrogenation catalyst[J]. Catalysis Communications, 2012, 23: 48-53. |
35 | WEI Q, WEN S C, TAO X J, et al. Hydrodenitrogenation of basic and non-basic nitrogen-containing compounds in coker gas oil[J]. Fuel Processing Technology, 2015, 129: 76-84. |
36 | GUTIÉRREZ O Y, HRABAR A, HEIN J, et al. Ring opening of 1, 2, 3, 4-tetrahydroquinoline and decahydroquinoline on MoS2/γ-Al2O3 and Ni-MoS2/γ-Al2O3[J]. Journal of Catalysis, 2012, 295: 155-168. |
37 | MELLO M D, BRAGGIO F A, MAGALHÃES B C, et al. Effects of phosphorus content on simultaneous ultradeep HDS and HDN reactions over NiMoP/alumina catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56: 10287-10299. |
38 | BADOGA S, DALAI A K, ADJAYE J, et al. Insights into individual and combined effects of phosphorus and EDTA on performance of NiMo/MesoAl2O3 catalyst for hydrotreating of heavy gas oil[J]. Fuel Processing Technology, 2017, 159: 232-246. |
39 | NADEINA K A, KAZAKOV M O, DANILOVA I G, et al. The influence of B and P in the impregnating solution on the properties of NiMo/γ-δ-Al2O3 catalysts for VGO hydrotreating[J]. Catalysis Today, 2019, 329: 2-12. |
40 | SHI L, ZHANG Z H, QIU Z G, et al. Effect of phosphorus modification on the catalytic properties of Mo-Ni/Al2O3 in the hydrodenitrogenation of coal tar[J]. Journal of Fuel Chemistry and Technology, 2015, 43(1): 74-80. |
41 | XIANG C E, CHAI Y M, FAN J, et al. Effect of phosphorus on the hydrodesulfurization and hydrodenitrogenation performance of presulfided NiMo/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2011, 39(5): 355-360. |
42 | ZHANG L L, ZHOU M X, WANG A Q, et al. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms[J]. Chemical Review, 2020, 120(2): 683-733. |
43 | KIBAR M E, ÖZCAN O, DUSOVA-TEKE Y, et al. Optimization, modeling and characterization of sol-gel process parameters for the synthesis of nanostructured boron doped alumina catalyst supports[J]. Microporous and Mesoporous Materials, 2016, 229: 134-144. |
44 | 陈子莲, 王继锋, 杨占林, 等. 硼对NiMo/γ-Al2O3加氢处理催化剂性能的影响[J]. 石油学报(石油加工), 2016, 32(1): 56-63. |
CHEN Zilian, WANG Jifeng, YANG Zhanlin, et al. Effect of boron promoter on the performance of NiMo/γ-Al2O3 hydrotreating catalyst[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(1): 56-63. | |
45 | CHEN W B, MAUGÉ F, GESTEL J V, et al. Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts[J]. Journal of Catalysis, 2013, 304: 47-62. |
46 | ZHANG W P, SUN M Y, PRINS R. Multinuclear MAS NMR identification of fluorine species on the surface of fluorinated γ-alumina[J]. Journal of Physical Chemistry B, 2002, 106(45): 11805-11809. |
47 | GUO X M, SONG M N, ZHAO X, et al. Effect of fluoride promoter on the catalytic activity of NiWF/γ-Al2O3 for hydrodenitrogenation and hydrodesulfurization of coal tar[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1326-1333. |
48 | MARQUES J, GUILLAUME D, MERDRIGNAC I, et al. Effect of catalysts acidity on residues hydrotreatment[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 727-737. |
49 | 鄢景森, 王海彦, 张静茹, 等. TiO2-Al2O3载体的制备方法对其负载的磷化镍催化剂加氢脱氮反应性能的影响[J]. 物理化学学报, 2014, 30(7): 1309-1317. |
