化工进展 ›› 2024, Vol. 43 ›› Issue (4): 1655-1666.DOI: 10.16085/j.issn.1000-6613.2023-0715
• 化工过程与装备 • 上一篇
杜永亮1,2(), 梁卓彬1,2, 龚耀煦1,2, 毕豪杰1,2, 徐志远1,2, 苑宏英1,2,3()
收稿日期:
2023-05-04
修回日期:
2023-08-29
出版日期:
2024-04-15
发布日期:
2024-05-13
通讯作者:
苑宏英
作者简介:
杜永亮(1985—),男,博士,讲师,研究方向为污水污泥处理、固废资源化处置。E-mail:du.smile@163.com。
基金资助:
DU Yongliang1,2(), LIANG Zhuobin1,2, GONG Yaoxu1,2, BI Haojie1,2, XU Zhiyuan1,2, YUAN Hongying1,2,3()
Received:
2023-05-04
Revised:
2023-08-29
Online:
2024-04-15
Published:
2024-05-13
Contact:
YUAN Hongying
摘要:
在低碳经济的发展背景下,膜蒸馏技术作为一种兼具优异分离性能和节能潜力的新型分离技术而备受重视。气隙式膜蒸馏作为一种高热效率的膜蒸馏形式,其节能优势更为显著。本文总结了国内外与气隙式膜蒸馏技术相关的研究进展,从传质传热模型、数值模拟和膜组件结构几个方面指出了膜蒸馏技术的主要研究方向。重点介绍了膜蒸馏过程优化的研究和技术应用现状。膜蒸馏过程优化包括通过膜组件结构设计优化、使用改性膜、外加物理场等方式以提高膜通量或减小膜污染。在应用方面,气隙式膜蒸馏技术主要应用于海水淡化、高浓度工业废水处理和浓缩加工等领域。
中图分类号:
杜永亮, 梁卓彬, 龚耀煦, 毕豪杰, 徐志远, 苑宏英. 气隙式膜蒸馏技术研究现状和应用[J]. 化工进展, 2024, 43(4): 1655-1666.
DU Yongliang, LIANG Zhuobin, GONG Yaoxu, BI Haojie, XU Zhiyuan, YUAN Hongying. Air gap membrane distillation research status and applications[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1655-1666.
基膜 | 强化形式 | 优化结果 | 参考文献 |
---|---|---|---|
PSF(聚砜)膜 | 将吐温80或磺化聚砜(SPSF)加入聚砜-聚乙二醇400-二甲基乙酰胺体系中用浸入沉淀相转化法制备PS中空纤维膜 | SPSF对膜的亲水性改善比吐温80好;SPSF质量分数为1.5%时可将膜通量提升一倍以上,可达302L/(m2·h) | [ |
PP膜 | 用共沉积法让亲水性聚多巴胺/聚乙烯亚胺在PP中空纤维膜管腔内沉积制成Janus膜 | 使用2g/L的聚多巴胺/聚乙烯亚胺共沉积液在60℃下沉积6h约提升85%,70℃下沉积6h约提升100%,80℃下沉积6h可使得通量提升120%,且具有良好的耐盐和抗污染性 | [ |
PVDF膜 | 通过多巴胺的自附着行为对PTFE中空纤维膜进行表面改性 | 用2g/L的多巴胺对PTFE中空纤维膜进行表面改性8h后得到的膜丝的纯水通量为原膜的1.5倍 | [ |
PVDF膜 | 用热致相分离法制备PVDF/SMA共混中空纤维膜 | PVDF/SMA共混膜的膜通量由19.23L/(m2·h)提升到了62.39L/(m2·h),水接触角由93.4°降低到66.9° | [ |
PVDF膜 | 双喷头对喷的静电纺织制备PVDF-PH-PET交织型的多级纤维复合膜(tHFC) | 在温差为40℃、PET/PH为0.8/1.5、膜厚为80μm的条件下,膜通量可达65.86L/(m2·h) | [ |
PVDF膜 | 蚀刻-电喷雾协同技术使用Al2O3纳米颗粒对PVDF膜改性制成有微/纳凹结构的亲/疏水Janus膜 | 相较PVDF膜和双疏膜处理高盐含油废水时30min就被污染,Janus膜可连续稳定运行45h仍未被污染 | [ |
表1 中空纤维膜材料优化案例
基膜 | 强化形式 | 优化结果 | 参考文献 |
---|---|---|---|
PSF(聚砜)膜 | 将吐温80或磺化聚砜(SPSF)加入聚砜-聚乙二醇400-二甲基乙酰胺体系中用浸入沉淀相转化法制备PS中空纤维膜 | SPSF对膜的亲水性改善比吐温80好;SPSF质量分数为1.5%时可将膜通量提升一倍以上,可达302L/(m2·h) | [ |
PP膜 | 用共沉积法让亲水性聚多巴胺/聚乙烯亚胺在PP中空纤维膜管腔内沉积制成Janus膜 | 使用2g/L的聚多巴胺/聚乙烯亚胺共沉积液在60℃下沉积6h约提升85%,70℃下沉积6h约提升100%,80℃下沉积6h可使得通量提升120%,且具有良好的耐盐和抗污染性 | [ |
PVDF膜 | 通过多巴胺的自附着行为对PTFE中空纤维膜进行表面改性 | 用2g/L的多巴胺对PTFE中空纤维膜进行表面改性8h后得到的膜丝的纯水通量为原膜的1.5倍 | [ |
PVDF膜 | 用热致相分离法制备PVDF/SMA共混中空纤维膜 | PVDF/SMA共混膜的膜通量由19.23L/(m2·h)提升到了62.39L/(m2·h),水接触角由93.4°降低到66.9° | [ |
PVDF膜 | 双喷头对喷的静电纺织制备PVDF-PH-PET交织型的多级纤维复合膜(tHFC) | 在温差为40℃、PET/PH为0.8/1.5、膜厚为80μm的条件下,膜通量可达65.86L/(m2·h) | [ |
PVDF膜 | 蚀刻-电喷雾协同技术使用Al2O3纳米颗粒对PVDF膜改性制成有微/纳凹结构的亲/疏水Janus膜 | 相较PVDF膜和双疏膜处理高盐含油废水时30min就被污染,Janus膜可连续稳定运行45h仍未被污染 | [ |
膜蒸馏形式 | 强化形式 | 结果 | 参考文献 |
---|---|---|---|
DCMD | 基于三周期极小曲面(TPMS)的具有横向交联结构(tCLP)的聚丙烯垫片 | 以1900mg/L的硫酸钙为料液,温差为30℃条件下,效果较好的tCLP垫片能使得通量增加50%,但会增加压降 | [ |
DCMD | 基于TPMS的tCLP和Gyroid垫片 | tCLP和Gyroid垫片都可以显著提升MD的性能,但都不可避免地使压降变大;Gyroid垫片具有更好的缓解有机污染性能,但tCLP对通量的提升 效果更显著 | [ |
DCMD | 无纺布网隔板 | 在较高的流速下,填充的无纺布隔板使通量增加7%~19%。增加垫片对进料通道的通量增强可达21%~33%。在更高的温度下,垫片对温度极化的改善更明显 | [ |
DCMD | 六种有不同流动攻角和格栅夹角三维扰流层 | 曲线型攻角为45°和夹角为90°的扰流层强化效果最好,能使膜通量提升73.99% | [ |
AGMD | 螺旋式和波浪式中空纤维膜 | 50℃时可分别提升7%和4%的通量;75℃时可分别提升40%和36%的通量 | [ |
表2 膜组件流场优化案例
膜蒸馏形式 | 强化形式 | 结果 | 参考文献 |
---|---|---|---|
DCMD | 基于三周期极小曲面(TPMS)的具有横向交联结构(tCLP)的聚丙烯垫片 | 以1900mg/L的硫酸钙为料液,温差为30℃条件下,效果较好的tCLP垫片能使得通量增加50%,但会增加压降 | [ |
DCMD | 基于TPMS的tCLP和Gyroid垫片 | tCLP和Gyroid垫片都可以显著提升MD的性能,但都不可避免地使压降变大;Gyroid垫片具有更好的缓解有机污染性能,但tCLP对通量的提升 效果更显著 | [ |
DCMD | 无纺布网隔板 | 在较高的流速下,填充的无纺布隔板使通量增加7%~19%。增加垫片对进料通道的通量增强可达21%~33%。在更高的温度下,垫片对温度极化的改善更明显 | [ |
DCMD | 六种有不同流动攻角和格栅夹角三维扰流层 | 曲线型攻角为45°和夹角为90°的扰流层强化效果最好,能使膜通量提升73.99% | [ |
AGMD | 螺旋式和波浪式中空纤维膜 | 50℃时可分别提升7%和4%的通量;75℃时可分别提升40%和36%的通量 | [ |
工艺 | 能量回收 形式 | 参数 | 膜通量/L·m-2·h-1 | 造水比 | 其他 | 参考 文献 |
---|---|---|---|---|---|---|
三级并联和三级串联AGMD | 内部回收 | 热料液温度90℃,原料液温度20℃,气隙厚度4.0mm | 并联时为单级的3倍;串联时为单级的2.6倍 | — | 并联的能量利用率为0.6,串联为0.45 | [ |
能量回收AGMD组件 | 内部回收 | 热料液温度90℃,原料液温度40℃,气隙厚度0.5mm,中空纤维膜/换热管为2/1 | 3.1 | 4.3 | 热效率80%以上 | [ |
用于海水深度浓缩的多效膜蒸馏 | 内部回收 | 热料液温度95℃,原料液温度30℃,进料流量40L/h,料液浓度34g/L | 3.61~6.07 | 4.96~13.2 | 截留率99.9% | [ |
多效膜蒸馏用于氢氧化钠溶液浓缩 | 内部回收 | 热料液温度95℃,原料液温度30℃,进料流量30L/h,料液浓度200g/L | 3.05 | 5.04 | 截留率99.9% | [ |
耦合热泵型三级减压多效膜蒸馏 | 外部回收 | 热料液温度70℃,原料液温度30℃,料液流量104L/h,冷却水流量54L/h,热泵COP为3.11 | 2.26 | 3.65 | — | [ |
表3 能量回收优化案例
工艺 | 能量回收 形式 | 参数 | 膜通量/L·m-2·h-1 | 造水比 | 其他 | 参考 文献 |
---|---|---|---|---|---|---|
三级并联和三级串联AGMD | 内部回收 | 热料液温度90℃,原料液温度20℃,气隙厚度4.0mm | 并联时为单级的3倍;串联时为单级的2.6倍 | — | 并联的能量利用率为0.6,串联为0.45 | [ |
能量回收AGMD组件 | 内部回收 | 热料液温度90℃,原料液温度40℃,气隙厚度0.5mm,中空纤维膜/换热管为2/1 | 3.1 | 4.3 | 热效率80%以上 | [ |
用于海水深度浓缩的多效膜蒸馏 | 内部回收 | 热料液温度95℃,原料液温度30℃,进料流量40L/h,料液浓度34g/L | 3.61~6.07 | 4.96~13.2 | 截留率99.9% | [ |
多效膜蒸馏用于氢氧化钠溶液浓缩 | 内部回收 | 热料液温度95℃,原料液温度30℃,进料流量30L/h,料液浓度200g/L | 3.05 | 5.04 | 截留率99.9% | [ |
耦合热泵型三级减压多效膜蒸馏 | 外部回收 | 热料液温度70℃,原料液温度30℃,料液流量104L/h,冷却水流量54L/h,热泵COP为3.11 | 2.26 | 3.65 | — | [ |
案例 | 参数 | 膜通量/L·m-2·h-1 | 造水比 | 脱盐率/% | 参考文献 |
---|---|---|---|---|---|
太阳能AGMD海水淡化系统 | 料液、冷却液流速:15~20L/min 料液温度:40~85℃ 冷凝液温度:20~80℃ | 最高6.5 | 0.28~0.79 | >99 | [ |
螺旋缠绕式气隙膜蒸馏组件 (SW-AGMD-HF)用于海水淡化 | 料液温度:70~90℃ 冷却液温度:25~45℃ 料液流量:20~50L/h | 5.87 | 5.37 | >99 | [ |
太阳能中空纤维AGMD海水淡化装置 | 料液温度:50~80℃ 冷却液温度:25℃ 料液流量:50L/h 太阳能集热面积:2.38m2 膜面积:0.6m2 | 晴天最大5.1 多云最大2.4 | 1.1~3.2 | >99 | [ |
有隔网的螺旋缠绕式中空纤维膜蒸馏组件 用于海水淡化 | 料液温度:30~80℃ 冷却液温度:25℃ | 最高6.1 | 5.8 | >99 | [ |
内部换热式多效气隙式膜蒸馏组件 用于海水淡化 | 料液温度:90℃ 冷却温度:30℃ NaCl质量分数:3% | 最大6.8 | 6.2~12.5 | >99 | [ |
表4 海水淡化应用案例
案例 | 参数 | 膜通量/L·m-2·h-1 | 造水比 | 脱盐率/% | 参考文献 |
---|---|---|---|---|---|
太阳能AGMD海水淡化系统 | 料液、冷却液流速:15~20L/min 料液温度:40~85℃ 冷凝液温度:20~80℃ | 最高6.5 | 0.28~0.79 | >99 | [ |
螺旋缠绕式气隙膜蒸馏组件 (SW-AGMD-HF)用于海水淡化 | 料液温度:70~90℃ 冷却液温度:25~45℃ 料液流量:20~50L/h | 5.87 | 5.37 | >99 | [ |
太阳能中空纤维AGMD海水淡化装置 | 料液温度:50~80℃ 冷却液温度:25℃ 料液流量:50L/h 太阳能集热面积:2.38m2 膜面积:0.6m2 | 晴天最大5.1 多云最大2.4 | 1.1~3.2 | >99 | [ |
有隔网的螺旋缠绕式中空纤维膜蒸馏组件 用于海水淡化 | 料液温度:30~80℃ 冷却液温度:25℃ | 最高6.1 | 5.8 | >99 | [ |
内部换热式多效气隙式膜蒸馏组件 用于海水淡化 | 料液温度:90℃ 冷却温度:30℃ NaCl质量分数:3% | 最大6.8 | 6.2~12.5 | >99 | [ |
案例 | 参数 | 膜通量/L·m-2·h-1 | 处理效果 | 参考文献 |
---|---|---|---|---|
AGMD处理含酸浓缩废水 | 料液温度:40~65℃ 冷却温度:21℃ | 2.5以上 | 总体截留率:99.68% 水回收率:75% | [ |
AGMD处理含铀废水 | 料液温度:50~70℃ 冷却温度:20℃±1℃ | 3.0~9.0 | 铀截留率:99% 氟截留率:98% | [ |
AGMD处理电厂脱硫废水 | 进料温度:60~78℃ 进料流速:30L/h | 1.64~4.22 | 盐截留率:99.8%~100% | [ |
AGMD模拟处理印染废水 | 料液温度:70℃ 冷却温度:20℃ | 11.7~12.6 | 日落黄、玫瑰红染料以及十二烷基硫酸钠表面活性剂的去除率达100%且可将颜色完全去除 | [ |
AGMD处理模拟含放射性废水(Cs+、Sr2+、Co2+、UO22+) | 料液温度:60~90℃ 料液流速:80~180L/h 气隙厚度:3~15mm | 4.79~16.24 | 各种操作条件下的Cs+、Sr2+、Co2+、UO22+去除率均能达到99%以上。在72h浓缩实验中,膜通量呈先升后降低趋势,但是对各种离子的去除率都稳定在99.99% | [ |
多效膜蒸馏处理预处理后的炼油废水浓水 | 外部热源为97℃热水 进料流量:40L/h 进料温度:25℃ | 4.5~6.5 | 淡水回收率达95%,出水电导率仅有5.9~7.2μS/cm且CODCr小于45mg/L,造水比为6.8~10.2 | [ |