YAN Jingsen, WANG Haiyan, ZHANG Jingru, et al. Effect of TiO2-Al2O3 support preparation technique on hydrodenitrogenation of Ni2P/TiO2-Al2O3 catalysts[J]. Acta Physico-Chimica Sinica, 2014, 30(7): 1309-1317. | |
50 | GUTIÉRREZ-ALEJANDRE A, RAMíREZ J, BUSCA G. A vibrational and spectroscopic study of WO3/TiO2-Al2O3 catalyst precursors[J]. Langmuir, 1998, 14(3): 630-639. |
51 | RODSEANGLUNG T, RATANA T, PHONGAKSORN M, et al. Effect of TiO2 incorporated with Al2O3 on the hydrodeoxygenation and hydrodenitrogenation CoMo sulfide catalysts[J]. Energy Procedia, 2015, 79: 378-384. |
52 | ZHOU W W, YANG L, LIU L, et al. Synthesis of novel NiMo catalysts supported on highly ordered TiO2-Al2O3 composites and their superior catalytic performance for 4,6-dimethyldibenzothiophene hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2019, 268: 118428. |
53 | BADOGA S, SHARMA R V, DALAI A K, et al. Hydrotreating of heavy gas oil on mesoporous mixed metal oxides (M-Al2O3, M=TiO2, ZrO2, SnO2) supported NiMo catalysts: influence of surface acidity[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 18729-18739. |
54 | NGUYEN T T, IMAI K, PU J L, et al. Effect of TiO2 coating on morphology of active phase on sulfided CoMo/Al2O3 hydrotreating catalysts[J]. Energy & Fuels, 2018, 32(2): 1665-1673. |
55 | RAMÍREZ J, MACÍAS G, CEDEÑO L, et al. The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts: analysis of past and new evidences[J]. Catalysis Today, 2004, 98(1/2): 19-30. |
56 | 郭振莲, 张孔远, 刘晨光. Ti改性氢氧化铝干胶制备Pt/Al2O3-TiO2催化剂的研究[J]. 石油炼制与化工, 2010, 41(9): 55-58. |
GUO Zhenlian, ZHANG Kongyuan, LIU Chenguang. A study of Pt/Al2O3-TiO2 catalyst prepared by TiO2 modified alumina[J]. Petroleum Processing and Petrochemicals, 2010, 41(9): 55-58. | |
57 | HIMPSEL F J, MCFEELY F R, TALEB-IBRAHIMI A, et al. Microscopic structure of the SiO2/Si interface[J]. Physical Review B, 1988, 38(9): 6084-6096. |
58 | NETO A V S, LEITE E R, SILVA V T, et al. NiMoS HDS catalysts- The effect of the Ti and Zr incorporation into the silica support and of the catalyst preparation methodology on the orientation and activity of the formed MoS2 slabs[J]. Applied Catalysis A: General, 2016, 528: 74-85. |
59 | QU L L, FLECHSENHAR M, PRINS R. Kinetics of the hydrodenitrogenation of o-toluidine over fluorinated NiMoS/Al2O3 and NiMoS/ASA catalysts[J]. Journal of Catalysis, 2003, 217(2): 284-291. |
60 | HUANG Z D, BENSCH W, LOTNYK A, et al. SBA-15 as support for NiMo HDS catalysts derived from sulfur-containing molybdenum and nickel complexes: effect of activation mode[J]. Journal of Molecular Catalysis A: Chemical, 2010, 323(1/2): 45-51. |
61 | LEYVA C, ANCHEYTA J, TRAVERT A, et al. Activity and surface properties of NiMo/SiO2-Al2O3 catalysts for hydroprocessing of heavy oils[J]. Applied Catalysis A: General, 2012, 425/426: 1-12. |
62 | RAYO P, TORRES-MANCERA P, CENTENO G, et al. Effect of silicon incorporation method in the supports of NiMo catalysts for hydrotreating reactions[J]. Fuel, 2019, 239: 1293-1303. |
63 | 张艳侠, 袁胜华, 王刚, 等. 硅加入方式对MoNiP/Al2O3加氢处理催化剂的影响[J]. 当代化工, 2012(3): 22-24, 116. |
ZHANG Yanxia, YUAN Shenghua, WANG Gang. Effect of different incorporation ways of silicon on properties of MoNiP/Al2O3 hydrotreating catalyst[J]. Contemporary Chemical Industry, 2012(3): 22-24, 116. | |