多效膜蒸馏处理电镀反渗透浓水 | 料液温度:65~85℃ 料液流速:15~55L/h 冷却液温度:25~45℃ 冷却液流速:25~45L/h | 最高5.136 | 产水电导率<50μS/cm,浊度<15mg/L,色度<2NTU,脱盐率>99%,出水能达到国家污水综合排放二级标准 | [ |
表5 工业废水处理案例
案例 | 参数 | 膜通量/L·m-2·h-1 | 处理效果 | 参考文献 |
---|---|---|---|---|
AGMD处理含酸浓缩废水 | 料液温度:40~65℃ 冷却温度:21℃ | 2.5以上 | 总体截留率:99.68% 水回收率:75% | [ |
AGMD处理含铀废水 | 料液温度:50~70℃ 冷却温度:20℃±1℃ | 3.0~9.0 | 铀截留率:99% 氟截留率:98% | [ |
AGMD处理电厂脱硫废水 | 进料温度:60~78℃ 进料流速:30L/h | 1.64~4.22 | 盐截留率:99.8%~100% | [ |
AGMD模拟处理印染废水 | 料液温度:70℃ 冷却温度:20℃ | 11.7~12.6 | 日落黄、玫瑰红染料以及十二烷基硫酸钠表面活性剂的去除率达100%且可将颜色完全去除 | [ |
AGMD处理模拟含放射性废水(Cs+、Sr2+、Co2+、UO22+) | 料液温度:60~90℃ 料液流速:80~180L/h 气隙厚度:3~15mm | 4.79~16.24 | 各种操作条件下的Cs+、Sr2+、Co2+、UO22+去除率均能达到99%以上。在72h浓缩实验中,膜通量呈先升后降低趋势,但是对各种离子的去除率都稳定在99.99% | [ |
多效膜蒸馏处理预处理后的炼油废水浓水 | 外部热源为97℃热水 进料流量:40L/h 进料温度:25℃ | 4.5~6.5 | 淡水回收率达95%,出水电导率仅有5.9~7.2μS/cm且CODCr小于45mg/L,造水比为6.8~10.2 | [ |
多效膜蒸馏处理电镀反渗透浓水 | 料液温度:65~85℃ 料液流速:15~55L/h 冷却液温度:25~45℃ 冷却液流速:25~45L/h | 最高5.136 | 产水电导率<50μS/cm,浊度<15mg/L,色度<2NTU,脱盐率>99%,出水能达到国家污水综合排放二级标准 | [ |
案例 | 参数 | 膜通量和造水比 | 处理效果 | 参考文献 |
---|---|---|---|---|
多效膜蒸馏装置浓缩硫酸盐、盐酸盐等16种无机盐水溶液 | 料液温度:90℃ 冷凝液温度:30℃ 冷凝液流速:30L/h 料液浓度:0.5%~40% | 膜通量和造水比最高达 4.5L/(m2·h)和11.0,但均随着 处理时间的升高而下降 | 实验全程截留率在99.99%以上,电导率保持在200μS/cm以下,当料液浓度达到18%时16种溶液的膜通量和造水比都可保持在2.30L/(m2·h)和6.9以上 | [ |
多效膜蒸馏处理预处理后的炼油废水浓水 | 外部热源为97℃热水 进料流量:40L/h 进料温度:25℃ | 膜通量:4.5~6.5L/(m2·h) 造水比:6.8~10.2 | 可将废水浓缩19倍以上 | [ |
AGMD浓缩西瓜汁、梨汁、苹果汁和柚子汁 | 进料温度:70℃ | 膜通量:3L/(m2·h) 造水比:8.0 | 可将果汁从8°Brix浓缩到55°Brix且果汁风味成分保存良好 | [ |
AGMD浓缩氢氧化钠溶液 | 进料温度:70~95℃ 冷却液温度:20~45℃ 料液流量:6~26L/h | 膜通量:3.9~7.7L/(m2·h) 造水比:1.7~2.7 | 可将NaOH溶液浓缩9.5倍,截留率可达99.9%,但在浓缩过程中膜通量和造水比会逐渐下降 | [ |
多效膜蒸馏浓缩中药提取液 | 热料液温度:70℃ 冷料液温度:30℃ 料液流量:30L/h | 膜通量:3L/(m2·h) 造水比:7.0 | 长期操作稳定性良好,可将各种重要提取液浓缩16倍以上,膜通量和造水比仍可达到1.6L/(m2·h)和5~5.55,且有效成分保留完整 | [ |
表6 浓缩加工案例
案例 | 参数 | 膜通量和造水比 | 处理效果 | 参考文献 |
---|---|---|---|---|
多效膜蒸馏装置浓缩硫酸盐、盐酸盐等16种无机盐水溶液 | 料液温度:90℃ 冷凝液温度:30℃ 冷凝液流速:30L/h 料液浓度:0.5%~40% | 膜通量和造水比最高达 4.5L/(m2·h)和11.0,但均随着 处理时间的升高而下降 | 实验全程截留率在99.99%以上,电导率保持在200μS/cm以下,当料液浓度达到18%时16种溶液的膜通量和造水比都可保持在2.30L/(m2·h)和6.9以上 | [ |
多效膜蒸馏处理预处理后的炼油废水浓水 | 外部热源为97℃热水 进料流量:40L/h 进料温度:25℃ | 膜通量:4.5~6.5L/(m2·h) 造水比:6.8~10.2 | 可将废水浓缩19倍以上 | [ |
AGMD浓缩西瓜汁、梨汁、苹果汁和柚子汁 | 进料温度:70℃ | 膜通量:3L/(m2·h) 造水比:8.0 | 可将果汁从8°Brix浓缩到55°Brix且果汁风味成分保存良好 | [ |
AGMD浓缩氢氧化钠溶液 | 进料温度:70~95℃ 冷却液温度:20~45℃ 料液流量:6~26L/h | 膜通量:3.9~7.7L/(m2·h) 造水比:1.7~2.7 | 可将NaOH溶液浓缩9.5倍,截留率可达99.9%,但在浓缩过程中膜通量和造水比会逐渐下降 | [ |
多效膜蒸馏浓缩中药提取液 | 热料液温度:70℃ 冷料液温度:30℃ 料液流量:30L/h | 膜通量:3L/(m2·h) 造水比:7.0 | 长期操作稳定性良好,可将各种重要提取液浓缩16倍以上,膜通量和造水比仍可达到1.6L/(m2·h)和5~5.55,且有效成分保留完整 | [ |
1 | 刘治宇. 套管式气隙膜蒸馏组件设计与实验研究[D]. 天津: 天津工业大学, 2018. |
LIU Zhiyu. Design and experimental study of tubular air-gap membrane distillation module[D].Tianjin: Tianjin Polytechnic University, 2018. | |
2 | ABU-ZEID Mostafa Abd El-Rady, ZHANG Yaqin, DONG Hang, et al. A comprehensive review of vacuum membrane distillation technique[J]. Desalination, 2015, 356: 1-14. |
3 | BASILE Angelo, FIGOLI Alberto, KHAYET Mohamed. Pervaporation, vapour permeation and membrane distillation: Principles and applications[M]. Kidlington, UK: Woodhead Publishing, 2015: 291-302. |
4 | EL-BOURAWI M S, DING Z, MA R, et al. A framework for better understanding membrane distillation separation process[J]. Journal of Membrane Science, 2006, 285(1/2): 4-29. |
5 | KHAYET Mohamed, MATSUURA Takeshi. Vacuum membrane distillation[M]//Membrane distillation. Amsterdam: Elsevier, 2011: 323-359. |
6 | JENSEN Morten Busch, CHRISTENSEN Knud Villy, René ANDRÉSEN, et al. A model of direct contact membrane distillation for black currant juice[J]. Journal of Food Engineering, 2011, 107(3/4): 405-414. |
7 | BANAT Fawzi A, AL-RUB Fahmi ABU, JUMAH Rami, et al. Application of Stefan-Maxwell approach to azeotropic separation by membrane distillation[J]. Chemical Engineering Journal, 1999, 73(1): 71-75. |
8 | BANAT F A, AL-RUB F A, SHANNAG M. Simultaneous removal of acetone and ethanol from aqueous solutions by membrane distillation: Prediction using the Fick’s and the exact and approximate Stefan-Maxwell relations[J]. Heat and Mass Transfer, 1999, 35(5): 423-431. |
9 | KONG Wei, ZHU Huayang, FEI Zaiyao, et al. A modified dusty gas model in the form of a Fick’s model for the prediction of multicomponent mass transport in a solid oxide fuel cell anode[J]. Journal of Power Sources, 2012, 206: 171-178. |
10 | 张雅琴, 张林, 侯立安. 计算流体力学在水处理膜过程中的应用[J]. 中国工程科学, 2014, 16(7): 47-52. |
ZHANG Yaqin, ZHANG Lin, HOU Li’an. Computational fluid dynamics applied to membrane processes for water treatment[J]. Engineering Sciences, 2014, 16(7): 47-52. | |
11 | GHADIRI Mehdi, FAKHRI Safoora, SHIRAZIAN Saeed. Modeling and CFD simulation of water desalination using nanoporous membrane contactors[J]. Industrial & Engineering Chemistry Research, 2013, 52(9): 3490-3498. |
12 | Kabbir ALI, ARAFAT Hassan A, HASSAN ALI Mohamed I. Detailed numerical analysis of air gap membrane distillation performance using different membrane materials and porosity[J]. Desalination, 2023, 551: 116436. |
13 | Pelin YAZGAN-BIRGI, HASSAN ALI Mohamed I, ARAFAT Hassan A. Comparative performance assessment of flat sheet and hollow fiber DCMD processes using CFD modeling[J]. Separation and Purification Technology, 2019, 212: 709-722. |
14 | LOU Jincheng, VANNESTE Johan, DECALUWE Steven C, et al. Computational fluid dynamics simulations of polarization phenomena in direct contact membrane distillation[J]. Journal of Membrane Science, 2019, 591: 117150. |
15 | 唐娜, 刘天宇, 华欣欣, 等. 真空膜蒸馏过程CFD模拟及膜组件设计[J]. 膜科学与技术, 2020, 40(2): 97-105, 126. |
TANG Na, LIU Tianyu, HUA Xinxin, et al. CFD simulation of vacuum membrane distillation process and design of membrane module[J]. Membrane Science and Technology, 2020, 40(2): 97-105, 126. | |
16 | CAMACHO Lucy MAR, Ludovic DUMÉE, ZHANG Jianhua, et al. Advances in membrane distillation for water desalination and purification applications[J]. Water, 2013, 5(1): 94-196. |
17 | 唐浩铭, 孙国富, 王卫东, 等. 膜蒸馏用疏水膜材料的研究进展[J]. 山东化工, 2021, 50(3): 101-103, 108. |
TANG Haoming, SUN Guofu, WANG Weidong, et al. Recent advances in hydrophobic materials used for membrane distillation[J]. Shandong Chemical Industry, 2021, 50(3): 101-103, 108. | |
18 | 陈慧敏, 刘公平, 金万勤. 面向膜蒸馏的全疏膜研究进展[J]. 膜科学与技术, 2023, 43(1): 1-12. |
CHEN Huimin, LIU Gongping, JIN Wanqin. Research progress of onmiphobic membranes for membrane distillation[J]. Membrane Science and Technology, 2023, 43(1): 1-12. | |
19 | 唐敏, 贾晓琳, 张勇, 等. 新型Janus膜的制备及其在高盐含油废水膜蒸馏处理中的应用[J]. 环境工程学报, 2020, 14(8): 2037-2047. |
TANG Min, JIA Xiaolin, ZHANG Yong, et al. Development of a novel Janus membrane and its application in treatment of hypersaline oily wastewater by direct contact membrane distillation[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2037-2047. | |