64 | BRAGGIO F A, MELLO M D, MAGALHAES B C, et al. Effects of citric acid addition method on the activity of NiMo/γ-Al2O3 catalysts in simultaneous hydrodesulfurization and hydrodenitrogenation reactions[J]. Energy & Fuels, 2019, 33(2): 1450-1457. |
65 | 邱海峰, 汤晟, 孔祥敏, 等. 柠檬酸促进NiMoP/Al2O3催化剂上喹啉加氢脱氮性能的研究[J]. 石油炼制与化工, 2019, 50(4): 35-41. |
QIU Haifeng, TANG Sheng, KONG Xiangmin, et al. Influence of citric acid on the performance of NiMoP/Al2O3 catalysts for quinoline hydrodenitrogenation[J]. Petroleum Processing and Petrochemicals, 2019, 50(4): 35-41. | |
66 | ALBERSBERGER S, SHI H, WAGENHOFER M, et al. On the enhanced catalytic activity of acid-treated, trimetallic Ni-Mo-W sulfides for quinoline hydrodenitrogenation[J]. Journal of Catalysis, 2019, 380: 332-342. |
67 | ZHU L, ZHOU Y S, WEI Q, et al. Effect of citric acid assisted hydrothermal modification on the hydrogenation performance of NiW/Al2O3 catalyst[J]. Acta Petrolei Sinica, 2013, 29(5): 773-777. |
68 | DING L H, ZHANG Z S, ZHENG Y, et al. Effect of fluorine and boron modification on the HDS, HDN and HDA activity of hydrotreating catalysts[J]. Applied Catalysis A: General, 2006, 301(2): 241-250. |
69 | MAITY S K, ANCHEYTA J, RANA M S, et al. Alumina-titania mixed oxide used as support for hydrotreating catalysts of Maya heavy crude: effect of support preparation methods[J]. Energy & Fuels, 2006, 20(2): 427-431. |
70 | 吕伟超, 周亚松, 李瑞峰, 等. 柠檬酸与磷的改性对Ni-Mo/Al2O3焦化蜡油加氢脱氮性能的影响[J]. 石油学报(石油加工), 2014, 30(2): 218-223. |
Weichao LYU, ZHOU Yasong, LI Ruifeng, et al. Effect of the modification by citric acid cooperating with phosphorus on the hydrodenitrogenation performance of Ni-Mo/Al2O3 for coking gas oil[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2014, 30(2): 218-223. | |
71 | PEREYMA V Y, KLIMOV O V, PROSVIRIN I P, et al. Effect of thermal treatment on morphology and catalytic performance of NiW/Al2O3 catalysts prepared using citric acid as chelating agen[J]. Catalysis Today, 2018, 305: 162-170. |
[1] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[2] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[3] | 李佳, 樊星, 陈莉, 李坚. 硝酸生产尾气中NO x 和N2O联合脱除技术研究进展[J]. 化工进展, 2023, 42(7): 3770-3779. |
[4] | 于姗, 段元刚, 张怡欣, 唐春, 付梦瑶, 黄靖元, 周莹. 分步法分解硫化氢制氢和硫黄催化剂研究进展[J]. 化工进展, 2023, 42(7): 3780-3790. |
[5] | 汪嘉欣, 潘勇, 熊欣怡, 万晓月, 王建超. 甲苯一步催化硝化制备二硝基甲苯反应过程及危险性[J]. 化工进展, 2023, 42(7): 3420-3430. |
[6] | 韩恒文, 韩伟, 李明丰. 烯烃水合反应工艺与催化剂研究进展[J]. 化工进展, 2023, 42(7): 3489-3500. |
[7] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[8] | 王蕴青, 杨国锐, 延卫. 过渡金属磷化物的改性方法及其在电化学析氢中的应用[J]. 化工进展, 2023, 42(7): 3532-3549. |
[9] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[10] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[11] | 王达锐, 孙洪敏, 薛明伟, 王一棪, 刘威, 杨为民. 微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能[J]. 化工进展, 2023, 42(7): 3582-3588. |
[12] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[13] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[14] | 曾天续, 张永显, 严渊, 刘宏, 马娇, 党鸿钟, 吴新波, 李维维, 陈永志. 羟胺对硝化菌活性及其动力学参数的影响[J]. 化工进展, 2023, 42(6): 3272-3280. |
[15] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
|