20 | 钟金成, 张敏敏, 肖登荣, 等. 聚砜中空纤维膜的亲水改性研究[J]. 工程塑料应用, 2015, 43(12): 1-5. |
ZHONG Jincheng, ZHANG Minmin, XIAO Dengrong, et al. Research on hydrophilic modification of polysulfone hollow fiber membrane[J]. Engineering Plastics Application, 2015, 43(12): 1-5. | |
21 | YANG Haocheng, ZHONG Wenwei, HOU Jingwei, et al. Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation[J]. Journal of Membrane Science, 2017, 523: 1-7. |
22 | 程毅丽, 康国栋, 贾静璇, 等. 聚四氟乙烯中空纤维膜的多巴胺自聚表面改性及性能研究[J]. 高校化学工程学报, 2015, 29(5): 1259-1264. |
CHENG Yili, KANG Guodong, JIA Jingxuan, et al. Preparation and performance of surface modified PTFE hollow fiber membranes by self-polymerization of dopamine[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(5): 1259-1264. | |
23 | 张朋飞, 崔振宇. TIPS法PVDF中空纤维膜改性及性能研究[J]. 山东化工, 2019, 48(8): 1-3. |
ZHANG Pengfei, CUI Zhenyu. Study on the modification and properties of PVDF hollow fiber membrane by TIPS[J]. Shandong Chemical Industry, 2019, 48(8): 1-3. | |
24 | 百玉林. 多级纳米纤维疏水膜的结构优化及其膜蒸馏性能评价[D]. 天津: 天津工业大学, 2021. |
BAI Yulin. Structure optimization of multistage nanofiber hydrophobic membrane and its distillation performance evaluation[D].Tianjin: Tianjin Polytechnic University, 2021. | |
25 | 田瑞. 高通量空气隙膜蒸馏系统的机理及应用研究[D]. 呼和浩特: 内蒙古工业大学, 2008. |
TIAN Rui. Mechanism and application study on high flux air gap membrane distillation system[D]. Hohhot: Inner Mongolia University of Tehchnology, 2008. | |
26 | 颜学升, 郁有阳, 左子文, 等. 膜蒸馏组件结构优化计算流体力学模拟及实验研究[J]. 科学技术与工程, 2020, 20(27): 11204-11211. |
YAN Xuesheng, YU Youyang, ZUO Ziwen, et al. Computational fluid dynamics simulation and experimental study on membrane distillation module structure optimization[J]. Science Technology and Engineering, 2020, 20(27): 11204-11211. | |
27 | THOMAS Navya, SREEDHAR Nurshaun, Oraib AL-KETAN, et al. 3D printed spacers based on TPMS architectures for scaling control in membrane distillation[J]. Journal of Membrane Science, 2019, 581: 38-49. |
28 | CASTILLO Erik Hugo Cabrera, THOMAS Navya, Oraib AL-KETAN, et al. 3D printed spacers for organic fouling mitigation in membrane distillation[J]. Journal of Membrane Science, 2019, 581: 331-343. |
29 | KIM Young-Deuk, FRANCIS Lijo, LEE Jung-Gil, et al. Effect of non-woven net spacer on a direct contact membrane distillation performance: Experimental and theoretical studies[J]. Journal of Membrane Science, 2018, 564: 193-203. |
30 | 张高远. 三维扰流层强化膜蒸馏的传热传质实验研究[D]. 北京: 华北电力大学, 2021. |
ZHANG Gaoyuan. An experimental heat and mass transfer research on enhancement of membrane distillation by 3D-printed spacers[D]. Beijing: North China Electric Power University, 2021. | |
31 | TEOH May May, BONYADI Sina, CHUNG Tai-Shung. Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process[J]. Journal of Membrane Science, 2008, 311(1/2): 371-379. |
32 | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019. |
TAO Wenquan. Heat transfer[M]. 5th ed. Beijing: Higher Education Press, 2019. | |
33 | 纪仲光, 李伟, 王海霞. 管式气隙膜蒸馏组件结构设计及性能研究[J]. 膜科学与技术, 2021, 41(2): 88-95. |
JI Zhongguang, LI Wei, WANG Haixia. Structure design and performance study of tubular air gap membrane distillation module[J]. Membrane Science and Technology, 2021, 41(2): 88-95. | |
34 | 刘灯辉, 黄志, 冯妍卉, 等. 超亲水-超疏水组合壁面冷凝性能研究[J]. 工程热物理学报, 2021, 42(2): 475-480. |
LIU Denghui, HUANG Zhi, FENG Yanhui, et al. Vapor condensation on hybrid superhydrophilic/superhydrophobic surfaces[J]. Journal of Engineering Thermophysics, 2021, 42(2): 475-480. | |
35 | WARSINGER David E M, SWAMINATHAN Jaichander, MASWADEH Laith A, et al. Superhydrophobic condenser surfaces for air gap membrane distillation[J]. Journal of Membrane Science, 2015, 492: 578-587. |
36 | 刘振艳, 刘振义, 宋继田, 等. 凹凸变化壁面强化传热机理与传热性能的研究[J]. 节能技术, 2007, 25(4): 305-308. |
LIU Zhenyan, LIU Zhenyi, SONG Jitian, et al. Study on heat transfer mechanism and characteristics of concave and raised surface[J]. Energy Conservation Technology, 2007, 25(4): 305-308. | |
37 | THOMAS Navya, MAVUKKANDY Musthafa O, LOUTATIDOU Savvina, et al. Membrane distillation research & implementation: Lessons from the past five decades[J]. Separation and Purification Technology, 2017, 189: 108-127. |
38 | KHALIFA Atia E, ALAWAD Suhaib M, ANTAR Mohamed A. Parallel and series multistage air gap membrane distillation[J]. Desalination, 2017, 417: 69-76. |
39 | 耿洪鑫, 徐义明, 李凭力, 等. 能量回收式膜蒸馏组件的设计和性能[J]. 膜科学与技术, 2014, 34(2): 85-89. |
GENG Hongxin, XU Yiming, LI Pingli, et al. Design of membrane distillation module with energy recovery and its performance for desalination[J]. Membrane Science and Technology, 2014, 34(2): 85-89. | |
40 | 王奔, 秦英杰, 王彬, 等. 多效膜蒸馏过程用于海水和浓海水的深度浓缩[J]. 化工进展, 2013, 32(9): 2233-2241. |
WANG Ben, QIN Yingjie, WANG Bin, et al. Study on deep concentration of seawater and brine by multiple-effect membrane distillation[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 2233-2241. | |
41 | 刘晶, 秦英杰, 王平, 等. 多效膜蒸馏技术用于氢氧化钠稀溶液的浓缩[J]. 工业水处理, 2014, 34(11): 73-76. |
LIU Jing, QIN Yingjie, WANG Ping, et al. Multi-effect membrane distillation process for concentrating dilute solution of sodium hydroxide[J]. Industrial Water Treatment, 2014, 34(11): 73-76. | |
42 | 刘超, 高启君, 吕晓龙, 等. 耦合热泵型减压多效膜蒸馏过程研究[J]. 水处理技术, 2015, 41(6): 57-61, 66. |
LIU Chao, GAO Qijun, Xiaolong LYU, et al. Vacuum multi-effect membrane distillation process coupled heat pump[J]. Technology of Water Treatment, 2015, 41(6): 57-61, 66. | |
43 | AL-JUBOORI Raed A, NAJI Osamah, BOWTELL Les, et al. Power effect of ultrasonically vibrated spacers in air gap membrane distillation: Theoretical and experimental investigations[J]. Separation and Purification Technology, 2021, 262: 118319. |
44 | 朱亮, 吴彬, 经欢欢, 等. 垃圾渗滤液膜浓缩液超声强化直接接触膜蒸馏处理工艺[J]. 水资源保护, 2022, 38(3): 161-167, 180. |
ZHU Liang, WU Bin, JING Huanhuan, et al. Ultrasonic enhanced direct contact membrane distillation for treatment of landfill leachate membrane concentrate[J]. Water Resources Protection, 2022, 38(3): 161-167, 180. | |
45 | DU Jennifer Runhong, DU Wenlin, FENG Xianshe, et al. Membrane distillation enhanced by an asymmetric electric field[J]. AIChE Journal, 2014, 60: 2307-2313. |
46 | 石一慈, 潘艳秋, 王成宇, 等. 焦耳效应强化气隙式膜蒸馏脱盐过程的实验研究[J]. 化工进展, 2022, 41(5): 2285-2291. |
SHI Yici, PAN Yanqiu, WANG Chengyu, et al. Experimental investigations on Joule effect enhanced air gap membrane distillation for water desalination[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2285-2291. | |
47 | 曹祖海, 张勇, 王建兵, 等. 微波辅助膜蒸馏工艺传质强化效率研究[J]. 水处理技术, 2017, 43(12): 29-33. |
CAO Zuhai, ZHANG Yong, WANG Jianbing, et al. Study on mass transfer enhancement efficiency of microwave assisted membrane distillation process[J]. Technology of Water Treatment, 2017, 43(12): 29-33. | |
48 | KJELLANDER Nils. Design and field tests of a membrane distillation system for seawater desalination[J]. Desalination, 1987, 61(3): 237-243. |
49 | BANAT Fawzi A, SIMANDL Jana. Desalination by membrane distillation: A parametric study[J]. Separation Science and Technology, 1998, 33(2): 201-226. |
50 | Elena GUILLÉN-BURRIEZA, BLANCO Julián, ZARAGOZA Guillermo, et al. Experimental analysis of an air gap membrane distillation solar desalination pilot system[J]. Journal of Membrane Science, 2011, 379(1/2): 386-396. |
51 | ZHANI K, ZARZOUM K, BACHA H BEN, et al. Autonomous solar powered membrane distillation systems: State of the art[J]. Desalination and Water Treatment, 2016, 57(48/49): 23038-23051. |
52 | 李卜义, 王建友, 王济虎, 等. 新型中空纤维空气隙式膜蒸馏用于海水淡化[J]. 化工学报, 2015, 66(1): 149-156. |
LI Boyi, WANG Jianyou, WANG Jihu, et al. New membrane distillation module based on hollow fiber AGMD desalination[J]. CIESC Journal, 2015, 66(1): 149-156. | |
53 | 薛喜东, 王建友, 刘红斌, 等. 太阳能中空纤维空气隙膜蒸馏海水淡化性能研究[J]. 膜科学与技术, 2016, 36(4): 126-133. |
XUE Xidong, WANG Jianyou, LIU Hongbin, et al. Air gap membrane distillation process based on hollow fiber powered by solar energy for seawater desalination[J]. Membrane Science and Technology, 2016, 36(4): 126-133. | |
54 | 薛喜东, 李露, 卜建伟, 等. 新型空气隙膜蒸馏组件用于海水淡化[J]. 现代化工, 2018, 38(1): 93-97. |
XUE Xidong, LI Lu, BU Jianwei, et al. A new air-gap membrane distillation module for seawater desalination[J]. Modern Chemical Industry, 2018, 38(1): 93-97. | |
55 | 秦英杰, 刘立强, 何菲, 等. 内部热能回收式多效膜蒸馏用于海水淡化及浓盐水深度浓缩[J]. 膜科学与技术, 2012, 32(2): 52-58. |
QIN Yingjie, LIU Liqiang, HE Fei, et al. Study on multi-effect membrane distillation for production of water from seawater or brine produced from traditional desalination processes[J]. Membrane Science and Technology, 2012, 32(2): 52-58. | |
56 | 李伟. 高通量管式膜蒸馏组件结构设计及污酸处理研究[D]. 北京: 北京有色金属研究总院, 2019. |
LI Wei. Study on structural design of tubular membrane distillation module for high flux and waste acid treatment[D]. Beijing: General Research Institute for Nonferrous Metals, 2019. | |
57 | 张耀玲, 王梅, 张锐, 等. 核工业含铀废水的膜蒸馏减量化处理实验研究[J]. 水处理技术, 2021, 47(11): 101-105. |
ZHANG Yaoling, WANG Mei, ZHANG Rui, et al. Experimental investigation on reduction treatment of uranium-containing wastewater in nuclear industry by membrane distillation[J]. Technology of Water Treatment, 2021, 47(11): 101-105. | |
58 | 车凌云, 张超, 卞志明. 气隙式膜蒸馏系统在电厂脱硫废水零排放深度处理过程中的研究[J]. 上海节能, 2018(9): 692-697. |
CHE Lingyun, ZHANG Chao, BIAN Zhiming. Study on air gap membrane distillation system at power plant desulfurized waste water zero emission treatment process[J]. Shanghai Energy Conservation, 2018(9): 692-697. | |
59 | LEAPER Sebastian, Ahmed ABDEL-KARIM, GAD-ALLAH Tarek A, et al. Air-gap membrane distillation as a one-step process for textile wastewater treatment[J]. Chemical Engineering Journal, 2019, 360: 1330-1340. |
60 | 王浩, 马夺, 张萌, 等. 气隙式膜蒸馏处理模拟放射性废液[J]. 核化学与放射化学, 2022, 44(6): 619-626. |
WANG Hao, MA Duo, ZHANG Meng, et al. Treatment of simulated radioactive waste liquid by air-gap membrane distillation[J]. Journal of Nuclear and Radiochemistry, 2022, 44(6): 619-626. | |
61 | 秦英杰, 王焕, 刘立强, 等. 经反渗透处理后炼油废水浓水的多效膜蒸馏技术[J]. 化工进展, 2011, 30(S1): 844-848. |
QIN Yingjie, WANG Huan, LIU Liqiang, et al. Deep concentration of the osmosis reverses brine drained from refining plants by multi-effect membrane distillation[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 844-848. | |
62 | 靳辉, 朱海霖, 郭玉海, 等. 多效膜蒸馏技术处理电镀废水反渗透浓水的研究[J]. 浙江理工大学学报(自然科学版), 2016, 35(4): 528-532. |
JIN Hui, ZHU Hailin, GUO Yuhai, et al. Study on treatment of reverse osmosis brine generated in electroplating wastewater by multi-effect membrane distillation technology[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2016, 35(4): 528-532. | |
63 | 李舒艺, 伍振峰, 岳鹏飞, 等. 中药提取液浓缩工艺和设备现状及问题分析[J]. 世界科学技术-中医药现代化, 2016, 18(10): 1782-1787. |
LI Shuyi, WU Zhenfeng, YUE Pengfei, et al. Analysis of current situation and problems in technologies and equipments for the concentration of liquid extraction of Chinese materia medica(CMM)[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2016, 18(10): 1782-1787. | |
64 | 王平, 秦英杰, 刘晶, 等. 多效膜蒸馏技术用于深度浓缩多种无机盐水溶液[J]. 膜科学与技术, 2014, 34(4): 39-44. |
WANG Ping, QIN Yingjie, LIU Jing, et al. Deep concentration of various aqueous solutions of inorganic salts by using multiple-effect membrane distillation[J]. Membrane Science and Technology, 2014, 34(4): 39-44. | |
65 | 王焕, 秦英杰, 刘立强, 等. 多效膜蒸馏技术用于果汁浓缩[J]. 化学工业与工程, 2012, 29(4): 50-57. |
WANG Huan, QIN Yingjie, LIU Liqiang, et al. Concentration of fruit juices by multiple-effect membrane distillation[J]. Chemical Industry and Engineering, 2012, 29(4): 50-57. | |
66 | 耿洪鑫, 程兰, 王芳, 等. 气隙式膜蒸馏法浓缩氢氧化钠溶液的实验研究[J]. 膜科学与技术, 2017, 37(4): 82-85, 106. |
GENG Hongxin, CHENG Lan, WANG Fang, et al. Experimental study on air-gap membrane distillation for concentrating sodium hydroxide solution[J]. Membrane Science and Technology, 2017, 37(4): 82-85, 106. | |
67 | 粘立军, 韩月芝, 陆莹莹, 等. 多效膜蒸馏技术在中药提取液浓缩中的应用研究[J]. 中国医药工业杂志, 2013, 44(1): 76-80. |
NIAN Lijun, HAN Yuezhi, LU Yingying, et al. Concentration of traditional Chinese medicine extraction by multiple-effect membrane distillation[J]. Chinese Journal of Pharmaceuticals, 2013, 44(1): 76-80. |
[1] | 禹言芳, 丁鹏程, 孟辉波, 石博文, 姚云娟. 非牛顿流体在叶片式静态混合器中的传热强化特性[J]. 化工进展, 2024, 43(3): 1145-1156. |
[2] | 尹少武, 李纤纤, 韩嘉维, 路明, 童莉葛, 王立. 分户式低谷电蓄热供暖系统的蓄放热特性[J]. 化工进展, 2024, 43(3): 1206-1213. |
[3] | 李京, 方庆, 周文浩, 吴国良, 王家辉, 张华, 倪红卫. 挡板构型对含钒页岩浸出槽内多相流行为的影响[J]. 化工进展, 2024, 43(2): 619-627. |
[4] | 见禹, 陈宝明, 宫晗语. 基于分级结构骨架相变储热系统强化传热特性[J]. 化工进展, 2024, 43(2): 649-658. |
[5] | 边汉青, 张兴凯, 廖锐全, 王栋, 李锐, 罗晓矗, 侯耀东, 白晓弘, 甘庆明. 管内相分隔状态下湿气两相流双参数测量方法[J]. 化工进展, 2024, 43(2): 722-733. |
[6] | 哈雯, 杨杨, 唐雨, 曹頔, 张超, 杨斌. 油水环状流截面相含率超声衰减法测量[J]. 化工进展, 2024, 43(2): 768-780. |
[7] | 邓磊, 袁茂博, 杨家辉, 岳洋, 姜家豪, 车得福. 适应锅炉调峰运行的水冷壁高温腐蚀预测模型[J]. 化工进展, 2024, 43(2): 925-936. |
[8] | 谢广烁, 张斯亮, 何松, 肖娟, 王斯民. 基于最佳预后元模型的颗粒污垢特性全局敏感性分析[J]. 化工进展, 2024, 43(1): 328-337. |
[9] | 封德彬, 王文, 马凡华. 掺氢天然气的管道输运特性仿真与分析[J]. 化工进展, 2024, 43(1): 390-399. |
[10] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[11] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[12] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[13] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[14] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[15] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |